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Abstract
High resolution computational weather models are becoming increasing complex. However, the analysis of these
models has not benefited from recent advancements in volume visualization. This case study applies the ideas
and techniques from multi-dimensional transfer function based volume rendering to the multivariate weather
simulations. The specific goal of identifying frontal zones is addressed. By combining temperature and humidity
as a multivariate field, the frontal zones are more readily identified thereby assisting the meteorologists in their
analysis tasks.

1. Introduction

High resolution computational weather models are widely
used throughout the world10; 14; 15. Recent advancements in
volume visualization can benefit the analysis of these in-
creasingly complex and higher fidelity datasets. Meteorol-
ogists employ similar methods to analyze weather models
as they would to track sensed weather data. These meth-
ods are effective at providing forecasts but lacks the detailed
information to accurately model such features as baroclinic
zones, more commonly known as fronts.

Baroclinic zones, or fronts, form the boundary between
airmasses with different temperature and humidity charac-
teristics. It is precisely these differences in thermal charac-
teristics which provide the energy by which, under the right
circumstances, a wave-like perturbation along the front may
amplify to form a mid-latitude storm. Dynamics along cold
fronts are also responsible for much of the summer severe
weather experienced in mid-latitudes. Hence, fronts are very
important for meteorologists.

There exists a “classical” frontal theory, in which fronts
consist of a zone of strong thermal gradient, both at the
surface and extending in the vertical, potentially to the

tropopausey. The fronts slope in the vertical toward the
colder airmass, with cold fronts having a sharper slope
than warm fronts. Classic warm frontal weather consists
of continuous rain, with possibly some embedded convec-
tion, while cold fronts tend to produce convection, including
showers and thunderstorms, the latter potentially resulting in
hail, damaging winds, tornadoes, etc.

In the real world, things are often not “classical”. The ver-
tical extent of fronts are difficult to analyse explicitly due to
the poor resolution of data in the free atmosphere, so mete-
orologists tend to concentrate on the surface manifestation.
Surface features however can be masked by various phenom-
ena including terrain, radiative effects, low-level moisture
sources and sinks, cloud cover, etc.

1.1. Current Techniques

There are many different methods employed for the analysis
of fronts. The standard joke is that if you put twelve meteo-

y The tropopause is a term referring to the top of the troposphere,
which is the layer of the atmosphere extending outward 7 to 10 miles
from the earth’s surface.
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rologists in a room, they will come up with a dozen frontal
analyses for the same situation. This illustrates that there are
many different ways to attack the problem. The critical sur-
face fields are temperature and humidity, as noted above.
Also important are the surface pressure, pressure tendency
(the three-hourly change in pressure), and wind fields, since
fronts tend to be found in pressure troughs. There are char-
acteristic signatures of fronts to be found in satellite imagery
as well.

In terms of the upper structure of fronts, operational me-
teorologists at the Canadian Meteorological Centre objec-
tively analyse or forecast 1000-500 hPaz thicknesses, 850
hPa thetawx and 250 hPa jet stream chart in addition to other
data sources such as radiosonde, satellite, and aircraft data.
The thicknesses are proportional to the average temperature
in that layer of the atmosphere, giving a good indication
of where there are strong thermal gradients. The 850 hPa
thetaw also gives a good indication of the thermal gradients
at a level that is low enough in the atmosphere where most
fronts will appear, while high enough to be separate from
most terrain effects. The jet stream is an artifact of thermal
gradients, through the thermal wind equation, which states
that the vector difference in the wind between two levels in
the atmosphere is proportional to the average horizontal tem-
perature gradient in that layer.

Since the summer of 2000, meteorologists at the Cana-
dian Meteorological Centre (CMC) have been using a graph-
ical editor (called Edigraf) to do their frontal analyses on-
screen. This application allows the meteorologist to over-
lay any number of model generated meteorological fields,
data and satellite imagery, enabling a comprehensive view
of the atmosphere. This application takes advantage of color
mapped scalar data, glyphs, and contours.

There has been a wealth of other visualization systems
used in weather forecasting and analysis. The most widely
used is Vis5D3; 4. This package uses scalar and vector visu-
alization methods such as isosurfacing, vector glyphs, and
volume rendering. However, all scalar render modalities are
univariate. Other packages add various analysis capabilities
but still are limited to univariate fields12; 13; 15.

