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C R O S S T A L K

Advances in computational geometric modeling, imaging, and simulation let researchers build  
and test models of increasing complexity, generating unprecedented amounts of data. As recent 
research in biomedical applications illustrates, visualization will be critical in making this vast 
amount of data usable; it’s also fundamental to understanding models of complex phenomena.

Biomedical Visual Computing:  
Case Studies and Challenges

C omputer simulation and visualiza-
tion are having a substantial impact 
on biomedicine and other areas of 
science and engineering. Advanced 

simulation and data acquisition techniques allow 
biomedical researchers to investigate increasingly 
sophisticated biological function and structure. 
A continuing trend in all computational science 
and engineering applications is the increasing size 
of resulting datasets. This trend is also evident in 
data acquisition, especially in image acquisition in 
biology and medical image databases.

For example, in a collaboration between neu-
roscientist Robert Marc and our research team at 
the University of Utah’s Scienti!c Computing and 
Imaging (SCI) Institute (www.sci.utah.edu), we’re 
creating datasets of brain electron microscopy (EM) 
mosaics that are 16 terabytes in size.1 However, while 
there’s no foreseeable end to the increase in our abil-
ity to produce simulation data or record observa-
tional data, our ability to use this data in meaningful 
ways is inhibited by current data analysis capabilities, 
which already lag far behind. Indeed, as the NIH-
NSF Visualization Research Challenges report notes, 
to effectively understand and make use of the vast 
amounts of data researchers are producing is one of 
the greatest scienti!c challenges of the 21st century.2

Visual data analysis involves creating images 
that convey salient information about underly-
ing data and processes, enabling the detection 
and validation of expected results while leading 
to unexpected discoveries in science. This allows 
for the validation of new theoretical models, pro-
vides comparison between models and datasets, 
enables quantitative and qualitative querying, 
improves interpretation of data, and facilitates 
decision making. Scientists can use visual data 
analysis systems to explore “what if” scenarios, 
de!ne hypotheses, and examine data under mul-
tiple perspectives and assumptions. In addition, 
they can identify connections between numerous 
attributes and quantitatively assess the reliability 
of hypotheses. In essence, visual data analysis is 
an integral part of scienti!c problem solving and 
discovery.3

As applied to biomedical systems, visualiza-
tion plays a crucial role in our ability to compre-
hend large and complex data—data that, in two, 
three, or more dimensions, convey insight into 
many diverse biomedical applications, including 
understanding neural connectivity within the 
brain, interpreting bioelectric currents within the 
heart, characterizing white-matter tracts by dif-
fusion tensor imaging, and understanding mor-
phology differences among different genetic mice 
phenotypes.

Biomedical Case Studies
Biomedical researchers have diverse needs in 
relation to visual data analysis. Here, I highlight 
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some of those needs by discussing three ongoing 
collaborations among biomedical researchers and 
computational scientists.

Case Study 1: Simulation of Implantable  
Cardiac De!brillators
Many biomedical simulation studies are based on 
a similar sequence: researchers begin with an im-
age, create a geometric model, assign tissue and 
other material properties, run a numerical simula-
tion, and !nally visualize the results. Because the 
images—often sets of images that combine to de-
scribe volumes—come from many modalities, the 
task then becomes to identify structures of inter-
est and describe those structures in a form suitable 
for numerically solving equations that describe 
the structures’ function. Given the sequence’s 
similarity across different kinds of studies, it’s pos-
sible to de!ne a pipeline for image-based model  
generation, simulation, and visualization—such 
as the one in Figure 1—that, once created, can be 
useful in many different biomedical or other sci-
ence and engineering !elds.

