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Abstract. In this paper, we propose three metrics to quantify the differences
between the results of diffusion tensor magnetic resonance imaging (DT-MRI)
fiber tracking algorithms: the area between corresponding fibers of each bundle,
the Earth Mover’s Distance (EMD) between two fiber bundle volumes, andthe
current distance between two fiber bundle volumes. We also discuss an interac-
tive fiber track comparison visualization toolkit we have developed basedon the
three proposed fiber difference metrics and have tested on six widely-used fiber
tracking algorithms. To show the effectiveness and robustness of ourmetrics and
visualization toolkit, we present results on both synthetic data and high resolution
monkey brain DT-MRI data. Our toolkit can be used for testing the noise effects
on fiber tracking analysis and visualization and to quantify the difference between
any pair of DT-MRI techniques, compare single subjects within an image atlas.

1 Introduction

After the invention of Diffusion Tensor magnetic resonanceimaging (DT-MRI) [1], a
number of fiber tractography algorithms [2–7] have been proposed over the last decade.
The issues of noise, motion effects or imaging artifacts create a certainty degree of
uncertainty for fiber algorithms and may produce misleadingtracking results. However,
quantifying and effectively visualizing the accuracy and the uncertainty between results
of different fiber tracking algorithms remains a significantchallenge. For quantification,
many fiber bundle difference metrics have been proposed [8, 9], most of which use a
Euclidean distance measure based upon predefined correspondences. One problem with
the distance metrics is that it is easily disturbed by the predefined correspondences,
with most being overestimated, as shown in Section 3. In addition, most difference
metrics do not take into account the local fiber directional information and the local
fiber probability information, i.e. the fraction of fibers that pass through that voxel. This
will overweight the peripheral or tail voxels and ignore thedirectional information of
the local diffusion profile. Recently, Wassermann et al. [10] put forward a Bayesian
framework based on Gaussian Processes, which takes into account prior information
about the fiber structure. Unfortunately, this method assumes the distribution of the
fiber point position is Gaussian, which may not always to be true. In this paper we



proposed three similarity metrics: the area between corresponding fiber bundles, the
Earth Mover’s Distance between two fiber bundle volumes, andthe current distance
between two fiber bundle volume that can help better quantifydifferences between fiber
bundles and better understand uncertainty associated withfiber tracking algorithms.

Visualization of error and uncertainty is a growing area with important applica-
tions in science, engineering and medicine [11]. However, there are very few works
addressing the visualization of uncertainty or the accuracy of tensor fields and specifi-
cally of fiber tracking algorithms. A recent paper by Brecheisen et al. [12], studies how
to effectively visualize how the stopping criteria of FACT algorithm(Fiber Assignment
by Continuous Tracking), can influence the fiber tracking results. However, this study
primarily illustrates the quantification of the differenceusing a single algorithm and
does not provide methods for inter-algorithm comparisons.Furthermore, Brecheisen et.
al. use a technique in which seed points were placed manuallyby expert users. Such
manual placement can influence the outcome of the fiber tracking algorithm and some-
what time consuming. In this paper we describe an interactive uncertainty visualization
toolkit. Users can choose different fiber tracking algorithms, change the tracking crite-
ria, change how seed points are distributed. Furthermore, our toolkit provides the ability
to track uncertainties within different anatomical regions, easily observe areas of high
uncertainty and interactively explore such high uncertainty regions locally.

2 MATERIALS AND METHODS

2.1 Data

Synthetic data:The synthetic data used in this paper was simulated by Numerical Fiber
Generator (NFG) [13]. One B0 image (b = 0s.mm2) and twenty diffusion weighted
images (b = 3000s.mm2) were obtained. The image resolution is 0.1mm× 0.1mm×
0.1mm and the image matrix size is 20×20×20 voxels.

High resolution monkey brain data: The monkey brain used in this study is the
right hemisphere of a whole brain. Imaging experiments wereconducted on a Bruker
Biospec 7-T horizontal-bore system (Bruker Inc, Billerica, MA). For data acquisition,
a standard 3D diffusion-weighted spin-echo sequence was used (TR 375 ms, TE 26
ms, field of view 70×51×51mm, Matrix 233×170×170 which yielded an isotropic
resolution of 300 microns, b-value is 2,000 s/mm2).