2. Background

Volume rendering is an important technique for scalar field
visualization. Most volume rendering systems set color and
opacity based on a single scalar value. Levoy’s seminal
work8; 9 in volume rendering utilized 2D transfer functions
of data value and gradient magnitude. The use of multi-
dimensional transfer functions has all but disappeared from
the literature and commercial volume rendering tools, with

z Pa is the offical metric unit of atmospheric pressure. hPa means
hecto-pascal, it is equivalent to mb or millibar.
x Thetaw or theta-w is the wet-bulb potential temperature.

a few exceptions5; 6. One reason for this is that the process
of selecting a good 1D transfer function is often trial and er-
ror. The complexity of this process is compounded by the
additional degrees of freedom introduced by adding dimen-
sions to the transfer function. Another reason stems from
the popularity of graphics hardware volume rendering tech-
niques. Until recently, multi-dimensional table lookups were
not possible, even on very high-end graphics hardware.

Simulation and medical applications which require visu-
alization often produce multiple values per sample point, or
voxel. Clearly, multi-dimensional transfer functions could be
beneficial in the analysis of such data. Analysis of multivari-
ate fields in the context of color images has led to some in-
teresting methods for both segmentation and rendering.

2D color image segmentation is an example of multivari-
ate classification. A detailed description of this process can
be found in 11 and the references contained therein. Sapiro’s
approach uses multivariate derivative measures to guide im-
plicit surface evolution.

Ebert et al.2 investigate the mapping of multi-valued color
data to a scalar density or opacity. They have developed
different techniques for managing the multi-value mapping,
while directly rendering volumes from photographic data.
They use a two step method which maps RGB into the CIE
L = U = V color space. This allows them to explore pho-
tographic images without committing to an a priori segmen-
tation. While this approach allows users to classify the data
based on the behavior of a gradient magnitude measure, it
lacks a mechanism to specify an arbitrary transfer function
based on the color data directly.

Current volume rendering approaches for visualizing
multi-valued datasets rely on separate transfer functions for
each modality, and then combine them16. The composite vi-
sualization can simply overlay the classified modalities or
use portions of the different transfer functions, for instance
color from one modality and opacity from another. Others
combine visualization techniques such as isosurfaces and
glyphs to convey the relationship of values from each of the
modalities3; 4; 14.

Laidlaw7 describes a framework for contrast enhancement
and pulse sequence optimization for spin-echo MRI data
acquisition using multi-valued fields. This approach also
demonstrates the utility of using multiple pulse sequences to
better classify materials for visualization using 2D transfer
functions.

Recent advancements in graphics hardware have enabled
the use of multi-dimensional transfer functions within an in-
teractive framework6. A key feature of this approach is the
ability to set transfer functions that emphasize regions of in-
terest using a straight forward point and click interface, a
process known as dual-domain interaction. This work ex-
plores multi-dimensional transfer functions restricted to the
scalar value, the magnitude of the gradient of the field, and
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the signed second derivative magnitude in the gradient direc-
tion of the field.

3. Multi-Dimensional Transfer Functions for
Multi-Fields

The goal of this case study is to explore the utility of multi-
dimensional transfer functions for the visualization of multi-
variate fields. It is often the case that numerical simulations
and medical image acquisition techniques produce a number
of data values per sample point. Together, these data values
may describe a phenomena or feature of interest better than
any one of them in isolation.

Our system allows the user to specify a fully general
multi-dimensional transfer function with up to three axes.
For instance, the first two axes can map data values and
the third can map the gradient magnitude of the multi-value
field. For multi-dimensional transfer functions with greater
than three axes, the additional axes are treated as sepa-
rable portions of the transfer function. The use of multi-
dimensional transfer functions is advantageous for volume
visualization because a feature of interest may not be lo-
calized in the data space of any single variable. Creating a
higher dimensional data space by adding independent or de-
rived variables to the transfer function increases the likeli-
hood that a feature can be classified. We have found this to
be true in our attempts to visualize airmasses in atmospheric
simulations. In this case the feature of interest is the frontal
zones of airmasses. This feature is not adequately described
by either temperature or humidity alone, nor does there exist
a mathematical formulation capable of classifying it a priori.