The above pipeline was developed speci!cally 
for the patient-speci!c simulation of de!brilla-
tion !elds from implantable cardiac de!brilla-
tors (ICDs), starting from computerized axial 
tomography (CT) scan or magnetic resonance 
imaging (MRI) volumes and creating 3D 
meshes of the entire torso with heterogeneous 
mesh density to achieve acceptable computation  
times.4,5

This !rst case study’s goal was to calculate the 
electric potentials in the body, and especially in 
the !brillating heart, that arise during a shock 
from an ICD, more than 90,000 of which are 
implanted annually in the US alone. Of special 
interest was the use of such devices in children, 

who are much smaller than adults and almost al-
ways have some form of anatomical abnormality 
in the heart that makes patient-speci!c modeling 
essential.

To solve this problem, our SCI team collabo-
rated with John Triedman and Matt Jolley from 
Harvard and Boston Children’s Hospital to de-
velop an image-based biomedical computing pipe-
line that would address multiple needs. Starting 
from patient images, researchers must !rst seg-
ment the images into regions of interest for the 
simulation, including torso, muscle, fat, lungs, 
ribs, and heart. To address this need, we created 
Seg3D, a lightweight, open source segmentation 
tool (see www.seg3d.org). Seg3D reads stacks of 
images as a volume using standard !le formats 
and provides a set of tools to identify different 
regions within the image volume, thus generat-
ing a “label map” of the volume. BioMesh3D, 
an open source 3D-mesh-generation program 
(see www.biomesh3d.org), then uses this label 
map to create a tetrahedral or hexahedral vol-
ume mesh. Finite-element simulations of the 
electric !elds are created using the SCIRun sci-
enti!c computing problem-solving environment  
(www.scirun.org). We use visualization through-
out the pipeline: for understanding and inter-
acting with the segmentation data, viewing and 
visually assessing the 3D geometric mesh, and 
visually analyzing the potentially large-scale, 
simulation results using ImageVis3D (see www.
imagevis3d.org) and visualization modules within 
SCIRun.

Although this !rst biomedical computing 
pipeline is challenging, to be useful for our col-
laborator’s clinical applications, there’s a second, 
iterative design and test pipeline that must work 
in an intuitive and interactive way. This second 

Figure 1. Biomedical image-based modeling, simulation, and visualization pipeline. Once created, the 
pipeline can be used in many different biomedical or other science and engineering !elds.
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modeling and simulation pipeline was executed 
each time the user selected a candidate set of lo-
cations for the device and the associated shock 
electrodes. For each such con!guration, the sys-
tem generated a customized version of the volume 
mesh and prepared it for computation.

Figure 2 shows the steps required to implement 
the customized mesh for each new set of device 
and electrode locations. As Figure 2a shows, SCI-
Run’s interactive visual interface was important 
in enabling the (exible design and device com-
ponent placement. BioMesh3D then carried out a 
re!nement of the underlying 3D mesh, so that the 
electric potentials applied by the device and elec-
trodes were transferred with suitable spatial !del-
ity to the torso volume conductor (see Figure 2b).

Simulation modules within SCIRun then com-
puted the resulting electric !eld throughout the 
heart and torso. Next, the system visually analyzed 
the results, visualizing the details of the electric po-
tentials at the heart and deriving from the simula-
tions a de!brillation threshold value (see Figures 2c  
and 2d). An important aspect of this collabora-
tion was validation of the biomedical computing 
pipelines with experimental results. We carried 
out initial validation of the complete system by 
comparing computed with measured de!brillation 
thresholds and obtained encouraging results.5

This case study’s visualization challenges in-
volved creating interactive, visual design, and 
analysis tools for large-scale complex geometries 
for use by our clinical collaborators. To develop ef-
fective visualization tools, we engaged in consider-
able discussion, interaction, and iteration with our 
collaborators. Creating the modeling, simulation, 
and visualization tools, getting them to work ef-
fectively and ef!ciently, and validating them on 
real clinical applications took several years.

