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ABSTRACT

We introduce a novel method for utilizing user input to
sparsely label membranes in electron microscopy images.
Using gridlines as guides, the user marks where the guides
cross the membrane to generate a sparsely labeled image. We
use a best path algorithm to connect each of the sparse mem-
brane labels. The resulting segmentation has a significantly
better Rand error than automatic methods while requiring as
little as 2% of the image to be labeled.

Index Terms— connectomics, electron microscopy,
semi-automatic segmentation, biological segmentation

1. INTRODUCTION

Machine assisted biological image segmentation methods
range from manually labelled computer assisted methods [1,
2] to manually refined more automatic methods [3, 4, 5].
Manual methods require a significant time commitment to
accurately label images such as is done for membrane detec-
tion in electron microscopy (EM) images of the brain in [1].
Active learning methods such as Ilastik [6] attempt to de-
crease the user input required for generation of training data
used in supervised methods. In addition, automatic methods
typically require a large dataset of manually labeled images
to be used for learning.

In this paper, we propose a new method that seeks to uti-
lize user input in an efficient way to produce highly accu-
rate results with minimal user input. Different than [6] which
uses learning on user input to segment the image, we utilize
the user input as a starting point for best path finding to seg-
ment EM images. We sparsely label the dataset by using grid-
lines to guide the user in identifying membrane locations and
then use a best path algorithm to identify the complete mem-
brane structure. In EM images, cell membranes generally
have complete connectivity with only a few exceptions per
image so that finding the best path between all labeled mem-
brane in an image results in the correct structure. This differs
from manual methods that require membrane tracing [1]. In
addition, we introduce a method of membrane labeling that
replaces the binary label with an intensity label that allows
further improvement through thresholding.

In Section 2, we outline the complete method for obtain-
ing the sparse labeling, the best path algorithm used, and the
method for label replacement. Following we will present re-
sults from using this method on two different EM datasets in
Section 3. In addition, we show the results of using a learning
method for further refinement. Then in Section 4 we present
our conclusions and propose future research.

2. METHODS

To be able to take advantage of manual labeling and minimize
the amount of effort required from the user, we propose using
gridlines on an image as a guide to create a sparse sampling
of the image. Along each gridline, the person doing the la-
beling will indicate the locations where the gridline crosses
membrane pixels. The result gives us an image of squares
where the membrane locations on the borders of each square
are known and the labels of all pixels inside each square are
entirely unknown. Figure 1 shows an example of the grid-
lines overlaid on a denoised image with the membrane labels
in yellow and non-membrane labels in red.

In general, each of the cells in an EM image are immedi-
ately adjacent to another cell so that neighboring cells appear
to share a membrane in the image. This is due to dehydration
during sample preparation that shrinks the spacing between
the cells. Once the membrane on the gridlines have been
identified, we take advantage of this near complete connec-
tivity between cell membranes to attempt to find a best path
between all membranes on the borders of a single grid square.
We then do this for every grid square so that we have complete
connectivity of membranes throughout the image. To solve
the best path problem, we use Dijkstra’s algorithm computed
separately using each membrane pixel along the border of the
square as a starting node. Then the minimum path between
the current starting node and every other membrane pixel on
the border of the current grid is labeled as membrane. We use
8-connected neighbors as the edges of the graph and the edge
costs are computed as the geometric distance between the cur-
rent pixel node and its neighboring pixels times the cost (C)
for each neighboring pixel where

Cn = eλ|
In−med(M)

med(M)
|. (1)



Fig. 1. Example of grid labeling of cell membranes. Red
represents the non-membrane sections on the gridlines and
yellow represents the membrane labeled gridlines.

Here In is the intensity value at node n taken from a denoised
version of the original image,M is the set of membrane pixels
on the border of the current grid square, med(M) is the me-
dian intensity value of M , and λ is a parameter that controls
the penalty. The intensity values of In for all n are between 0
and 1 so the cost function at locations with intensity nearest to
the intensity of the membrane pixels will have values close to
1 and locations with intensity furthest from the intensity of the
membrane pixels will have values close to exp(λ). The abso-
lute value is taken because the interior cell structures, such as
mitochondria, can be darker than the membrane which would
cause nodes in those structures to have a lower cost and cre-
ate inaccurate paths through the middle of the cell. The re-
sulting best path will primarily stay on membrane areas and
only cross non-membrane areas when there is no other feasi-
ble path between two membrane points on the grid. Figure 2
shows the results of the paths connecting all of the membrane
points in a single square with yellow showing the membrane
gridline points, red showing the unlabeled gridline points, and
blue showing the paths between them.

Once every grid square has been evaluated for the best
path they are concatenated together into a full image where
all pixels that have been visited by at least one path will be
assigned a membrane label and all other pixels will be as-
signed a non-membrane label. Because paths between mem-
brane pixels tend to get used multiple times, the membrane
is often thin. In addition, the membrane pixels are frequently
along the edges of the membrane since that tends to be the
shortest distance between two points that has low cost. To
clean up places where a single membrane has two separated

Fig. 2. Example of the paths found within a single grid
square. Red and yellow represent non-membrane and mem-
brane sections on the gridlines respectively. Blue represents
the best paths connecting all membrane pixels on the grid-
lines.

paths going along it, we perform a morphological closing of
the membrane pixels with a shaping element having a diame-
ter similar to half the thickness of the membrane in the image.

The final result of this is a binary image with all of the
membrane connected. However, some of these paths will
cross non-membrane as a result of the forced requirement
that all membrane pixels within a given square be connected.
To allow a simple thresholding to be able to improve the re-
sulting image even more by removing some of these paths,
we replace the membrane paths with their corresponding de-
noised image intensity. The non-membrane locations are then
assigned the value of 1. This resulting image will in gen-
eral have lower values corresponding to areas with the highest
probability of being membrane and higher values correspond-
ing to areas with lower probability of being membrane.