Given the difficulty of specifying a multi-dimensional
transfer function, we find dual-domain interaction to be an
important interaction modality for dataset exploration. Dual-
domain interaction is the process of setting a transfer func-
tion based on values queried, or pointed at, in the spatial do-
main of the volume rendering6. This is especially important
for multi-dimensional transfer functions, given the complex
relationship between a feature of interest and the ranges of
data values that describe it.

It has been shown that gradient magnitude is a use-
ful measure for data classification in volume rendering
applications5; 6; 8; 9. Gradient measurement is a well defined
operation for scalar datasets. Gradient estimation for multi-
valued fields, however, is not well defined. For this rea-
son we choose a gradient measure with demonstrated effec-
tiveness for color image edge detection. Our formulation is
taken from 1; 11, but is repeated here for convenience with
notation for 3D fields.

Let �(u1; u2; u3) : <3 ! <
m. This defines a multi-
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The use of this measure for color image edge detection is
simplified by the fact that each of the color channels have
the same dynamic range. This is most often not the case
for simulation data. We handle this by multiplying each data
channel’s derivative by a weight constant. Our heuristic for
determining the weight for each channel is to take the recip-
rocal of that channel’s maximum data value minus its min-
imum data value. This prevents a channel with a very high
dynamic range from dominating the derivative calculation.
This heuristic assumes that each channel should have equal
influence in derivative estimation relative to the other chan-
nels and there are no outliers. This may not always be desir-
able. Domain specific knowledge may be required to adjust
these weights so that the feature or phenomena will be accu-
rately represented in the visualization. We can express this
component-wise multiply as a m�m scale matrix W with
diagonal elements equal to the m per-channel weight con-
stants. We now have
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In the above equations, [gij ] is a metric tensor which de-
scribes the rate of change in all directions. One way to ac-
cess the total change at a location is to take the L2 norm
of this matrix. Clearly there are other ways to extract mean-
ingful information from this tensor, such as the magnitude
of the largest eigenvalue or the sum of the eigenvalues (the
trace). In any case, this value can then be used as an addi-
tional axis in the transfer function. Given the limitations of
modern graphics hardware, we apply the gradient portion of
the transfer function separably for fields with three or more
values per sample.

Lighting provides the human visual system with impor-
tant cues about the shape and curvature of surfaces. Lighting
for scalar volumes is often done by pre-computing the nor-
malized gradient for each sample in the volume. This vec-
tor is then used as the surface normal for a graphics light-
ing model. This is appropriate for volume visualizations of
features near regions with high gradient magnitude. The ap-
proach for generating multi-field gradients discussed above
provides the orientation but not the absolute direction. The
choice of gradient is often the eigenvector corresponding to
the largest eigenvalue of the metric tensor. Thus, lighting
with these gradients does not provide robust results since the
gradient can flip direction in local neighborhoods, and the
choice of eigenvector may not be clear when two or more
eigenvalues have the same or similar values. Furthermore,
this orientation may not even correspond to the surface of the
classified region. Our approach uses an atmospheric lighting
model which does not rely on a surface normal, see Figures
3 and 4. This lighting model simply attenuates light through
the volume, providing simple but robust lighting.

4. Results

A comparison with satellite imagery suggests that additional
information can be gained from the volume rendered multi-
fields.

Figure 1(a) shows a map of the globe underlying the sim-
ulation data. The data was generated using a forcing func-
tion from atmospheric measurements. Figure 1(b) shows the
results of analysis by an expert with access to all relevant
variables of the simulation including temperature (shown in
Figure 1(c)), humidity (shown in Figure 1(d)), and pressure,
as well as derived data such as dew point and wet-bulb tem-
perature. We have investigated the use of multi-dimensional
transfer functions with various combinations of these values
and found temperature and humidity to be the most appro-
priate for this task.

Figures 2(a) and (b) show the results of a composite vol-
ume rendering that combines the attributes from two sepa-
rate transfer functions, one for temperature and one for hu-
midity. In this case color is taken from one transfer function
and opacity is taken from the other. While a user could learn
to read this type of visualization, we feel that this approach

(a) Map (b) Expert Analysis

(c) Temperature (d) Humidity

Figure 1: (a) shows a map of the dataset extent. (b) shows
the expert analysis using Edigraph. (c) and (d) show slices
of temperature and humidity, respectively, passed through a
spectral color map.

would not adequately capture the complex relationship be-
tween the data channels being visualized. However, if one
desires this effect, it can easily be duplicated using a multi-
dimensional transfer function.