This case study is one example of using simula-
tion and visualization in a patient-speci!c way—
an approach also known as personalized medicine. 
However, before this type of biomedical simula-
tion and visualization can occur in a routine clini-
cal environment, many outstanding challenges 
must be addressed. Generally, going from patient 
images to simulation results takes too long. Spe-
ci!cally, the image segmentation still involves 
signi!cant human interaction and guidance, and 
the mesh generation and simulation processes for 
large-scale models is computationally demand-
ing. Regarding visualization, interaction is crucial 
for effectively designing and testing the de!bril-
lation electrode placement and continues to be 
challenging as the models become more detailed 
and thus larger in scale. One key visualization 
component missing in the current system is a vi-
sual representation of errors and simulation result 
uncertainties.

Case Study 2: Neural Circuit Reconstruction
Case study 2 illuminates the large-scale image 
analysis and visualization needs associated with 
better understanding the neural connectivity 
within the brain. Our collaborators for this were 
University of Utah neuroscientists Robert Marc 
and Erik Jorgensen.

Models of neural circuits are essential for study-
ing the central nervous system. However, rela-
tively little is known about the connectivities of 
neurons, and state-of-the-art models are typically 
not based on anatomical ground truth. Research 
in the reconstruction of neural circuits—the  
connectome—offers great promise for providing 
this anatomical ground truth.6-8 Serial-section 
EM images can provide the data necessary to re-
construct large-scale neural circuits.

Figure 2. Pipeline for computing de!brillation potentials in children. The following are the steps required 
to place electrodes and compute and visualize the resulting cardiac electric potentials: (a) setting electrode 
con!guration, (b) re!nement of hexahedral mesh for electrode locations, (c) !nite-element solution of 
electric potentials, and (d) analysis of potentials at the heart to predict de!brillation effectiveness.

(a) (c) (d)(b)
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However, the images’ complexity and vast size 
make human interpretation an extremely labor-
intensive task. The pipeline for reconstructing 
neural circuits from serial-section EM includes 
preprocessing the images, assembling 3D volumes, 
segmenting individual neurons, and identifying 
and visualizing synapses and other structures (see 
Figure 3).1

Assembling the 3D neural image volumes is an 
important challenge complicated by the numerous 
2D images that must !rst be mosaicked to form 
2D sections and then be aligned in 3D to create 
volumes. Figure 4 shows a set of approximately 
1,000 individual EM images used to form a 2D 
image mosaic. An individual tile, denoted by the 
red square, is 4,096 × 4,096 pixels in resolution 
(as a reference, full HD TV resolution is 1,920 × 
1,080 pixels). A 2D image mosaic is approximately 
130,000 pixels in diameter. In creating the 2D  
mosaics and 3D volumes, we must correct non-
linear distortions due to imaging and cutting to 
create a seamless volume. In addition, scaling 
these methods to handle the large volumes pro-
duced by our collaborators is computationally ex-
pensive. We developed open source multithreaded 
algorithms to solve this image-alignment problem 
for connectomics and to visualize the resulting 
neuronal volume.1,12

To visualize the 2D image mosaics and full 
16.5-Tbyte 3D image volumes, we used Image- 
Vis3D and visualization streams for ultimate 
scalability using ViSUS,13 which uses a hierarchi-
cal, space-!lling curved data structure to intelli-
gently reorganize the raw data, enabling ef!cient, 
streaming pipelines that process the information 
while in motion. The results are then visual-
ized in a progressive environment allowing for 
meaningful explorations with minimal required  
resources.

As Figure 5 shows, ViSUS enables real-time 
management and visualization of very large data-
sets such as the 3D neural image volumes. In 
this collaboration, I’m reminded of Anton Leeu-
wenhoek, one of the innovators of the light  
microscope, who noted that he could make new 
scienti!c discoveries “by looking,” because his lat-
est microscope let him see what others could not. 
The combination of the EM microscope tech-
nology created by Robert Marc’s neuroscience 
laboratory and the new data management and 
visualization algorithms and software we created 
have allowed neuroscience researchers to visually 
analyze their data in new ways and to see neural 
images at resolutions they haven’t been able to 
previously visualize.