3. RESULTS

Here we present the results of this algorithm on two differ-
ent datasets. The first dataset we used for these experiments
is a stack of 60 images from a serial section Transmission
Electron Microscopy (ssTEM) data set of the Drosophila first
instar larva ventral nerve cord (VNC) [1]. It has a resolution
of 4 × 4 × 50 nm/pixel and each 2D section is 512 × 512
pixels. The corresponding binary labels were annotated by
an expert neuroanatomist who marked membrane pixels with
zero and the rest of pixels with one. During the ISBI Electron
Microscopy Image Segmentation Challenge 30 images were
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Fig. 3. Example of (a) original image, (b) ground truth, (c)
25, and (d) 100 pixel grid spacing on the Drosophila data set.

used for training and the remaining images were used for test-
ing. We have used the 30 images designated as training from
this dataset to use for this experiment since there is no learn-
ing involved and the testing labels were not made available.

On the gridlines we used simulated user input to en-
sure that all membrane pixels on each gridline are complete
and accurate to provide a best-case result for a given grid-
spacing. To do this we used the ground truth provided with
the datasets and labeled as membrane everywhere that the
gridlines crossed the correct membrane label in the ground
truth. The paramaters were grid-spacings of 25, 50, 75, and
100 pixels with λ = 3 and a square shaping element with
diameter of 5 pixels. The images were denoised using a
non-local means denoising algorithm [7] as this has shown
to be effective at denoising textured images. The denoised
image was used both as the input to the cost function and
as the intensity values for replacement once the path finding
was complete. To measure accuracy we use the 1 minus pair
f-score (1 − F ) metric as used in the ISBI 2012 segmenta-
tion challenge [8]. It is a measure of disagreement in the
segmentation and is a useful measure for segmentation qual-
ity. Figure 3 shows the image results for 25 and 100 pixel
grid spacing and the 1 − F results are presented in Table 1.
For comparison the results on the same dataset from a su-
pervised learning method using a mult-scale artificial neural
network [3] are also presented.

The second dataset used for these experiments is from the
mouse neuropil. This set consists of 70 images size 700×700
manually annotated by an expert electron microscopist that
have been separated into 5 bins with 14 images per bin. 1
bin of 14 images (bin 1) was used in training of the MSANN.
The other 4 bins were used as different sets of testing images.

Method

MSANN 25 50 75 100

Error 0.208 0.049 0.088 0.120 0.169

Table 1. 1 − F performance of the algorithm with different
grid spacing using the Drosophila dataset.
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Fig. 4. Example of (a) original image, (b) ground truth, (c) 25,
and (d) 100 pixel grid spacing on the mouse neuropil dataset.

Figure 4 shows the image results for 25 and 100 pixel grid
spacing and the 1− F results are presented in Table 2.

When training data is available, further improvement can
be made by utilizing a region merging learning algorithm. Be-
cause of the requirement that all membranes be connected to
every other membrane within a grid square, oversegmenta-
tion is a common reason for the errors. To see what kinds of
additional improvement could be done be eliminating these
errors, we used a watershed and tree merging learning algo-
rithm [9] to learn and automatically remove some of these
oversegmentations. The results are presented in Table 3. In
some cases the region merging learning algorithm was able
to remove large oversegmentation regions resulting in signif-
icant improvement as with bin 4. In the other cases the im-
provement is more modest, but still evident.

4. DISCUSSION

By selectively labeling just 2/25th of the image we were able
to achieve 1 − F rates that were significantly better than a
supervised learning algorithm, and even when reducing the
labeling by a factor of 4 further to 2/100th of the image we
were still able to show a marked improvement. This method
also has the advantage of being more immediate in the results



Method

MSANN 25 50 75 100

Bin 1 0.1626 0.0291 0.0875 0.1309 0.1591

Bin 2 0.2749 0.0651 0.0908 0.1145 0.1778

Bin 3 0.2419 0.0602 0.0964 0.1319 0.1487

Bin 4 0.2115 0.0328 0.0511 0.0689 0.1266

Bin 5 0.2717 0.0539 0.0819 0.1003 0.1399

Table 2. 1 − F performance of the algorithm with different
grid spacing using the mouse neuropil dataset. Bin 1 was the
training bin for the MSANN learning.

Method

25 50 75 100

Bin 1 0.0217 0.0791 0.1162 0.1508

Bin 2 0.0537 0.0770 0.1028 0.1424

Bin 3 0.0454 0.0684 0.1031 0.1214

Bin 4 0.0229 0.0385 0.0629 0.0825

Bin 5 0.0436 0.0736 0.0841 0.1225

Table 3. 1 − F performance of the algorithm with differ-
ent grid spacing followed by region merging using the mouse
neuropil dataset. For each reported bin, that bin was used as
the test data and the other 4 bins were used as the training
data.

than automatic methods. Whereas some supervised methods
can take days [3] or even months [4] to train, within a few
minutes a user should be able mark the membrane crossings
of the gridlines and get a high accuracy result. In addition, the
creation of accurate training data requires complete manual
labeling which is also very time intensive.

Using this method with a 25 pixel spacing between grid
lines, we were able to achieve very high segmentation ac-
cuarcy. We were also able to achieve further improvement by
applying a region merging algorithm intended to correct over-
segmentations. Currently we are working to be able to correct
undersegmentations that occur as the grid spacing gets larger.
Using adaptive sampling we hope to sample more sparesely
in areas where it won’t affect the segmentation and sample
more fully areas where the accuracy can be improved. Even
without these improvements, the positive results that we have
been able to show using simulated user input indicate that this
method of user interaction can become a viable alternative to
both fully automatic and fully manual segmentation methods.
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