
Visualization is an integral part of scien-
tific computation and simulation. State-

of-the-art simulations of physical systems can generate
terabytes to petabytes of time-varying data where a sin-
gle time step can contain more than a gigabyte of data
per variable. As memory sizes continue to increase, the
size of data sets will likely increase at a comparably high

rate. The key to understanding this
data is visualizing the global and
local relationships of data elements.

Direct volume rendering is an
excellent method for examining
these properties. It lets each data
element contribute to the final
image and allows querying of the
spatial relationship of data elements
and their quantitative relationships.
Hardware-accelerated volume ren-
dering lets users achieve interactive
display rates for reasonably sized
data sets. The size of interactive data
sets is a function of the hardware’s
available texture memory and fill
rate. Current high-end hardware
implementations place an upper
bound on data-set sizes at approxi-
mately 256 Mbytes. In this article,

we present a scalable, pipelined approach for rendering
data sets too large for a single graphics card. To do so, we
take advantage of multiple hardware rendering units
and parallel software compositing. (See the “Previous
Work” sidebar on p. 54 for other approaches.)

The goals of TRex, our system for interactive volume
rendering of large data sets, are to provide near-inter-
active display rates for time-varying, terabyte-sized uni-
formly sampled data sets and provide a low-latency
platform for volume visualization in immersive envi-
ronments. We consider 5 frames per second (fps) to be
near-interactive rates for normal viewing environments
and immersive environments to have a lower bound
frame rate of 10 fps. Although this is significantly below
most virtual environment update rates, we’ve found that

the user can successfully investigate extremely large
data sets at this rate. Using TRex for virtual reality envi-
ronments requires low latency—around 50 ms per
frame or 100 ms per view update or stereo pair. To
achieve lower latency renderings, we either render
smaller portions of the volume on more graphics pipes
or subsample the volume to render fewer samples per
frame by each graphics pipe. Unstructured data sets
must be resampled to appropriately leverage the 3D tex-
ture volume rendering method.

TRex system overview
Our implementation is a hybrid parallel software and

hardware volume renderer. We designed the system to
render full-resolution time-varying data, such as the
Raleigh–Taylor fluid flow data set in Figures 1 and 2, at
nearly 5 fps on a 128-CPU, 16-pipe SGI Origin 2000 with
IR-2 graphics hardware. Because we achieve more than
5 fps for a static volume, rendering isn’t the bottleneck.
The limiting factor for time-varying data sets is the high-
performance I/O (as we describe later). For immersive
environments, we achieve 10 fps using stereo pairs,
albeit with half the sampling resolution. The primary
difference from previous parallel hardware volume ren-
dering work is the volume renderer’s interactivity on
extremely large data sets. We achieve this with a design
that uses all available hardware components: stream-
ing time-varying data sets from a carefully designed,
high-performance I/O system; rendering with graphics
pipes; and compositing the results with processors.

We found that interactively visualizing data sets is a
critical first step in the analysis process, letting users
rapidly gain a detailed understanding of their results.
Because the hardware components can work indepen-
dently, we can pipeline the parallel volume rendering
process (see Figure 3). With overlapped stages, this
pipeline lets us achieve an overall performance that close-
ly matches an individual graphics pipe’s performance.

Preprocessing
Our implementation requires an offline preprocess-

ing step in which the data is quantized from its native

0272-1716/01/$10.00 © 2001 IEEE

Large-Scale Data Visualization

52 July/August 2001

To employ direct volume

rendering, TRex uses parallel

graphics hardware,

software-based

compositing, and high-

performance I/O to provide

near-interactive display rates

for time-varying, terabyte-

sized data sets.

Joe Kniss
University of Utah

Patrick McCormick, Allen McPherson, James
Ahrens, Jamie Painter, and Alan Keahey
Los Alamos National Laboratory

Charles Hansen
University of Utah

Interactive
Texture-Based
Volume Rendering
for Large Data Sets

data type (commonly a floating point) to either 8-bit or
12-bit unsigned integer data. We then split the data into
subvolumes with sizes matching the available texture
memory on each graphics pipe. Note that most graph-
ics-hardware implementations require that texture
dimensions be a power of two. The original volume may
need to be supersampled or padded to match this
requirement. Users should perform these operations on
the original floating-point data prior to bricking to avoid
quantization errors and artifacts at subvolume inter-
faces. Boundary conditions in supersampling schemes
can cause interface artifacts.