The visualization and image analysis challenges 
for this second case study are myriad. Interactive 
large-scale visualization is needed at each step 
of the connectomics construction and analysis 
pipeline: mosaic data, registering mosaicked data, 
visualizing a large volume of image mosaics, an-
notating those data, and visualizing annotated or 
derivative operations to examine connectivities or 
domains associated with annotation. Currently, 
with the state-of-the-art algorithms and software, 
it takes several hours to segment and annotate 
connectomics datasets. Although it might not be 
possible to fully automate the process, signi!-
cantly decreasing the time it takes for segmen-
tation and annotation is an ongoing challenge.  

Figure 3. A view of 10 neurons spanning 300 
sections of the Caenorhabditis elegans worm’s 
ventral nerve cord. Neuron membranes were 
automatically detected in each 2D electron 
microscopy,9 and regions between each image 
were joined using an optimal path-!nding 
algorithm.10 To make these images, neuron paths 
were generated automatically between six pairs 
of sections containing known breaks in the image 
data. We used our neuron reconstruction viewer 
(NeRV)11 to connect paths between the breaks and 
correct segmentations. These visualizations reveal 
the complex and changing cellular structure of 
neurons as they move within the ventral nerve.
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Visually characterizing segmentation and annota-
tion errors could enable rapid revision of connec-
tivities. Although the connectomics datasets are 
already large (16 Tbytes), they continue to grow. 
Perhaps more important will be the number of da-
tasets. As the technology to image, segment, and 
annotate connectomics datasets gets better, it will 
take less time to create more data, perhaps follow-
ing a trajectory similar to that of genetics.

As more connectomics datasets are created, 
many new challenges arise in comparing datasets: 
How many cells of a particular type exist between 
wild-type and genetic mutant? How is the wiring 

different between genetic variations? After cells 
are damaged, when and how does rewiring occur? 
Can we extract the structure of a particular cell 
or region to perform functional simulation? The 
answers to all of these questions require elements 
of visual analysis.

Case Study 3: Medical Visualization  
on Mobile Platforms
In medicine as elsewhere, there’s an increas-
ing need for visual analysis capabilities on smart 
phones, tablet computers, and netbooks. With 
their small size and less powerful processing capa-
bilities, client–server and data streaming technolo-
gies play an important role in allowing interactive 
visualization on mobile computing platforms. In 
case study 3, we collaborated with Chris Butson of 
the Medical College of Wisconsin’s Department 
of Neurology to present results from a deep-brain 
stimulation (DBS) visualization application used 
in neurology.14

In recent years, researchers have increasingly 
used patient-speci!c models to predict the effects 
of neuromodulation therapies such as DBS.15–17 
However, translating these models from a re-
search environment to the everyday clinical work-
(ow has been a challenge, primarily because of 
the models’ complexity and the specialized soft-
ware required to provide the visualization.

In this case study, we describe the use of Image-
Vis3D Mobile in an evaluation environment. 
ImageVis3D Mobile was designed for mobile 
computing devices such as the iPhone or iPad; 
we used it to visualize models of four Parkinson’s 
patients who received DBS therapy. Selecting 
DBS settings is a signi!cant clinical challenge 
that often requires repeated revisions to achieve 
optimal therapeutic response, and it’s often per-
formed without the advantage of the stimulation 
system’s visual representation in the patient. We 
used ImageVis3D Mobile to provide models to 
movement-disorder clinicians and asked them to 
use the software to determine 

which of the four electrode contacts they would 
select for therapy, and
which stimulation settings they would choose.

