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9.1 Introduction

Direct volume-rendering has proven to be an

effective and flexible visualization method for

3D scalar fields. Transfer functions are funda-

mental to direct volume-rendering because their

role is essentially to make the data visible: by

assigning optical properties like color and

opacity to the voxel data, the volume can be

rendered with traditional computer graphics

methods. Good transfer functions reveal the

important structures in the data without obscur-

ing them with unimportant regions. To date,

transfer functions have generally been limited

to 1D domains, meaning that the 1D space of

scalar data value has been the only variable to

which opacity and color are assigned. One

aspect of direct volume-rendering that has re-

ceived little attention is the use of multidimen-

sional transfer functions.

Often, there are features of interest in volume

data that are difficult to extract and visualize

with 1D transfer functions. Many medical data-

sets created from CT or MRI scans contain a

complex combination of boundaries between

multiple materials. This situation is problematic

for 1D transfer functions because of the poten-

tial for overlap between the data-value intervals

spanned by the different boundaries. When one

data value is associated with multiple boundar-

ies, a 1D transfer function is unable to render

them in isolation. Another benefit of higher

dimensional transfer functions is their ability

to portray subtle variations in properties of a

single boundary, such as thickness. When

working with multivariate data, a similar diffi-

culty arises with features that can be identified

only by their unique combination of multiple

data values. A 1D transfer function is simply

not capable of capturing this relationship.

Unfortunately, using multidimensional trans-

fer functions in volume rendering is complicated.

Even when the transfer function is only 1D,

finding an appropriate transfer function is gen-

erally accomplished by trial and error. This is one

of the main challenges in making direct volume-

rendering an effective visualization tool. Adding

dimensions to the transfer-function domain only

compounds the problem. While this is an on-

going research area, many of the proposed

methods for transfer-function generation and

manipulation are not easily extended to higher-

dimensional transfer functions. In addition, fast

volume-rendering algorithms that assume the

transfer function can be implemented as a

linear lookup table (LUT) can be difficult to

adapt to multidimensional transfer functions

due to the linear interpolation imposed on such

LUTs.

This chapter provides a detailed exposition of

the multidimensional transfer function concept,

a generalization of multidimensional transfer

functions for both scalar and multivariate

data, as well as a novel technique for the inter-

active generation of volumetric shadows. To

resolve the potential complexities in a user inter-

face for multidimensional transfer functions, we

introduce a set of direct manipulation widgets
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that make finding and experimenting with trans-

fer functions an intuitive, efficient, and informa-

tive process. In order to make this process

genuinely interactive, we exploit the fast render-

ing capabilities of modern graphics hardware,

especially 3D texture memory and pixel-textur-

ing operations. Together, the widgets and the

hardware form the basis for new interaction

modes that can guide users towards transfer-

function settings appropriate for their visualiza-

tion and data-exploration interests.

9.2 Previous Work

9.2.1 Transfer Functions

Even though volume-rendering as a visualiza-

tion tool is more than ten years old, only re-

cently has research focused on making the space

of transfer functions easier to explore. He et al.

[12] generated transfer functions with genetic

algorithms driven either by user selection of

thumbnail renderings or by some objective

image-fitness function. The Design Gallery [23]

creates an intuitive interface to the entire space

of all possible transfer functions based on auto-

mated analysis and layout of rendered images.

A more data-centric approach is the Contour

Spectrum [1], which visually summarizes the

space of isosurfaces in terms of metrics like

surface area and mean gradient magnitude,

thereby guiding the choice of iso-value for iso-

surfacing, and also providing information

useful for transfer-function generation. Another

recent paper [18] presents a novel transfer-

function interface in which small thumbnail ren-

derings are arranged according to their relation-

ship with the spaces of data values, color, and

opacity.

The application of these methods is limited to

the generation of 1D transfer functions, even

though 2D transfer functions were introduced

by Levoy in 1988 [22]. Levoy introduced two

styles of transfer functions, both 2D and both

using gradient magnitude for the second dimen-

sion. One transfer function was intended for the

display of interfaces between materials, the other

for the display of iso-value contours in more

smoothly varying data. The previous work

most directly related to our approach for visual-

izing scalar data facilitates the semiautomatic

generation of both 1D and 2D transfer functions

[17,29]. Using principles of computer-vision edge

detection, the semiautomatic method strives to

isolate those portions of the transfer function

domain that most reliably correlate with the

middle of material-interface boundaries. Other

work closely related to our approach for visual-

izing multivariate data uses a 2D transfer func-

tion to visualize data derived from multiple MRI

pulse sequences [20].

Scalar volume-rendering research that uses

multidimensional transfer functions is relatively

scarce. One paper discusses the use of transfer

functions similar to Levoy’s as part of visualiza-

tion in the context of wavelet volume represen-

tation [27]. More recently, the VolumePro

graphics board uses a 12-bit 1D lookup table

for the transfer function, but also allows opacity

modulation by gradient magnitude, effectively

implementing a separable 2D transfer function

[28]. Other work involving multidimensional

transfer functions uses various types of second

derivatives in order to distinguish features in the

volume according to their shape and curvature

characteristics [15,34].

Designing color maps for displaying non

volumetric data is a task similar to finding

transfer functions. Previous work has developed

strategies and guidelines for color map creation,

based on visualization goals, types of data, per-

ceptual considerations, and user studies

[3,32,36].

9.2.2 Direct Manipulation Widgets

Direct manipulation widgets are geometric

objects rendered with a visualization and are

designed to provide the user with a 3D interface

[5,14,31,35,38]. For example, a frame widget

can be used to select a 2D plane within a

volume. Widgets are typically rendered from

basic geometric primitives such as spheres, cy-

linders, and cones. Widget construction is often
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guided by a constraint system that binds elem-

ents of a widget to one another. Each sub-part

of a widget represents some functionality of the

widget or a parameter to which the user has

access.

9.2.3 Hardware Volume Rendering

Many volume-rendering techniques based on

graphics hardware utilize texture memory to

store a 3D dataset. The dataset is then sampled,

classified, rendered to proxy geometry, and

composited. Classification typically occurs in

hardware as a 1D table lookup.