TRex pipeline
TRex’s rendering pipeline has four stages. Each stage

is a multithreaded process capable of executing simul-
taneously with the other stages. A stage consists of two
main parts: an event manager that handles communi-
cation and a functional part that implements the thread’s
task(s). For a volume partitioned into N subvolumes,
TRex will create N readers and N renderers. Note that it
isn’t necessary for the number of compositing threads to
equal the number of subvolumes. The ideal number of
compositor threads is a function of both image size and
the number of images to be composited. A user interface
thread displays the final composited image and sends

user event messages to the other stages for supporting
immersive TRex and direct manipulation widgets.

Stage 1: Subvolume reader. The first stage of the
pipeline involves reading a time step from disk. TRex
creates a separate reader thread for each of the subvol-
umes in a time step. Provided the data resides on a well-
striped redundant array of inexpensive disks (RAID)
and direct I/O is available, it can read the subvolumes
from disk in parallel at approximately 140 Mbytes per
second. (Direct I/O avoids kernel interrupt overhead
and is a feature available on SGI systems.) Unfortu-
nately, this data rate isn’t fast enough to sustain our
desired throughput of 5 fps for 10243 time-varying data
sets, but it provides a parallel approach to I/O that will
work on most SGI systems. For large time-varying data
sets, we require a higher performance I/O design.

One method of achieving such high-performance I/O
is to build a customized file system for streaming vol-
ume data directly into system memory and then into
texture memory. On the SGI Origin 2000, it’s possible
to do this by first colocating the I/O controllers and
graphics pipes, so that they share a common physical
memory within the nonuniform memory access
(NUMA) architecture. This configuration avoids the
overhead associated with routing data through the sys-

IEEE Computer Graphics and Applications 53

1 Time-varying Raleigh–Taylor fluid instability data set
(5123).

2 Time-varying
Raleigh-Taylor
fluid instability
data set
(10243).

Preprocess
bricked data

Stage 2:
Rendering

Download to
texture memory

Stage 4:
User interface

Send
image buffers

Send final
composited

image

Read data
from RAID

Stage 1:
Readers

Stage 3:
Compositing

3 The TRex
pipeline.

tem’s interconnection network, thus minimizing data-
transfer latency. To maximize performance, the I/O
rates must match the approximate 300 Mbytes per sec-
ond texture download rate of the infinite reality pipes.
For 16 pipes operating in parallel, this is equivalent to a
sustained rate of approximately 5 Gbytes per second.
These rates require the use of a striped file system built

using 64 dual fiber channel controllers and 2,304 indi-
vidual disks. We do this by placing four fiber channel
controllers next to each pipe, with each fiber channel
controller capable of 70 Mbytes per second. This gives
us a rate of 4 × 70 Mbytes per second, equaling 280
Mbytes per second for each pipe.

Assuming that we achieve the best case performance,

Large-Scale Data Visualization

54 July/August 2001

We can group current volume rendering methods into
three major categories. The first group of methods lend
themselves to parallel software implementations. These
include ray casting, shear warp, and splatting. Ray casting1

is a special case of the ray-tracing method. Rays are cast
from an eye point through the view plane and intersected
with volume elements. Samples taken along the ray are
typically trilinearly interpolated and composited in a front-
to-back order.

Shear warp2 takes advantage of precomputed coordinate
axis-aligned slices through the volume and replaces the
more expensive trilinear interpolation with bilinear in these
slice planes. This method generates arbitrary view points by
orthographically compositing the sheared slices along a
major axis. This intermediate view produces a sheared
version of the volume that then undergoes a 2D warping
transformation in image space to generate the final image.
Shear warp is considered one of the fastest software volume
rendering methods, but it can suffer from artifacts. It also
requires three copies of the volume to remain in memory,
one copy for each major axis.

Splatting3 is a projection-based method where each voxel
is generalized into a contribution extent, typically achieved
by convolving the voxel with a gaussian, which essentially
eliminates the need for interpolated sample points. The
convolution performs the data interpolation on a per-splat
basis. This method also typically composites the splats in a
front-to-back order.