ImageVis3D (shown in Figure 6) is an open source, 
cross-platform volume visualization program that 
scales to very large data on modest hardware. The 
main design goals of ImageVis3D are simplicity, 
scalability, and interactivity. Simplicity is achieved 
with a new user interface that gives an increased 
level of (exibility. Scalability and interactivity for 

Figure 4. One section from the 342-section 3D electron microscopy 
retina connectome dataset. Each section is a mosaic of approximately 
1,000 image tiles that are each 4,096 × 4,096 pixels. The inplane 
resolution is 2.18 pixels per nanometer and the section thickness is  
90 nm. The full 3D connectome dataset is 16.5 terabytes.1

Figure 5. Visualization of the retina connectome dataset on a 
Powerwall with 24 30-inch monitors. The Visualization Streams 
for Ultimate Scalability (ViSUS) software system enables real-time 
management and visualization of very large datasets, such as  
3D neural image volumes.
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Image Vis3D mean that the user can interactively 
explore very large (gigabyte and terabyte) data-
sets on either a notebook computer or a high-end 
graphics workstation. ImageVis3D’s open source 
nature and strict component-by-component design 
lets developers not only extend ImageVis3D itself, 
but also to reuse parts of it—such as the volume- 
rendering core—for other visualization applications.

Because some of ImageVis3D’s volume-rendering  
techniques18 support all major PC operating sys-
tems (Windows, OS X, Linux) and a wide range 
of graphics hardware, it can be run on tablets, 
notebooks, netbooks, and other portable devices. 
Such handheld devices are advantageous in that 
they’re always available without the need to carry 
additional hardware. With mobile visualization ca-
pabilities, it’s possible to constantly monitor time-
critical simulations and experiments and to view, 
share, and discuss datasets in the !eld, where they’re 
most relevant. To suit these needs, we recently  
developed ImageVis3D Mobile (see Figure 7).

To implement ImageVis3D Mobile, we chose 
Apple’s iPhone and iPad OS software platform for 
two reasons. First, the iPhone OS runs on every 
iPhone, iPod touch, and iPad and has a large base 
of existing devices in the !eld. Second, it builds on 
industry standards such as OpenGL ES, making 
ImageVis3D Mobile easily ported to other devices. 
Finally, the hardware design, such as the amount 
of memory, the CPU, and the GPU used on the 
iPhone and iPad, re(ects the design of many other 
current and upcoming mobile devices.

Figure 8 illustrates a DBS system and shows a 
patient-speci!c visualization of DBS that provides 
the location of the electrode lead relative to the 
surrounding nuclei in a Parkinson’s disease patient.

We compared the stimulation protocol cho-
sen from the software with the stimulation pro-
tocol that was chosen through clinical practice, 
independent of the study. We then compared 
the amount of time required to reach these set-
tings using the software versus standard practice.  

Figure 7. ImageVis3D and ImageVis3D Mobile visualizing the same x-ray computed tomography (CT) 
dataset of a hand. The mobile visualization capabilities make it possible to constantly monitor time-critical 
simulations and experiments and view, share, and discuss datasets in the !eld.

(a) (b)

Figure 6. Two screenshots of the ImageVis3D volume-rendering application. In the left image, four large 
biomedical datasets have been loaded simultaneously, accounting for approximately 50 Gbytes of data. 
In the right image, another dataset is loaded into the same program. As you can see, the user interface is 
"exible and easy to recon!gure.

(a) (b)
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We found that the stimulation settings chosen 
using ImageVis3D Mobile were similar to those 
used in standard care, but were selected in much 
less time. ImageVis3D Mobile is an example  
of how a visualization system—available directly 
at the point of care on a device familiar to the 
neurologist—can improve critical clinical deci-
sion making.14

The visualization challenges for case study 3 in-
volve creating effective visualization systems and 
interfaces on mobile devices such as the iPhone 
and iPad. The technical issues involve creating 
interactive visualization algorithms that could 
either run on the mobile device or use a client–
server renderer. The user interface had to be cus-
tom designed to the clinical application and tested 
with neurologists.

Current DBS systems have mainly used pro-
gramming devices that provide no visualization at 
all. It’s up to the clinician to integrate the patients’ 
responses to DBS, along with knowledge of the 
anatomy and make meaningful decisions on how 
to choose stimulation settings. From our work 

with physicians, there’s a clear desire for visual-
ization during programming, and the use of inter-
active visualization can improve the ef!ciency of 
DBS programming. The challenge will be design-
ing a set of visual analysis tools that will lead to 
the most improved patient outcomes.