2D texture-based techniques slice along the

major axes of the data and take advantage of

hardware bilinear interpolation within the slice

[4]. These methods require three copies of the

volume to reside in texture memory, one per

axis, and they often suffer from artifacts caused

by under-sampling along the slice axis. Trilinear

interpolation can be attained using 2D textures

with specialized hardware extensions available

on some commodity graphics cards [6]. This

technique allows intermediate slices along the

slice axis to be computed in hardware. These

hardware extensions also permit diffuse shaded

volumes to be rendered at interactive frame rates.

3D texture-based techniques typically sample

view-aligned slices through the volume, lever-

aging hardware trilinear interpolation [11].

Other elements of proxy geometry, such as

spherical shells, may be used with 3D texture

methods to eliminate artifacts caused by perspec-

tive projection [21]. The pixel texture OpenGL

extension has been used with 3D texture tech-

niques to encode both data value and a diffuse

illumination parameter that allows shading

and classification to occur in the same look-up

[25]. Engel et al. showed how to significantly

reduce the number of slices needed to adequately

sample a scalar volume, while maintaining a

high-quality rendering, using a mathematical

technique of preintegration and hardware

extensions such as dependent textures [10].

Another form of volume-rendering graphics

hardware is the Cube-4 architecture [30] and the

subsequent Volume-Pro PCI graphics board

[28]. The VolumePro graphics board imple-

ments ray casting combined with the shear

warp factorization for volume-rendering [19].

It features trilinear interpolation with super-

sampling, gradient estimation, and shaded

volumes, and provides interactive frame rates

for scalar volumes with sizes up to 5123.

9.3 Multidimensional Transfer Functions

Transfer-function specification is arguably the

most important task in volume visualization.

While the transfer function’s role is simply to

assign optical properties such as opacity and

color to the data being visualized, the value

of the resulting visualization will be largely

dependent on how well these optical properties

capture features of interest. Specifying a good

transfer function can be a difficult and tedious

task for several reasons. First, it is difficult to

uniquely identify features of interest in the

transfer-function domain. Even though a fea-

ture of interest may be easily identifiable in the

spatial domain, the range of data values that

characterize the feature may be difficult to isol-

ate in the transfer-function domain due to the

fact that other, uninteresting regions may con-

tain the same range of data values. Second,

transfer functions can have an enormous

number of degrees of freedom. Even simple 1D

transfer functions using linear ramps require

two degrees of freedom per control point.

Third, typical user interfaces do not guide the

user in setting these control points based on

dataset-specific information. Without this type

of information, the user must rely on trial

and error. This kind of interaction can be espe-

cially frustrating since small changes to the

transfer function can result in surprisingly

large and unintuitive changes to the volume-

rendering.

Rather than classifying a sample based on a

single scalar value, multidimensional transfer

functions allow a sample to be classified based

on a combination of values. Multiple data
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values tend increase the probability that a fea-

ture can be uniquely isolated in the transfer-

function domain, effectively providing a larger

vocabulary for expressing the differences be-

tween structures in the dataset. These values

are the axes of a multidimensional transfer func-

tion. Adding dimensions to the transfer func-

tion, however, greatly increases the degrees of

freedom necessary for specifying a transfer

function and the need for dataset-specific

guidance.

In the following sections, we demonstrate the

application of multidimensional transfer func-

tions to two distinct classes of data: scalar data

and multivariate data. The scalar-data applica-

tion is focused on locating surface boundaries in

a scalar volume. We motivate and describe the

axes of the multidimensional transfer function

for this type of data. We then describe the use

of multidimensional transfer functions for multi-

variate data. We use two examples, color

volumes and meteorological simulations, to

demonstrate the effectiveness of such transfer

functions.

9.3.1 Scalar Data

For scalar data, the gradient is a first-derivative

measure. As a vector, it describes the direction

of greatest change. The normalized gradient is

often used as the normal for surface-based

volume shading. The gradient magnitude is a

scalar quantity that describes the local rate of

change in the scalar field. For notational con-

venience, we will use f 0 to indicate the magni-

tude of the gradient of f, where f is the scalar

function representing the data.

f 0 ¼ k f k (9:1)

This value is useful as an axis of the transfer

function since it discriminates between homo-

geneous regions (low-gradient magnitudes) and

regions of change (high-gradient magnitudes).

This effect can be seen in Fig. 9.1. Fig. 9.1a

shows a 1D histogram based on data value and

identifies the three basic materials in the

Chapel Hill CT Head: air (A), soft tissue (B),

and bone (C). Fig. 9.1b shows a log-scale

joint histogram of data value versus gradient

magnitude.

Since materials are relatively homogeneous,

their gradient magnitudes are low. They can be

seen as the circular regions at the bottom of

the histogram. The boundaries between the

materials are shown as the arches; air and

soft tissue boundary (D), soft tissue and bone

boundary (E), and air and bone boundary (F).

Each of these materials and boundaries can be

isolated using a 2D transfer function based on

data value and gradient magnitude. Fig. 9.1c

shows a volume-rendering with the corres-

ponding features labeled. The air–bone bound-

ary, (F) in Fig. 9.1, is a good example of a

surface that cannot be isolated using a simple

1D transfer function. This type of boundary

appears in CT datasets as the sinuses and mas-

toid cells. Often, the arches that define material

boundaries in a 2D transfer function overlap.

In some cases this overlap prevents a material

from being properly isolated in the transfer

function. This effect can be seen in the circled

region of the 2D data value–gradient magni-

tude joint histogram of the human tooth CT in

Fig. 9.2a. The background–dentin boundary

(F) shares the same ranges of data value and

gradient magnitude as portions of the pulp–

dentin (E) and the background–enamel (H)

boundaries. When the background–dentin

boundary (F) is emphasized in a 2D transfer

function, the boundaries (E) and (H) are erro-

neously colored in the volume rendering, as

seen in Fig. 9.2c. A second derivative measure

enables a more precise disambiguation of com-

plex boundary configurations such as this.

Some edge-detection algorithms (such as

Marr-Hildreth [24]) locate the middle of an

edge by detecting a zero crossing in a second

derivative measure, such as the Laplacian. We

compute a more accurate but computationally

expensive measure, the second directional de-

rivative along the gradient direction, which in-

volves the Hessian (H), a matrix of second

partial derivatives. We will use f 00 to indicate

this second derivative.
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(a) A ID histogram. The black region represents the number of data
value occurrences on a linear scale; the grey is on a log scale. The
colored regions (A,B,C) identify basic materials.