The second grouping includes methods that we can
implement on single graphics adapters. While at some level
the hardware may take advantage of parallelism, we
perform the volume rendering on a single graphics unit.
Using texture mapping hardware, we can take 2D axis-
aligned slices that take advantage of bilinear texture-
mapping hardware.4 These slices are alpha-blended to form
the final image. Two-dimensional texture methods also
suffer from the same sampling artifacts as the software
shear-warp implementation and require three copies of the
data sliced along the major axes. Three-dimensional
texture-based methods5 take advantage of trilinear
interpolation in hardware. The voxels are mapped onto
polygons aligned with the view direction using trilinear
interpolation based on 3D texture-mapping hardware.
Lamar introduced a method of polygon slice construction
based on concentric shells6 that better approximates the
ray-casting method. The VolumePro volume-rendering
board provides a hardware implementation of the shear-
warp approximation to ray casting and can achieve 30
frames per second for 2563 volumes.7 In contrast to
Lacroute’s shear-warp algorithm, VolumePro does trilinear
interpolation with supersampling, gradient estimation,

Phong lighting, and real-time classification in hardware.
The third grouping includes methods that use hardware

graphics units in parallel. Previous work in this area includes
the Minnesota batch mode parallel hardware volume-
renderer implementation by Paul Woodward.8 He
implemented this volume renderer for use on an Origin
2000. It wasn’t designed to provide interactive visualization,
rather users create key frames that the application uses to
produce animations. Volumizer, a proprietary application
programming interface from SGI for hardware volume
rendering, also supports parallel volume rendering. The
frame latency of this API, however, increases linearly as users
add more graphics pipes. Both implementations composite
in hardware. This requires each partial image to be
downloaded and composited in the user interface’s frame
buffer. Downloading multiple images to graphics hardware
can take considerable time, thus limiting these
implementations’ interactivity. Furthermore, parallel
rendering using Volumizer pipelines the compositing
sequentially along the different graphics pipes. This leads to
limited scaling with an n frame latency, where n is the
number of graphics pipes.

References
1. M. Levoy, “Display of Surfaces from Volume Data,” IEEE Comput-

er Graphics and Applications, vol. 8, no. 5, Sept. 1988, pp. 29-37.
2. P. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-

Warp Factorization of the Viewing Transform,” ACM Computer
Graphics (Siggraph 94 Proc.), ACM Press, New York, 1994,
pp. 451-458.

3. L.A. Westover, Splatting: A Parallel, Feed-Forward Volume Render-
ing Algorithm, doctoral thesis, Dept. of Computer Science, Univ.
of North Carolina at Chapel Hill, Chapel Hill, N.C., 1991.

4. B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering
and Tomographic Reconstruction Using Texture Mapping Hard-
ware,” ACM Symp. Volume Visualization, A Kaufman and W.
Krueger, eds., ACM Press, New York, 1994, pp. 91-98.

5. O. Wilson, A. Van Gelder, and J. Wilhelms, Direct Volume Rendering
via 3D Textures, tech. report UCSC-CRL-94-19, Jack Baskin School
of Eng., Univ. of California at Santa Cruz, Santa Cruz, Calif., 1994.

6. E. LaMar, B. Hamann, and K.I. Joy, “Multiresolution Techniques for
Interactive Texture-Based Volume Visualization,” Proc. Visualiza-
tion 99, ACM Press, New York, 1999, pp. 355-361.

7. H. Pfister et al., “The VolumePro Real-Time Ray-Casting System,”
ACM Computer Graphics (Siggraph 99 Proc.), ACM Press, New
York, 1999, pp. 251-260.

8. P.R. Woodward, “Interactive Scientific Visualization of Fluid Flow,”
Computer, vol. 26, no. 10, Oct. 1993, pp. 13-25.

Previous Work

we’re limited by this 280 Mbytes per
second rate of the I/O system. In
addition, we also discovered that it’s
necessary to store subvolumes in
contiguous blocks on disk to achieve
these data rates and minimize the
amount of traffic over the system
interconnect. We can do this by
using SGI’s real-time file system
(RTFS). Our initial benchmarks
make this configuration capable of
approximately 4 Gbytes per second. We’re continuing
our efforts to reach the desired 5-Gbytes-per-second
rate.

Stage 2: Rendering. The second stage of the
pipeline renders subvolumes in parallel. A separate ren-
dering thread manages each graphics pipe. These
threads are initially responsible for creating OpenGL
rendering windows. A renderer initializes multiple
image buffers for simultaneous rendering with the other
stages because the compositing and user interface stages
both rely on the image buffers. Because of the Origin
2000’s shared-memory architecture, we can locate allo-
cated memory on any of the nodes within the machine.
To improve performance by reducing the latency of
remote data transfers, we specifically place the subvol-
ume buffers used by the reader stages on the same node
as the graphics hardware and I/O controllers. Figure 4
shows a diagram of the architecture for a 32-processor
Origin 2000. The number of raw data buffers depends
on the amount of time-step buffering desired plus one
for the simultaneous reading of data and downloading
to texture memory.