Biomedical Visual Computing  
Challenges
New imaging modalities, more accurate simulation 
models, and continued growth in computational 
power all contribute to confronting biomedical 
researchers and engineers with an unprecedented 
volume of information to further their under-
standing of biological systems and improve clinical 
practice. As the size and complexity of the result-
ing data explode, the tools created by visualization 
research become crucial for gaining insight into 
the underlying biophysical phenomena.19

There’s a common assumption that with more 
data comes more insight; that the current exponen-
tial increase in data somehow equals an exponential  
increase in understanding; and, that if we just 

Figure 8. A deep-brain stimulation (DBS) system and model. (a) System overview. The DBS electrode is 
implanted in the brain during stereotactic surgery. The electrode is attached via an extension wire to the 
Inter Pixel Gap (IPG), which is implanted in the torso. The entire system is subcutaneous and designed 
to deliver continuous stimulation for several years at a time. (b) A patient-speci!c DBS model shows the 
location of the electrode lead relative to the surrounding nuclei in a Parkinson’s disease patient. A model-
predicted volume of tissue activated (VTA) during DBS (the yellow section) is shown surrounding the distal 
electrode contact. With this model, it’s possible to view the overlap between the VTA and nearby anatomical 
structures, which is a key feature in clinical decision making when choosing stimulation settings.
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accumulate enough data, long-standing scien-
ti!c problems will be solved. Unfortunately, the 
amount of insight and understanding aren’t di-
rectly proportional to the amount of data created. 
Our current data and visual analysis capabilities 
lag far behind our ability to produce simulation 
data or record observational data. We’re data 
rich, but analysis poor.

Fundamental advances must be made to extract 
meaning from large and complex datasets derived 
from experiments and from ever-growing simu-
lation systems. As these three case studies show, 
such advances require close cooperation with the 
biomedical researchers and clinicians. Solutions 
often involve

creating effective new visual abstractions;
advancing scalability through new algorithm 
development; 
designing intuitive, easy-to-use interfaces; and
modifying existing software and creating a sig-
ni!cant amount of new software.

Effective data analysis and visualization tools 
in support of predictive simulations and scienti!c  
knowledge discovery must be based on strong algo-
rithmic and mathematical foundations that allow 
scientists to reliably characterize salient features in 
their data. To accomplish this, we’ll need to pro-
vide new capabilities for veri!cation and validation 
of simulation and visualization codes. While the 
simulation community is making signi!cant prog-
ress in this regard,20 the visualization community 
has just started to consider these issues.21

In relation to veri!cation and validation, we must 
provide scientists with uncertainty representation 
and quanti!cation, uncertainty propagation, and 
uncertainty visualization techniques so that they 
can better understand the limits of their simula-
tions and visualizations.22 Visual representations 
of error and uncertainty were missing from all 
three case studies. This area represents an impor-
tant ongoing visualization research challenge.23

Although the case studies presented here were 
diverse, there are many other exciting biomedical 
visualization examples, including information vi-
sualization applications in genetics,24 epidemiol-
ogy,25 and other biological applications.26

T o help researchers gain insight into 
their ever-growing and complex data, 
we must develop new approaches to 
visual data analysis and knowledge 

discovery. Such approaches must

account for the often multilevel nature of data;
let scientists easily transition views from global 
to local model data;
offer the ability to blend traditional scienti!c 
and information visualization;
perform “what if” scenarios, uncertainty analy-
sis and veri!cation, and validation; and
address the challenges posed by vastly different 
geometric models used by the various elements 
of the multilevel projects.

Interacting with biomedical scientists and cli-
nicians is critical for developing useful software 
tools. Tools that leverage semantic information 
and hide details of dataset formats will be impor-
tant in letting visualization and analysis experts 
concentrate on designing their approaches rather 
than becoming mired in the trivialities of particu-
lar data representations; they will also help in de-
signing effective user interfaces.3 
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