(b) A log-scale 2D joint histogram. The lower image shows the location
of materials (A,B,C). and material boundaries (D,E,F).

(c) A volume-rendering showing all of the materials and boundaries
identified above, except air (A), using a 2D transfer function.

A B C

Figure 9.1 Material and boundary identification of the Chapel Hill CT Head with data value alone (a) versus data value and

gradient magnitude ( f 0), seen in (b). The basic materials captured by CT, air (A), soft tissue (B), and bone (C), can be identified

using a 1D transfer function as seen in (a). 1D transfer functions, however, cannot capture the complex combinations of material

boundaries; air and soft tissue boundary (D), soft tissue and bone boundary (E), and air and bone boundary (F), as seen in (b)

and (c).
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f 00 ¼ 1

k f k2
(rf )THfrf (9:2)

More details on these measurements can be

found in previous work on semiautomatic trans-

fer function generation [16,17]. Fig. 9.2b shows

a joint histogram of data value verses this

second directional derivative. Notice that the

boundaries (E), (F), and (G) no longer overlap.

By reducing the opacity assigned to nonzero

second-derivative values, we can render the

background–dentin boundary in isolation, as

seen in Fig. 9.2d. The relationship between

data value, gradient magnitude, and the second

directional derivative is made clear in Fig. 9.3.

Fig. 9.3a shows the behavior of these values

along a line through an idealized boundary be-

tween two homogeneous materials (inset).

Notice that at the center of the boundary, the

gradient magnitude is high and the second de-

rivative is zero. Fig. 9.3b shows the behavior of

the gradient magnitude and second derivative as

a function of data value. This shows the curves

as they appear in a joint histogram or a transfer

function.

9.3.2 Multivariate data

Multivariate data contains, at each sample point,

multiple scalar values that represent different

simulated or measured quantities. Multivariate

data can come from numerical simulations that

calculate a list of quantities at each time step, or

from medical scanning modalities such as MRI,

which can measure a variety of tissue character-

istics, or from a combination of different scan-

ning modalities, such as MRI, CT, and PET.

Multidimensional transfer functions are an obvi-

ous choice for volume visualization of multivari-

ate data, since we can assign different data values

to the different axes of the transfer function. It is

often the case that a feature of interest in these

datasets cannot be properly classified using any

single variable by itself. In addition, we can com-

pute a kind of first derivative in the multivariate

data in order to create more information about

local structure. As with scalar data, the use of a

first derivative measure as one axis of the multi-

dimensional transfer function can increase the

specificity with which we can isolate and visualize

different features in the data.

Johnson/Hansen: The Visualization Handbook Page Proof 20.5.2004 12:32pm page 186

f'

f''

0

Data Value

+

−

A B C D

E

F
G

E
F

H

G

H

(a)

(b)

(c) 2D transfer function (d) 3D transfer function

F

G

H

E

Figure 9.2 Material and boundary identification of the human tooth CT with data value and gradient magnitude ( f 0), seen in

(a), and data value and second derivative ( f 00), seen in (b). The background–dentin boundary (F) cannot be adequately

captured with data value and gradient magnitude alone. (c) shows the results of a 2D transfer function designed to show

only the background–dentin (F) and dentin–enamel boundaries (G). The background–enamel (H) and dentin–pulp (E)

boundaries are erroneously colored. Adding the second derivative as a third axis to the transfer function disambiguates the

boundaries. (d) shows the results of a 3D transfer function that gives lower opacity to nonzero second-derivative values.
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One example of data that benefits from multi-

dimensional transfer functions is volumetric

color data. A number of volumetric color data-

sets are available, such as the Visible Human

Project’s RGB data. The process of acquiring

color data by cryosection is becoming common

for the investigation of anatomy and histology.

In these datasets, the differences in materials are

expressed by their unique spectral signatures. A

multidimensional transfer function is a natural

choice for visualizing this type of data. Opacity

can be assigned to different positions in the 3D

RGB color space.

Fig. 9.4a shows a joint histogram of the RGB

color data for the Visible Male; regions of this

space that correspond to different tissues are

identified. Regions (A) and (B) correspond to

the fatty tissues of the brain, white and gray

matter, as seen in Fig. 9.4b. In this visualization,

the transition between white and grey matter is

intentionally left out to better emphasize these

materials and to demonstrate the expressivity of

the multidimensional transfer function Fig. 9.4c

shows a visualization of the color values that

represent the muscle structure and connective

tissues (C) of the head and neck with the skin

surface (D), given a small amount of opacity for

context. In both of these figures, a slice of the

original data is mapped to the surface of the

clipping plane for reference.

The kind of first derivative that we compute in

multivariate data is based on previous work in

color image segmentation [8,33,7]. While the

gradient magnitude in scalar data represents

the magnitude of local change at a point, an

analogous first-derivative measure in multivari-

ate data captures the total amount of local

change, across all the data components. This

derivative has proven useful in color image seg-

mentation because it allows a generalization of

gradient-based edge detection. In our system, we

use this first-derivative measure as one axis in the

multidimensional transfer function in order to

isolate and visualize different regions of a multi-

variate volume according to the amount of local

change, analogous to our use of gradient magni-

tude for scalar data.

If we represent the dataset as a multivariate

function f(x,y,z): R
3 !R

m
, so that

f(x, y, z) ¼ (f1(x, y, z), f2(x, y, z),

. . . , fm(x, y, z))

then the derivative Df is a matrix of first partial

derivatives:
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Figure 9.3 The behavior of primary data value ( f ), gradient magnitude ( f 0), and the second directional derivative ( f 00) as a

function of position (a) and as a function of data value (b).
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By multiplying Df with its transpose, we can

form a 3� 3 tensor G that captures the direc-

tional dependence of total change:

G ¼ (Df)TDf (9:3)

In the context of color edge detection [8,33,7],

this matrix (specifically, its 2D analog) is used as

the basis of a quadratic function of direction n,

which Cumani [7] terms the squared local con-

trast in direction n:

S(n) ¼ nTGn

S(n) can be analyzed by finding the principal

eigenvector (and associated eigenvalue) of G to

determine the direction n of greatest local con-

trast, or fastest change, and the magnitude of

that change. Our experience, however, has been

that in the context of multidimensional transfer

functions, it is sufficient (and perhaps prefer-

able) to simply take the L2 norm of G, kGk,

which is the square root of the sum of the

squares root of the sum of the squares of the

individual matrix components. As the L2 norm

is invariant with respect to rotation, this is the

same as the L2 norm of the three eigenvalues

of G, motivating our use of kGk as a direction-

ally independent (and rotationally invariant)

measure of local change. Other work on

volume-rendering of color data has used a

non-rotationally invariant measure of G [9].