Renderers receive a render message from the user
interface. This message includes information about the
current frame’s rotation, translation, scale, and sample
rate. The rendering processes set the OpenGL model-view
matrix for the frame and renders the geometry and vol-
ume data. Each renderer supports a simplistic scene
graph that orders geometric primitives and subvolumes
(if a pipe renders more than one). Our volume rendering
approach uses 3D textures with either view-aligned slic-
ing1 or an approximation to Lamar’s concentric shells
method.2 The final image’s color and alpha values are
read from the frame buffer and stored in memory. Final-
ly, the renderer sends a message to the compositors that
a new image is available, along with a pointer to the image
buffer and the subvolume’s distance from the eye point.

A texture lookup table encodes the transfer function,
which assigns color and alpha values to the scalar tex-
ture elements. The user makes changes to the transfer
function by manipulating control points in color and
alpha space, as Figure 5 illustrates. We’ve extended the
transfer function control to let the user select a bound-
ary distance function based on Kindlmann’s semiauto-
matic transfer function generation.3 The user can then

IEEE Computer Graphics and Applications 55

Memory

Hub

GraphicsNode
Detail

To router XBOW

I/O

I/O

I/O

CPUCPU

R R

R R

R R

RR

Router

Node

4 A 32-proces-
sor SGI Origin
2000 architec-
ture.

Alpha

Color
(red)

8-bit data values

2550

5 Texture lookup table. Note that the alpha band (top) has been multi-
plied by the color band (bottom) to show the resulting alpha-weighted
colors.

select the appropriate portions of this automatic trans-
fer function by manipulating control points in the alpha
band (see Figure 6). If the transfer function or sample
rate has changed since the last frame, the renderers
update and redownload the transfer function to the
graphics hardware prior to rendering a subvolume.

Stage 3: Compositing. Compositing begins once
the compositor process(es) receive a completion mes-
sage from each of the N renderers. The message includes
a pointer to the renderer’s shared-memory image buffer
and the subvolume’s distance from the eye point. A com-
positing thread composites N images across the final
image’s horizontal stripe. We determine composite
order by comparing the locations of the subvolumes and
compositing them back to front. Figure 7 shows that
when image A is composited over image B, the resulting
image resides in A’s buffer. This eliminates the need for
additional memory in the compositing stage. The first
composite thread waits for the other compositors to fin-
ish before sending a message to the user interface that
a new image is ready for display.

We decided to use software compositing over hard-
ware compositing because the compositing task is
embarrassingly parallel and there wasn’t a custom com-
positing network attached to this system. When using
the existing graphics hardware for compositing, the cost
of downloading N images is prohibitively time consum-

ing. Also, the graphics hardware is
the critical resource in this system.
By using available CPUs to compos-
ite the partial results, we can achieve
better scaling than a graphics hard-
ware approach. Employing the
available CPUs also lets us overlap
compositing with the rendering of
the next frame resulting in only a
one-frame latency rather than the
multiple frame latency imposed by
the Volumizer and Minnesota hard-
ware-based compositing systems.

Stage 4: User interface. The
user interface thread manages the
input from the user and sends mes-
sages that trigger other stages of the
pipeline. If the user changes a view-
ing parameter such as rotation,
scale, translation, or the transfer
function, the user interface sends a
request to the renderers along with
the frame’s new view parameters.
When the system receives a message
indicating that a new frame is avail-
able, the user interface downloads
the raw image data from the shared-
memory image buffer directly to the
display’s frame buffer.

In addition, the user has access to a
quality parameter that adjusts the
number of samples through the vol-
ume. The system also sets this para-

meter automatically. When the user is in an interaction
state such as a pending rotation or translation, the system
sets the sample rate lower to increase the frames per sec-
ond. Once the interaction state is complete—that is, when
the user releases the mouse button—the quality parame-
ter is set higher and the volume is rendered at a higher
sample rate allowing automatic progressive refinement.
When the window size changes, the user interface will
send a resize request to the renderers. The slave display’s
window size will be changed as well as the image buffers.

Figure 8 shows a schematic of the system. At the top,
we divided the volume into subvolumes distributed to
different renders. Each render generates an image of its
subvolume. These are labeled subvolume and image
stripe. After all subvolumes are rendered, as the middle
of Figure 8 shows, the compositor threads composite the
appropriate subimages. In the final step, each compos-
itor contributes its portion to the final image, as the bot-
tom of Figure 8 shows.