(a) Color = Temperature,
Opacity = Humidity

(b) Color = Humidity,
Opacity = Temperature

Figure 2: This is an example of volume rendering using
properties from each of the data channels. In (a), color
varies only with temperature and opacity varies only with
humidity. (b) shows the reverse of this, color with humidity,
opacity with temperature.

Figures 3 and 4 show the results of a 3D transfer function
specified using dual-domain interaction. These illustrations
represent different timesteps in the simulation. The horizon-
tal axis of the transfer function maps temperature, the ver-
tical axis maps humidity, and a third axis, which is not ex-
plicitly shown, maps the multi-gradient magnitude described
in Section 3. The opacity assigned to low gradient magni-
tudes can be restricted by manipulating the sliders located
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at the top of the transfer function widget. These transfer
functions could be set by hand in the transfer function do-
main. However, the additional feedback from the transfer
function being updated as the queried location changes al-
lows a user to identify features of interest more intuitively.
A more detailed explanation of dual-domain interaction can
be found in 6. This process is important given the fact that
small changes to the transfer function may result in large
unintuitive changes to the classified regions in the volume
rendering. The interface between warm and cold airmasses
is made apparent using dual-domain interaction; when the
queried position passes through the interface between air-
masses, the classified regions make a dramatic shift from one
side of the boundary to the other. This effect can be seen in
the second half of the accompanying animation. Adding the
ability to animate the data over several 6-hourly analysis pe-
riods allows the meteorologist to see the evolution of frontal
zones and airmasses; an example of this can be seen in the
first part of the accompanying animation.

Figure 3: This figure demonstrates the full expressivity of
a multi-dimensional transfer function. The transfer function
was created using dual-domain interaction. The sliders on
the top of the transfer function widget allow us to restrict the
opacity applied to samples with low gradient magnitudes.
Blue regions indicate cold airmasses, red regions indicate
warm airmasses.

By combining temperature and humidity, frontal zones
are very clearly delineated (see Figures 3 and 4), and ad-
ditional structure in mid-latitude systems is evident as well.
Using combinations of atmospheric data values in a higer di-
mensional transfer function appears to be advantageous over
other univariate methods.

Figure 4: This image shows a transfer function similar to
the one in Figure 3 applied to a different timestep.

5. Conclusions and Future Work

This case study applied the ideas and techniques from multi-
dimensional transfer function based volume rendering to
multivariate weather simulations. The specific goal of iden-
tifying frontal zones was addressed and proved to be useful
by meteorologists. The combination of temperature and hu-
midity as a multivariate field aided the identification of the
frontal zones.

While this work has proven useful, additional investi-
gation is warranted in several areas. The non-orthogonal
three-dimensional volumetric representations of the data,
as seen at the end of accompanying animation, have not
proven as useful to the meteorologists as the plane level
data shown in the figures and the beginning of the anima-
tion. This is an area for future research. Utilizing the 3D
non-orthogonal representations may be more applicable to
severe weather phenomena such as hurricanes. Another use-
ful feature would be a heuristic based default transfer func-
tion well suited for this type of data. This transfer function
would make visible regions which are likely to be of interest.
Our current heuristic assumes that regions of change tend to
be regions of interest. In this case we give higher opacity
to higher multi-gradient magnitudes. Better heuristics, how-
ever, exist for identifying weather fronts.

In addition to frontal analysis, the visualization techniques
presented in this case study may be useful for the evaluation
of numerical model objective analyses, the field trials used to
create these analyses, as well as creating subjective forecast
products based on objective guidance.
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While our system has the potential to handle transfer func-
tions with arbitrary dimensions, the issue of keeping the
user interface convenient and intuitive becomes a problem
for transfer functions with greater than three dimensions.
We feel that there is still a great deal of work to be done
generalizing multi-dimensional transfer functions for the vi-
sualization of numerical simulations and medical imaging.
We also believe that the visualization techniques presented
in this case study can be directly applied to other types of
simulation data as well as multi-modal medical imaging. We
intend to continue our investigation of this approach in these
application areas.
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