Since it is sometimes the case that the dynamic

range of the individual channels ( fi) differ, we

normalize the ranges of each channel’s data

value to be between zero and one. This allows

each channel to have an equal contribution in

the derivative calculation.

9.4 Interaction and Tools

While adding dimensions to the transfer func-

tion enhances our ability to isolate features of

interest in a dataset, it tends to make the already

unintuitive space of the transfer function even

more difficult to navigate. This difficulty can be

considered in terms of a conceptual gap between

the spatial and transfer-function domains. The

spatial domain is the familiar 3D space for

Johnson/Hansen: The Visualization Handbook Page Proof 20.5.2004 12:32pm page 188

Red

Gre
en

B
lu

e A

B

C

D

E

(a) Histograms of the Visible Male
RGB dataset
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(b) The white (A) and gray (B) matter
of the brain

(c) The muscle and connective tissues (C) of
the head and neck, showing skin (D) for reference

Figure 9.4 The Visible Male RGB (color) data. The opacity is set using a 3D transfer function, and color is taken directly from

the data. The histogram (a) is visualized as projections on the primary planes of the RGB color space.
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geometry and the volume data being rendered.

The transfer-function domain, however, is more

abstract. Its dimensions are not spatial (i.e. the

ranges of data values), and the quantities at each

location are not scalar (i.e. opacity and three

colors). It can be very difficult to determine the

regions of the transfer function that correspond

to features of interest, especially when a region is

very small. Thus, to close this conceptual gap, we

developed new interaction techniques, which

permit interaction in both domains simultan-

eously, and a suite of direct manipulation

widgets that provide the tools for such inter-

actions. Fig. 9.5 shows the various direct ma-

nipulation widgets as they appear in the system.

In a typical session with our system, the user

creates a transfer function using a natural pro-

cess of exploration, specification, and refine-

ment. Initially, the user is presented with a

volume-rendering using a predetermined trans-

fer function that is likely to bring out some

features of interest. This can originate with an

automated transfer function generation tool

[16], or it could be the default transfer function

described later in Section 9.6. The user would

then begin exploring the dataset.

Exploration is the process by which a user

familiarizes him or herself with the dataset.

A clipping plane can be moved through the

volume to reveal internal structures. A slice of

the original data can be mapped to the clipping

plane, permitting a close inspection of the entire

range of data values. Sample positions are

probed in the spatial domain, and their values,

along with values in a neighborhood around

that point, are visualized in the transfer-

function domain. This feedback allows the user

to identify the regions of the transfer function

that correspond to potential features of interest,

made visible by the default transfer function or

the sliced data. Once these regions have been

identified, the user can then begin specifying a

custom transfer function.

During the specification stage, the user creates

a rough draft of the desired transfer function.

While this can be accomplished by manually

adding regions to the transfer function, a simpler

method adds opacity to the regions in the trans-

fer function at and around locations queried in

the spatial domain. That is, the system can

track, with a small region of opacity in the trans-

fer-function domain, the data values at the

user-selected locations, while continually updat-

ing the volume-rendering. This visualizes, in

the spatial domain, all other voxels with similar

transfer-function values. If the user decides that

an important feature is captured by the current

transfer function, he or she can add that region

into the transfer function and continue querying

and investigating the volume.

Once these regions have been identified, the

user can refine them by manipulating control

points in the transfer-function domain to better

visualize features of interest. An important fea-

ture of our system is the ability to manipulate

portions of the transfer function as discrete en-

tities. This permits the modification of regions

corresponding to a particular feature without

affecting other classified regions.
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Figure 9.5 The direct-manipulation widgets.
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Finally, this is an iterative process. A user

continues the exploration, specification, and re-

finement steps until they are satisfied that all

features of interest are made visible. In the re-

mainder of this section, we will introduce the

interaction modalities used in the exploration

and specification stages and briefly describe the

individual direct manipulation widgets.

9.4.1 Probing and Dual-Domain
Interaction

The concept of probing is simple: The user

points at a location in the spatial domain and

visualizes the values at that point in the transfer-

function domain. We have found this feedback

to be essential for making the connection be-

tween features seen in the spatial domain and

the ranges of values that identify them in the

transfer-function domain. Creating the best

transfer function for visualizing a feature of

interest is only possible with an understanding

of the behavior of data values at and around

that feature. This is especially true for multidi-

mensional transfer functions where a feature

is described by a complex combination of

data values. The value of this dataset-specific

guidance can be further enhanced by automatic-

ally setting the transfer function based on these

queried values.

In a traditional volume-rendering system, set-

ting the transfer function involves moving the

control points (in a sequence of linear ramps

defining color and opacity), and then observing

the resulting rendered image. That is, interaction

in the transfer-function domain is guided by

careful observation of changes in the spatial

domain. We prefer a reversal of this process, in

which the transfer function is set by direct inter-

action in the spatial domain, with observation of

the transfer-function domain. Furthermore, by

allowing interaction to happen in both domains

simultaneously. We significantly lessen the con-

ceptual gap between them, effectively simplify-

ing the complicated task of specifying a

multidimensional transfer function to pointing

at a feature of interest. We use the term ‘‘dual-

domain interaction’’ to describe this approach to

transfer-function exploration and generation.

The top of Fig. 9.6 illustrates the specific steps

of dual-domain interaction. When a position

inside the volume is queried by the user with the

data probe widget (a), the values associated with

that position (multivariate values, or the data

value, first and second derivative) are graphically

represented in the transfer function widget (b).