Discussion
Applications rendering transparent objects, from back

to front, generate new color values by using Equations
1 and 2:4

cout = αsource × csource + (1 – αsource) × ctarget (1)

αout = αsource + (1 – αsource) × αtarget (2)

Large-Scale Data Visualization

56 July/August 2001

Color

Resulting alpha

Boundary emphasis

8-bit data values

2550

0 1 2 3−1−2−3

Signed distance to boundary center in voxels

6 Texture lookup table with the semiautomatic generation of alpha map-
pings. The top band lets the user select data values based on their distance
from an ideal boundary detected in the volume. The middle band shows
the generated alpha mapping multiplied by the color band.

A
B

C
D

Image buffers
from renderers

Compositor
threads

Composited image
in image buffer D

D

7 Stage 3 (compositing) detail. In this example, the system composites
four image buffers from Stage 2 as D over C over B over A. It then down-
loads image buffer D to the user interface’s frame buffer in Stage 4.

where αtarget and ctarget are the alpha and color values in
the frame buffer. αsource and csource are the incoming alpha
and color values. αout and cout are the new alpha and
color values to be written to the frame buffer.

Standard hardware implementations only let us set
one function, which applies to both color and alpha
channels. Because the equations for color and alpha dif-
fer, we can’t simply apply color and alpha bending with

Equation 1. Doing so would cause errors in the accu-
mulated alpha value. Equations 3 and 4 demonstrate
what happens when alpha compositing is treated the
same as color compositing.

cout = αsource × csource + (1 – αsource) × ctarget (3)

αout = αsource × αsource + (1 – αsource) × αtarget (4)

IEEE Computer Graphics and Applications 57

(0.

(3.

(3.4(1.

+ + + +

+ + + +

+ + + +

(1.1)

(1.2)

(1.3)

(1.4)

(2.1)

(2.2)

(2.3)

(2.4)

(3.1)

(3.2)

(3.3)

(3.4)

(4.1)

(4.2)

(4.3)

(4.4)

(1.1)

(2.1)

(3.1)

(4.1)

(0.1) (0.2) (0.3) (0.4)

(1.2)

(2.2)

(3.2)

(4.2)

(1.3)

(2.3)

(3.3)

(4.3)

(1.4)

(2.4)

(3.4)

(4.4)

(0.1)

(0.2)

(0.3)

(0.4)

8 The entire
system with
renders at the
top, composi-
tors in the
middle, and the
final image at
the bottom. The
labels are sub-
volume and
image stripe.

Notice that αsource is squared and then added to the com-
plemented αsource times αtarget. This contrasts with Equa-
tion 2, and we can’t easily correct the error.

The solution is to premultiply the color values in the
texture lookup table by their corresponding alpha val-
ues. The resulting Equations 5 and 6 match Equations
1 and 2 respectively, since cαi expands to ci * αi:

cout = cαsource + (1 – αsource) × ctarget (5)

αout = αsource + (1 – αsource) × αtarget (6)

This correction is only necessary when the alpha values
are used at some later time, such as compositing. For
display on a single graphics pipe, the accumulated alpha
value isn’t important, because we only use the incom-
ing fragment’s alpha value to compute the color value—
that is, we never use the alpha value in the frame buffer
for computing color.

TRex lets us use a variable sampling rate by allowing
an arbitrary number of slices through the volume. In
this situation, it’s important to properly scale the alpha
values of incoming slices to maintain the overall look of
the volume regardless of the sample rate. The relation-
ship between the sample rate and scaled alpha values
isn’t linear. Equation 7 approximates this relationship:

(7)

where srold is the sample rate used with αold and srnew is
the new sample rate used with αnew.

It’s also important to note that this nonlinear scaling
of alpha values is only critical for alpha values near or
less than 0.2. The scaling of alpha values as they
approach 1 have a near-linear behavior. In practice, the
computation required to scale alpha values based on
Equation 7 is expensive. This, however, is compensated
for because the texture lookup tables are relatively
small, 256 or 4,096 elements, when compared to the
volume data’s size.

Using polygonal objects, such as direct manipulation
widgets and isosurfaces in conjunction with volume
data, requires that we take steps to ensure that the
geometry is composited with the volume correctly. A
scene with geometry and volume composited correctly
allows geometry to appear embedded in the volume. We
limit the type of geometric objects to those that are fully
opaque. Geometry is rendered first with depth test and
depth write. Next, the system renders the volume data
from back to front with depth test only. This lets volume
data be rendered over geometric data but not behind.
One difficulty of compositing subvolumes with geo-
metric data is handling polygons that reside in two or
more subvolumes or only partially in a subvolume. We
can solve this by clipping geometry to planes corre-
sponding to the faces of the subvolume that border other
subvolumes. This requires at most six clipping planes
for a subvolume that’s completely surrounded by other
subvolumes.

TRex takes advantage of several platform specific
optimizations. Our benchmarks on the InfiniteReality
graphics subsystem revealed that unsigned shorts were

best for frame-buffer reads and writes. The platform’s
topology is also a concern, especially in NUMA platforms
like the Origin 2000. Because two CPUs share a physical
block of memory and a common I/O subsystem, refer-
ences to nonlocal memory or nonlocal I/O devices must
traverse through one or more routing nodes of the sys-
tem’s interconnection network. Data transfer latency
can be significantly reduced by placing processes and
their memory nearest the I/O devices that they use. In
this case, the I/O device is the graphics hardware. This
configuration avoids the overhead associated with rout-
ing data through the system’s interconnection network.
We saw a significant speedup by placing the renderers
and incoming data buffers near the IR pipe that they
manage for the same reasons.

Immersive TRex
Using TRex in an immersive environment adds anoth-

er level of complexity to the rendering pipeline. First,
the system must generate a stereo pair for each new
viewpoint. This requires twice the fill rate as a monoc-
ular viewpoint. Achieving target frame rates requires
that we decrease the number of samples that each
graphics pipe must process per frame by half. One solu-
tion is to increase the number of graphics pipes, ren-
dering threads, and compositors. This requires
rebricking the data set so that smaller subvolumes are
rendered on each pipe. Reducing the overall size of the
data set via subsampling is another option if additional
graphics units aren’t available. Subsampling, however,
blurs fine details. The number of compositer threads in
either case must increase to match the lower latency of
the rendering stage.

Second, tracking devices are essential for creating an
immersive environment. Typically, a separate daemon
process communicates with the tracking device and
reports position and orientation to a shared-memory
arena. A TRex VR session will create an additional
thread for monitoring and reporting head and hand
device data to the user interface. Because multiple track-
ing devices are available, such as Polhemus Fast Track
and Ascension Flock of Birds, and interaction devices
may vary, the VR thread must map events from the cur-
rent tracking and interaction devices to a set of events
that the TRex user interface understands.

The system generates viewpoints using parallel view-
ing directions with asymmetrical, or sheared, frustums
(see Figure 9). Head orientation in semi-immersive envi-
ronments such as the Fakespace Responsive Workbench
is essentially disregarded, because we can treat eyes as
points and assume the portal to the virtual space (view
surface) is fixed in the real space. View direction for
semi-immersive environments is determined by the line
from the eye point in real space that perpendicularly
intersects the view surface plane. For fully immersive
environments, such as ones we can achieve with the
n–Visions Datavisor head-mounted display, we still treat
eyes as points but require head orientation to specify the
virtual portal. View direction for fully immersive envi-
ronments is specified by head orientation, and we
assume the eyes are looking forward.

View-aligned slicing causes artifacts when the vol-

α αnew old

old

new= − −()1 1
sr

sr

Large-Scale Data Visualization

58 July/August 2001

ume is close to the user and ren-
dered with perspective projection.
Lamar’s spherical shell slicing
reduces this problem by assuring
that the volume is rendered with dif-
ferential slices that are perpendicu-
lar to the line from the center of
projection to the volume element
being rendered. Our approach uses
an adaptive tessellation of the spher-
ical shell. Although coarse tessella-
tions can cause artifacts, fine
tessellations can cause significant
latency in the rendering. We let the
user select a tessellation that’s
appropriate for the visualization.

TRex widgets
Direct manipulation widgets5 can

improve an interactive visualization’s
quality and productivity. Widgets
also let the user have a uniform expe-
rience when using either the desktop
or an immersive environment.

We created our widget sets using the Brown Univer-
sity widget paradigm. The widgets are object-oriented,
extendable entities that maintain state similar to a dis-
crete finite automaton. They’re based on simple parts
such as spheres, bars, and sliders. We constructed com-
plex widgets from these subparts. Each subpart repre-
sents some functionality of the widget. For instance, the
bars that make up a frame widget’s boundary, when
selected, translate the whole frame; the spheres that
bracket the corners scale the frame; and the sliders
attached to the bars alter some scalar value associated
with the widget’s functionality.

To facilitate parallel rendering, the system breaks a
typical widget into N + 1 lightweight threads, where N
is the number of subvolumes in the session. A parent
thread handles events from the user interface and com-
municates with the child threads. The N child threads
render the widget and perform subvolume-specific
tasks. Each child thread is associated with a subvolume
and is clipped to the half planes corresponding to the
faces of the subvolume that border other subvolumes.
We developed three custom widgets for TRex.