Then, a small region of high opacity (c) is tem-

porarily added to the transfer function at the

data values determined by the probe location.

The user has now set a multidimensional transfer

function simply by positioning a data probe

within the volume. The resulting rendering (d)

depicts (in the spatial domain) all the other loca-

tions in the volume that share values (in the

transfer-function domain) with those at the

data probe tip. If the features rendered are of

interest, the user can copy the temporary transfer

function to the permanent one (e), by, for in-

stance, tapping the keyboard space bar with the

free hand. As features of interest are discovered,

they can be added to the transfer function

quickly and easily with this type of two-handed

interaction. Alternately, the probe feedback

can be used to manually set other types of classi-

fication widgets (f ), which are described later.

The outcome of dual-domain interaction is

an effective multidimensional transfer function

built up over the course of data exploration. The

widget components that participated in this pro-

cess can be seen in the bottom of Fig. 9.6, which

shows how dual-domain interaction can help

volume-render the CT tooth dataset. The re-

mainder of this section describes the individual

widgets and provides additional details about

dual-domain interaction.

9.4.2 Data Probe Widget

The data probe widget is responsible for

reporting its tip’s position in volume space and

its slider sub-widget’s value. Its pencil-like shape

is designed to give the user the ability to point at

a feature in the volume being rendered. The other

end of the widget orients the widget about its tip.
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When the volume-rendering’s position or orien-

tation is modified the data probe widget’s tip

tracks its point in volume space. A natural exten-

sion is to link the data probe widget to a haptic

device, such as the SensAble PHANTOM,

which can provide a direct 3D location and

orientation [26].

9.4.3 Clipping Plane Widget

The clipping plane is responsible for reporting

its orientation and position to the volume ren-

derer, which handles the actual clipping when it

draws the volume. In addition to clipping, the

volume widget will also map a slice of the data

to the arbitrary plane defined by the clip widget,

and blend it with the volume by a constant

opacity value determined by the clip widget’s

slider. It is also responsible for reporting the

spatial position of a mouse click on its clipping

surface. This provides an additional means of

querying positions within the volume, distinct

from the 3D data probe. The balls at the corners

of the clipping plane widget are used to modify

its orientation, and the bars on the edges are

used to modify its position.

9.4.4 Transfer-Function Widget

The main role of the transfer-function widget is

to present a graphical representation of the

transfer-function domain, in which feedback

from querying the volume (with the data probe

or clipping plane) is displayed, and in which the

transfer function itself can be set and altered.

The balls at the corners of the transfer-function
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widget are used to resize it, as with a desktop

window, and the bars on the edges are used to

translate its position. The inner plane of the

frame is a polygon texture-mapped with the

lookup table containing the transfer function.

A joint histogram of data, seen with the images

in Section 9.3, can also be blended with the

transfer function to provide valuable informa-

tion about the behavior and relationship of data

values in the transfer-function domain.

The data values at the position queried in the

volume (via either the data probe or the clipping

plane widget) are represented with a small ball

in the transfer-function widget. In addition to

the precise location queried, the eight data

sample points at the corners of the voxel con-

taining the query location are also represented

by balls in the transfer-function domain, and

are connected together with edges that reflect

the connectivity of the voxel corners in the

spatial domain. By ‘‘reprojecting’’ a voxel from

the spatial domain to a simple graphical repre-

sentation in the transfer-function domain, the

user can learn how the transfer-function vari-

ables (data values at each sample point) are

changing near the probe location. The values

for the third, or unseen, axis are indicated by

coloring son the balls. For instance, with scalar

data, second-derivative values that are negative,

zero, and positive are represented by blue,

white, and yellow balls, respectively. When the

projected points form an arc, with the color

varying through these assigned colors, the

probe is at a boundary in the volume as seen

in Fig. 9.5. When the reprojected data points are

clustered together, the probe is in a homoge-

neous region. As the user gains experience with

this representation, he or she can learn to

‘‘read’’ the reprojected voxel as an indicator of

the volume characteristics at the probe location.

9.4.5 Classification Widgets

In addition to the process of dual-domain inter-

action described above, transfer functions can

also be created in a more manual fashion by

adding one or more classification widgets to

the main transfer-function window. Classifica-

tion widgets are designed to identify regions

of the transfer function as discrete entities.

Each widget type has control points that modify

its position or size. Optical properties, such as

opacity and color, are modified by selecting the

widget’s inner surface. The opacity and color

contributions from each classification widget

are blended together to form the transfer func-

tion. We have developed two types of classifica-

tion widget: triangular and rectangular.

The triangular classification widget, shown in

Figs. 9.5, 9.6, and 9.8, is based on Levoy’s ‘‘iso-

value contour surface’’ opacity function [22].

The widget is an inverted triangle with a base

point attached to the horizontal data value axis.

The triangle’s size and position are adjusted

with control points. There are an upper and

lower threshold for the gradient magnitude, as

well as a shear. Color is constant across the

widget; opacity is maximal along the center of

the widget, and it linearly ramps down to zero at

the left and right edges.

The triangular classification widgets are par-

ticularly effective for visualizing surfaces in

scalar data. More general transfer functions,

for visualizing data that may not have clear

boundaries, can be created with the rectangular

classification widget. The rectangular region

spanned by the widget defines the data values

that receive opacity and color. Like the triangu-

lar widget, color is constant, but the opacity is

more flexible. It can be constant, or fall off in

various ways: quadratically as an ellipsoid with

axes corresponding to the rectangle’s aspect

ratio, or linearly as a ramp, tent, or pyramid.

As noted in the description of the transfer-

function widget, even when a transfer function

has more than two dimensions, only two dimen-

sions are shown at any one time. For 3D trans-

fer functions, classification widgets are shown as

their projections onto the visible axes. In this

case, a rectangular classification widget be-

comes a box in the 3D domain of the transfer

function. Its appearance to the user, however, as

2D projections, is identical to the rectangular

widget. When the third axis of the transfer func-
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tion plays a more simplified role, interactions

along this axis are tied to sliders seen along the

top bar of the transfer function. For instance,

since our research on scalar data has focussed

on visualizing boundaries between material

regions, we have consistently used the second

derivative to emphasize the regions where the

second-derivative magnitude is small or zero.