The color-map widget places the transfer function in
the scene with the volume being rendered. This pro-
vides a tighter coupling between the actual data values
and their representation as a color value in the image.
The color-map widget consists of three bands: one for
color to data-value mapping, one for opacity to data-
value mapping, and one for the semiautomatic gener-
ation of opacity mappings.3 This widget also includes
sliders (see Figure 10a, next page) for manipulating the
high-quality sample rate, interactive sample rate, and
opacity scaling.

We developed a data-probe widget to let users query
the visualization for local quantitative information. We
can use this widget to point to a region of the volume
and automatically query the original data for the values
at that location. This widget is particularly useful for

studying data from physical simulations where the actu-
al value at a location is of interest. Figure 10c shows a
data set employing the data-probe widget.

The internal structure of volumetric data is often
obscured by the volume’s other portions. One method
for revealing hidden information uses clipping planes
to remove the regions that occlude. For this purpose,
we developed a widget that lets users position and ori-
ent an arbitrary clipping plane in the scene. Because
of the amorphous quality of some volume renderings,
it’s necessary to map a slice to the clipping plane with
a different transfer function to make the clipped
boundary apparent. One useful mapping is a simple
data value to gray scale and a linear alpha ramp from
low to high (see Figure 10b). This sort of mapping is
particularly useful for radiology data sets where users
are more accustomed to viewing slices rather than the
whole volume.

Conclusion and future work
Hardware volume rendering is a highly effective inter-

active visualization modality. Unfortunately, it imposes
limits on the size of volumetric data sets that we can ren-
der with adequate update rates. We’ve presented a scal-
able solution for the near-interactive visualization of
data-set time steps that are potentially an order of mag-
nitude larger than the capabilities of a modern graphics
card. Our implementation is also flexible enough to sup-
port advanced interaction tools and serves as a platform
for future volume rendering and visualization research.
We’re currently integrating the results of our research
in a production-quality application for scientists at Los
Alamos National Laboratory.

With the recent performance gains in the commodi-
ty graphics card market, we’re investigating PC clusters
as a replacement for the Origin 2000 system. Although
we’ve successfully managed to get TRex running on a
PC cluster, this task presents several significant chal-

IEEE Computer Graphics and Applications 59

View surface (fixed in space)

Look at points

Left
frustum

Right
frustum

Left
frustum

Right
frustum

Left eye
point

Right eye
point

View directions

View directions

(a) (b)

Head
orientation

Overlap region

View surfaces
(move with head)

9 Viewpoint construction for semi-immersive environments (a) and fully
immersive environments (b) for an arbitrary head orientation. Note that the
view directions are parallel and perpendicularly intersect the view surface.
The overlap region in (b) is variable on many head-mounted displays.

lenges. The limitations in both the internal PC archi-
tecture and interconnection networks will make it dif-
ficult to maintain our near-interactive rendering rates.
The I/O systems on PCs aren’t concurrent, and syncing
frames would add additional latency into the system.
There are also several areas in which we must modify
our current algorithms so that they operate efficiently
in a distributed-memory environment, such as the
compositing phase. In addition, the new functionality
available in the rasterization hardware of recent com-
modity graphics cards offer a number of shading
options at a per-pixel level. We intend to implement par-
allel, diffuse shaded volumes and explore alternative
shading methods.

Currently, TRex only supports opaque geometry,
which it must download and render on each graphics
pipe. We intend to extend TRex to render both opaque
and transparent geometry embedded within the volume
data in a parallel, load-balanced fashion.

Finally, we’re enhancing TRex’s VR capabilities with
intuitive interaction devices and new widgets. We’ll be
exploring optimizations to TRex’s pipeline, such as pre-

dictive tracking that exploit the
known interframe latency. Direct
manipulation widgets have proved to
be an indispensable tool for interac-
tive visualization and immersive
environments. We’re developing a
suite of widgets to perform various
operations on volumetric data such
as classification, segmentation, anno-
tation, editing, and multiple-channel
and vector-volume visualization. In
addition to their virtual-world repre-
sentation, widgets can have a physi-
cal representation associated with
the interaction devices employed. To
this end, we intend to develop cus-
tom interaction devices derived from
common handheld and desktop
devices specifically for this type of
visualization. We’re also considering
the addition of other visualization
modalities such as haptic feedback
and auralization. �

Acknowledgments
This work was supported in part

by grants from the US Department
of Energy ASCI Views program, the
DOE Advanced Visualization Tech-
nology Center, National Science
Foundation’s Advanced Computa-
tional Research, and NSF’s Major
Research Instrumentation. We used
the Raleigh–Taylor data set, cour-
tesy of Robert Weaver at the Los
Alamos National Laboratory. We
acknowledge the Advanced Com-
puting Laboratory of Los Alamos
National Laboratory, where we per-
formed portions of this work.