Specifically, maximal opacity is always given to

zero second derivatives, and decreases linearly

towards the second-derivative extrema values.

How much the opacity changes as a function

of second-derivative magnitude is controlled

with a single slider, which we call the ‘‘boundary

emphasis slider.’’ With the slider in its left-most

position, zero opacity is given to extremal

second derivatives; in the right-most position,

opacity is constant with respect to the second

derivative. We have employed similar tech-

niques for manipulating other types of third-

axis values using multiple sliders.

While the classification widgets are usually set

by hand in the transfer-function domain, based

on feedback from probing and reprojected vox-

els, their placement can also be somewhat auto-

mated. This further reduces the difficulty of

creating an effective higher-dimensional transfer

function. The classification widget’s location

and size in the transfer-function domain can be

tied to the distribution of the reprojected voxels

determined by the data probe’s location. For

instance, the rectangular classification widget

can be centered at the transfer-function values

interpolated at the data probe’s tip, with the size

of the rectangle controlled by the data probe’s

slider. The triangular classification widget can be

located horizontally at the data value queried by

the probe, with the width and height determined

by the horizontal and vertical variance in the

reprojected voxel locations. This technique pro-

duced the changes in the transfer function for the

sequence of renderings in Fig. 9.6

9.4.6 Shading Widget

The shading widget is a collection of spheres

that can be rendered in the scene to indicate

and control the light direction and color. Fixing

a few lights in view space is generally effective

for renderings; therefore, changing the lighting

is an infrequent operation.

9.4.7 Color-Picker Widget

The color picker is an embedded widget that is

based on the hue-lightness-saturation (HLS)

color space. Interacting with this widget can be

thought of as manipulating a sphere with hues

mapped around the equator, gradually becom-

ing black at the top and white at the bottom. To

select a hue, the user moves the mouse horizon-

tally, rotating the ball around its vertical axis.

Vertical mouse motion tips the sphere toward or

away from the user, shifting the color towards

white or black. Saturation and opacity are

selected independently using different mouse

buttons with vertical motion. While this color

picker can be thought of as manipulating an

HLS sphere, no geometry for this is rendered.

Rather, the triangular and rectangular classifi-

cation widgets embed the color picker in the

polygonal region, which contributes opacity

and color to the transfer-function domain. The

user specifies a color simply by clicking on

that object, then moving the mouse horizontally

and vertically until the desired hue and lightness

are visible. In most cases, the desired color can

be selected with a single mouse-click and ges-

ture.

9.5 Rendering and Hardware

While this chapter is conceptually focused on

the matter of setting and applying higher-

dimensional transfer functions, the quality of

interaction and exploration described would

not be possible without the use of modern

graphics hardware. Our implementation relies

heavily on an OpenGL extension known as de-

pendent texture reads. This extension can be

used for both classification and shading. In

this section, we describe our modifications to

the classification portion of the traditional 3D

texture-based volume-rendering pipeline. We
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also describe methods for adding interactive

volumetric shading and shadows to the pipeline.

Our system supports volumes that are stored

as 3D textures with one, two, or four values per

texel. This is is due to memory-alignment re-

strictions of graphics hardware. Volumes with

three values per sample utilize a four-value tex-

ture, where the fourth value is simply ignored.

Volumes with more than four values per sample

could be constructed using multiple textures.

9.5.1 Dependent Texture Reads

Dependent texture reads are hardware exten-

sions that are similar but more efficient imple-

mentations of a previous extension known as

pixel texture [10,13,25,37]. Dependent texture

reads and pixel texture are names for operations

that use color fragments to generate texture co-

ordinates, and replace those color fragments

with the corresponding entries from a texture.

This operation essentially amounts to an arbi-

trary function evaluation with up to three vari-

ables via a lookup table. If we were to perform

this operation on an RGB fragment, each chan-

nel value would be scaled between zero and one,

and these new values would then be used as

texture coordinates of a 3D texture. The color

values produced by the 3D texture lookup re-

place the original RGB values. The nearest-

neighbor or linear-interpolation methods can

be used to generate the replacement values. The

ability to scale and interpolate color channel

values is a convenient feature of the hardware.

It allows the number of elements along a dimen-

sion of the texture containing the new color

values to differ from the dynamic range of the

component that generated the texture coordin-

ate. Without this flexibility, the size of a 3D

dependent texture would be prohibitively large.

9.5.2 Classification

Dependent-texture reads are used for the trans-

fer-function evaluation. Data values stored

in the color components of a 3D texture are

interpolated across some proxy geometry, a

plane, for instance. These values are then con-

verted to texture coordinates and used to

acquire the color and alpha values in the trans-

fer-function texture per-pixel in screen space.

For eight-bit data, an ideal transfer-function

texture would have 256 color and alpha values

along each axis. For 3D transfer functions,

however, the transfer-function texture would

then be 2563 � 4 bytes. Besides the enormous

memory requirements of such a texture, the

size also affects how fast the classification

widgets can be rasterized, thus affecting the

interactivity of transfer-function updates. We

therefore limit the number of elements along

an axis of a 3D transfer function based on its

importance. For instance, with scalar data, the

primary data value is the most important,

the gradient magnitude is secondary, and the

second derivative serves an even more tertiary

role. For this type of multidimensional transfer

function, we commonly use a 3D transfer-func-

tion texture with dimensions 256� 128� 8 for

data value, gradient magnitude, and second de-

rivative, respectively. 3D transfer functions can

also be composed separably as a 2D and a 1D

transfer function. This means that the total size

of the transfer function is 2562 þ 256. The tra-

deoff, however, is in expressivity. We can no

longer specify a transfer function based on the

unique combination of all three data values.

Separable transfer functions are still quite

powerful. Applying the second derivative as a

separable 1D portion of the transfer function is

quite effective for visualizing boundaries be-

tween materials. With the separable 3D transfer

function for scalar volumes, there is only one

boundary-emphasis slider that affects all classi-

fication widgets, as opposed to the general case

where each classification widget has its own

boundary-emphasis slider. We have employed

a similar approach for multivariate data visual-

ization. The meteorological example used a sep-

arable 3D transfer function. Temperature and

humidity were classified using a 2D transfer

function and the multiderivative of these values

was classified using a 1D transfer function.