References
1. O. Wilson, A. Van Gelder, and J. Wilhelms, Direct Volume

Rendering via 3D Textures, tech. report UCSC-CRL-94-19,
Jack Baskin School of Eng., Univ. of California at Santa
Cruz, Santa Cruz, Calif., 1994.

2. E. LaMar, B. Hamann, and K.I. Joy, “Multiresolution Tech-
niques for Interactive Texture-Based Volume Visualiza-
tion,” Proc. Visualization 99, ACM Press, New York, 1999,
pp. 355-361.

3. G. Kindlmann and J.W. Durkin, “Semi-Automatic Gener-
ation of Transfer Functions for Direct Volume Rendering,”
ACM Symp. Volume Visualization, IEEE CS, Los Alamitos,
Calif., 1998, pp. 79-86.

4. T. Porter and T. Duff, “Compositing Digital Images,” ACM
Computer Graphics (Siggraph 84 Proc.), ACM Press, New
York, 1984, pp. 253-259.

5. D. Brookshire Conner et al., “Three-Dimensional Widgets,”
Proc. 1992 Symp. Interactive 3D Graphics, ACM Press, New
York, 1992, pp. 183-188.

Large-Scale Data Visualization

60 July/August 2001

(a)

(c)

Alpha

Color

130
.5090

(b)

10 TRex wid-
gets. (a) Using
the color-map
and clip wid-
gets, this visual-
ization is a
magnetic reso-
nance image of
a sheep heart
(5123) with a
cutaway show-
ing the atrium,
ventricle, and
valve. (b) Linear
ramp transfer
function used
with the clip
widget. (c)
Demonstrating
the data-probe
widget, this is a
diffusion tensor
MRI of a human
brain 5123 on
two graphics
pipes. The left
side shows
intermediate
renderings.

Joe Kniss is an MS student at the
University of Utah, working in the
Scientific Computing and Imaging
Institute. His research interests are
computer graphics, parallel hard-
ware volume rendering, immersive
environments, human–computer

interface design, and sound localization. He has a BS in
computer science from Idaho State University.

Patrick McCormick is a visual-
ization researcher at the Los Alamos
National Laboratory. His research
interests include scientific visualiza-
tion, parallel and distributed com-
puting, and computer graphics. He
has a BS and MS in computer science

from the University of New Mexico.

Allen McPherson is a visualiza-
tion researcher at Los Alamos
National Laboratory. His research
interests include hardware-acceler-
ated rendering, visualization and
rendering algorithms, and parallel
computing. He holds a BS and MS in

computer science from Southern Illinois University and the
University of New Mexico, respectively.

James Ahrens is a technical staff
member at the Los Alamos National
Laboratory. His research interests
include scientific visualization, com-
puter graphics, parallel and distrib-
uted systems, and component
architectures. He has a BS in com-

puter science from the University of Massachusetts and an
MS and PhD in computer science from the University of
Washington. He is a member of the IEEE Computer Society.

James (Jamie) Painter is a
research scientist at TurboLinux. At
the time of this work, he was the pro-
ject leader for scientific visualization
at the Los Alamos National Labora-
tory Advanced Computing Labora-
tory. His research interests include

computer graphics, scientific visualization, and cluster-
based parallel and distributed computing. He has a BS in
mathematics and an MS and PhD in computer science from
the University of Washington.

Alan Keahey is a technical staff
member with the Advanced Comput-
ing Group at the Los Alamos Nation-
al Lab. His research interests include
visual data exploration, visual navi-
gation systems, and information
visualization. He has a PhD from

Indiana University, where his research was funded by a
Graduate Assistance in Areas of National Need (GAANN)
fellowship from the US Department of Education.

Charles Hansen is an associate
professor of computer science at the
University of Utah. His research inter-
ests include large-scale scientific visu-
alization and parallel computer
graphics algorithms. He has a BS in
computer science from Memphis

State University and a PhD in computer science from the
University of Utah. He was a Bourse de Chateaubriand Post-
Doc Fellow at the French National Institute for Research in
Computer Science and Control (INRIA), Rocquencourt,
France, working with Olivier Faugeras’ group. He is a mem-
ber of IEEE Computer Society and ACM Siggraph.

Readers may contact Hansen at the Scientific Comput-
ing and Imaging Institute, School of Computing, 50 S. Cen-
tral Campus Dr., Rm. 3490, Salt Lake City, UT 84112,
email hansen@cs.utah.edu.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 61