Since our specific goal was to show only regions
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with high values of kGk, we needed only two

sliders to specify the beginning and ending

points of a linear ramp along this axis of the

transfer function.

9.5.3 Surface Shading

Shading is a fundamental component of

volume-rendering because it is a natural and

efficient way to express information about the

shape of structures in the volume. However,

much previous work with texture-memory-

based-volume-rendering lacks shading. Many

modern graphics hardware platforms support

multitexture and a number of user-defined op-

erations for blending these textures per-pixel.

These operations, which we will refer to as frag-

ment shading, can be leveraged to compute a

surface-shading model.

The technique originally proposed by Rezk-

Salama et al. [6] is an efficient way to compute

the Blinn-Phong shading model on a per-pixel

basis for volumes. This approach, however, can

suffer from artifacts caused by denormalization

during interpolation. While future generations

of graphics hardware should support the square

root operation needed to renormalize on a per-

pixel basis, we can utilize cube map dependent

texture reads to evaluate the shading model.

This type of dependent texture read allows an

RGB color component to be treated as a vector

and used as the texture coordinates for a cube

map. Conceptually, a cube map can be thought

of as a collection of six textures that make up

the faces of a cube centered about the origin.

Texels are accessed with a 3D texture coordin-

ate (s,t,r) representing a direction vector. The

accessed texel is the point corresponding to the

intersection of a line through the origin in the

direction of (s,t,r) and a cube face. The color

values at this position represent incoming dif-

fuse radiance if the vector (s,t,r) is a surface

normal or specular radiance if (s,t,r) is a reflec-

tion vector. The advantages of using a cube map

dependent texture read is that the vector (s,t,r)

does not need to be normalized, and the cube

map can encode an arbitrary number of lights

or a full environment map. This approach, how-

ever, comes at the cost of reduced performance.

A per-pixel cube map evaluation can be as much

as three times slower than evaluating the dot

products for a limited number of light sources

in the fragment shader stage.

Surface-based shading methods are well

suited for visualizing the boundaries between

materials. However, since the surface normal is

approximated by the normalized gradient of a

scalar field, these methods are not robust for

shading homogeneous regions, where the gradi-

ent magnitude is very low or zero and its meas-

urement is sensitive to noise. Gradient-based

surface shading is also unsuitable for shading

volume-renderings of multivariate fields. While

we can assign the direction of greatest change

for a point in a multivariate field to the eigen-

vector (e1) corresponding to the largest eigen-

value (l1) of the tensor G from Equation 9.3, e1

is a valid representation of only orientation, not

the absolute direction. This means that the sign

of e1 can flip in neighboring regions even though

their orientations may not differ. Therefore, the

vector e1 does not interpolate, making it a poor

choice of surface normal. Furthermore, this

orientation may not even correspond to the

surface normal of a classified region in a multi-

variate field.

9.5.4 Shadows

Shadows provide important visual queues relat-

ing to the depth and placement of objects in

a scene. Since the computation of shadows

does not depend on a surface normal, they pro-

vide a robust method for shading homogeneous

regions and multivariate volumes. Adding sha-

dows to the volume lighting model means that

light gets attenuated through the volume before

being reflected back to the eye.

Our approach differs from previous hardware

shadow work [2] in two ways. First, rather than

creating a volumetric shadow map, we utilize

an off-screen render buffer to accumulate the

amount of light attenuated from the light’s

point of view. Second, we modify the slice axis
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to be the direction halfway between the view

and light directions. This allows the same slice

to be rendered from both the eye and the light

points of view. Consider the situation for com-

puting shadows when the view and light direc-

tions are the same, as seen in Fig. 9.7a. Since the

slices for both the eye and the light have a one-

to-one correspondence, it is not necessary to

precompute a volumetric shadow map. The

amount of light arriving at a particular slice is

equal to one minus the accumulated opacity of

the slices rendered before it. Naturally, if the

projection matrices for the eye and the light

differ, we need to maintain a separate buffer

for the attenuation from the light’s point of

view. When the eye and light directions differ,

the volume would be sliced along each direction

independently. The worst-case scenario happens

when the view and light directions are perpen-

dicular, as seen in Fig. 9.7b. In the case, it would

seem necessary to save a full volumetric shadow

map that can be resliced with the data volume

from the eye’s point of view providing shadows.

This approach, however, suffers from an arti-

fact referred to as attenuation leakage. The

visual consequences of this are blurry shadows

and surfaces that appear much darker than they

should due to the image-space high frequencies

introduced by the transfer function. The attenu-

ation at a given sample point is blurred when

light intensity is stored at a coarse resolution

and interpolated during the observer rendering

phase. This use of a 2D shadow buffer is similar

to the method described in Chapter 8 except we

address slice-based volume-rendering while they

address splatting.

Rather than slice along the vector defined by

the view direction or the light direction, we

modify the slice axis to allow the same slice to

be rendered from both points of view. When the

dot product of the light and view directions is

positive, we slice along the vector halfway be-

tween the light and view directions, seen in Fig.

9.7c. In this case, the volume is rendered in
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front-to-back order with respect to the observer.

When the dot product is negative, we slice along

the vector halfway between the light and the

inverted-view directions, seen in Fig. 9.7d. In

this case, the volume is rendered in back-to-

front order with respect to the observer. In

both cases the volume is rendered in front-to-

back order with respect to the light. Care must

be taken to insure that the slice spacing along

the view and light directions are maintained

when the light or eye positions change. If the

desired slice spacing along the view direction is

dv and the angle between v and l is y, then the

slice spacing along the slice direction is

ds ¼ cos
y
2

� �
dv (9:4)

This is a multi-pass approach. Each slice is

first rendered from the observer’s point of view

using the results of the previous pass from the

light’s point of view, which modulates the

brightness of samples in the current slice. The

same slice is then rendered from light’s point of

view to calculate the intensity of the light arriv-

ing at the next layer.

Since we must keep track of the amount of

light attenuated at each slice, we utilize an off-

screen render buffer, known as a pixel buffer.

This buffer is initialized to 1 – light intensity. It

can also be initialized using an arbitrary image

to create effects such as spotlights. The projec-

tion matrix for the light’s point of view need not

be orthographic; a perspective projection matrix

can be used for point light sources. However,

the entire volume must fit in the light’s view

frustum. Light is attenuated by simply accumu-

lating the opacity for each sample using the over

operator. The results are then copied to a tex-

ture that is multiplied with the next slice from

the eye’s point of view before it is blended into

the frame buffer. While this copy-to-texture op-

eration has been highly optimized on the cur-

rent generation of graphics hardware, we have

achieved a dramatic increase in performance

using a hardware extension known as render to

texture. This extension allows us to directly bind

a pixel buffer as a texture, avoiding the unneces-

sary copy operation.

This approach has a number of advantages

over previous volume shadow methods. First,

attenuation leakage is no longer a concern be-

cause the computation of the light transport

(slicing density) is decoupled from the reso-

lution of the data volume. Computing light at-

tenuation in image space allows us to match the

sampling frequency of the light transport with

that of the final volume-rendering. Second, this

approach makes far more efficient use of

memory resources than those that require a

volumetric shadow map. Only a single add-

itional 2D buffer is required, as opposed to a

potentially large 3D volume. One disadvantage

of this approach is that, due to the image-space

sampling, artifacts may appear at shadow

boundaries when the opacity makes a sharp

jump from low to high. This can be overcome

by using a higher resolution for the light buffer

than for the frame buffer. We have found that

30%–50% additional resolution is adequate.

As noted at the end of the previous section,

surface-based shading models are inappropriate

for homogeneous regions in a volume. However,

it is often useful to have both surface-shaded and

shadowed renderings regardless of whether or

not homogeneous regions are being visualized.

To insure that homogeneous regions are not

surface shaded, we simply interpolate between

surface-shaded and unshaded using the gradient

magnitude. Naturally, regardless of whether or

not a particular sample is surface shaded, it is

still modulated by the light attenuation provid-

ing shadows. In practice we have found that

interpolating based on 1� (1� krf k)2 pro-

duces better results, since mid-range gradient

magnitudes can still be interpreted as surface

features. Fig. 9.8 shows a rendering that com-

bines surface shading and shadows in such a

way. Fig. 9.1 shows a volume-rendering using

shadows with the light buffer initialized to simu-

late a spotlight. Fig. 9.2 shows volume-rendering

using only surface-based shading. Fig. 9.4 uses

only shadows for illumination.
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9.6 Discussion

Using multidimensional transfer functions

heightens the importance of densely sampling

the voxel data in rendering. With each new

axis in the transfer function, there is another

dimension along which neighboring voxels can

differ. It becomes increasingly likely that the

data sample points at the corners of a voxel

straddle an important region of the transfer

function (such as a region of high opacity)

instead of falling within it. Thus, in order for

the boundaries to be rendered smoothly, the

distance between view-aligned sampling planes

through the volume must be very small. Most

of the figures in this paper were generated

with rates of about 3 to 6 samples per voxel.

At this sample rate, frame updates can take

nearly a second for a moderately sized (256�
256� 128) shaded and shadowed volume. For

this reason, we lower the sample rate during

interaction, and rerender at the higher sample

rate once an action is completed. During inter-

action, the volume-rendered surface will

appear coarser, but the surface size and loca-

tion are usually readily apparent. Thus, even

with lower volume-sampling rates during inter-

action, the rendered images are effective feed-

back for guiding the user in transfer-function

exploration.

While the triangular classification widget is

based on Levoy’s iso-contour classification

function, we have found it necessary to have

additional degrees of freedom, such as a shear.

Shearing the triangle classification along the

data value axis, so that higher values are em-

phasized at higher gradients, allows us to follow

the center of some boundaries more accurately.

This is a subtle but basic characteristic of

boundaries between a material with a narrow

distribution of data values and another material

with a wide value distribution. This pattern can

be observed in in the boundary between soft

tissue (Fig. 9.9 narrow value distribution) and

bone (wide value distribution) of the Visible

Male CT, seen in Fig. 9.9. Thresholding the

minimum gradient magnitude allows better fea-

ture discrimination.

While multidimensional transfer functions

are quite effective for visualizing material

boundaries, we have also found them to be

useful for visualizing the materials themselves.

For instance, if we attempt to visualize the

dentin of the Human Tooth CT using a 1D

transfer function, we erroneously color the

background–enamel boundary, seen in Fig.

9.10a. The reason for this can be seen in

Fig. 9.2a, where the range of data values

that define the background–enamel boundary

overlap with the dentin’s data values. We can
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easily correct this erroneous coloring with a 2D

transfer function that gives opacity only to

lower-gradient magnitudes. This can be seen in

Fig. 9.10b.

A further benefit of dual-domain interaction

is the ability to create feature-specific multidi-

mensional transfer functions, which would be

extremely difficult to produce by manual place-
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Figure 9.9 The soft tissue–bone boundary of the Visible Male CT. It is necessary to shear the triangular classification widget to

follow the center of this boundary.

(a) A 1D transfer function (b) A 2D transfer function

Figure 9.10 The dentin of the Human Tooth CT (a) shows that a 1D transfer function, simulated by assigning opacity to data

values regardless of gradient magnitude, will erroneously color the background–enamel boundary. A 2D transfer function,

shown in (b), can avoid assigning opacity to the range of gradient magnitudes that define this boundary.
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ment of classification widgets. If a feature can

be visualized in isolation with only a very small

and accurately placed classification widget, the

best way to place the widget is via dual-domain

interaction.

Dual-domain interaction has utility beyond

setting multidimensional transfer functions.

Dual-domain interaction also helps answer other

questions about the limits of direct volume-

rendering for displaying specific features in the

data. For example, the feedback in the transfer-

function domain can show the user whether a

certain feature of interest detected during spatial

domain interaction is well-localized in the trans-

fer function domain. If reprojected voxels from

different positions, in the same feature, map to

widely divergent locations in the transfer-func-

tion domain, then the feature is not well local-

ized, and it may be hard to create a transfer

function the clearly visualizes it. Similarly, if

probing inside two distinct features indicates

that the reprojected voxels from both features

map to the same location in the transfer-function

domain, then it may be difficult to selectively

visualize one or the other feature.
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