Adding noise: To test the robustness of our toolkit, different levels of artificial Ri-
cian noise were added to the synthetic and the monkey brain diffusion weighted images.
Six signal-to-noise (SNR) ratio levels of noise are 96,48,32,24,19 and 16, which cor-
responds to about 2%, 4%, 6%, 8%, 10% and 12% measured by the noise mean and
divided by the signal mean. To guarantee the distribution ofadded noise is Rician, we
proceed as follows: take the Fourier transform of the diffusion weighted image, add
Gaussian noise in both the real and imaginary part of, take the magnitude of the Gaus-
sian noise disturbed complex image, and implement the inverse Fourier transform of
the magnitude image to obtain the noisy image. The same procedure was used for both
synthetic data and monkey brain data. One issue that needs tobe specified is that the
smoothed monkey brain data was treated as the ground truth, and different levels of
noise were added directly to it. This is because there is no ground truth available for
real brain data and the main focus of this paper is on how to quantify and visualize the
uncertainties rather than the noise issue itself.



2.2 Fiber Tracking Algorithms and Tracking Parameters

In this study, we implement six algorithms, five deterministic ones: the Streamline,
Tensorline, Tensor Deflection (Tend), Guided and Fast Marching algorithm, and one
probabilistic algorithm: Stochastic Tractography.

The Streamline algorithm starts from seed points and integrates along the the major
eigenvector direction to form the fiber tracts. The Tensorline algorithm integrate along
the following outgoing vector direction:vout = f e1 +(1− f )((1− g)vin + gD · vin),
which is the weighted sum of the major eigenvector directionof the current voxele1 and
the previous voxelvin, and the deflection termD · vin. Weinstein et al. [3] used a linear
anisotropy measure asf , and named the technique the Tensorline algorithm. Lazar et
al. [4] extended this idea to setf andg to any user defined number between 0 and 1, this
is the Tend algorithm. It is worth noting that whenf = 1, both the Tensorline algorithm
and the Tensor Deflection algorithms are exactly the same as the Streamline algorithm.
The Guided tracking algorithm integrates along the major eigenvector direction while
being guided bya priori information, which can be anatomical knowledge or fiber
tracking results from some other algorithms. The Fast Marching algorithm is based on a
fast marching level set method where a front interface propagates in directions normal to
itself with a non-negative speed function. From this speed function, three-dimensional
time of arrival maps will be generated, which will produce the connection paths among
brain regions. The Stochastic fiber tracking algorithm calculates the probabilities of
connections based on a Bayesian framework. To facilitate the comparisons, we use
the same start and end region for all of the six algorithms. Weuse linear anisotropy
(CL) rather than fractional anisotropy (FA) as the anisotropy value for tracking. The
reason for this choice is that the tensor shape with high FA, i.e disks, do not necessarily
have a clear contrast between the major and secondary eigenvalue, in which case major
eigenvector direction may easily change by 90 degrees basedprimarily on noise effects.
The step size was chosen to be 0.05 mm for the synthetic data, and 0.15 mm for the
monkey brain data, while the stopping criteria was CL=0.1 for both synthetic data and
monkey brain data. For all of the six algorithms, only fiber tracts starting from the seed
region and ending in the end region are selected for comparison.

3 Fiber Similarity Metrics

In this section we define three distance measures between pairs of fibersA andB, as
well as between fiber bundlesA = {A1,A2, . . .} andB = {B1,B2, . . .}. Each fiber is
described by a sequence of points, that is fiberA = 〈a1,a2, . . .〉. We can also represent
a fiberA by a piecewise-linear curve defined by segmentsaiai+1 between consecutive
fiber points. More conveniently, we can just denote a set of voxels that a fiber goes
through. For a fiberA, denote this set of voxels as̄A= {ā1, ā2, . . .} and for a fiber bundle
A it is denotedĀ= {ā1, ā2, . . .}. Given a fiber bundleA, for each voxel ¯ah, we can then
determine the fraction of fibers that pass through that voxel(the probability), denoted
asPāh . Additionally, we can calculate the average tangent direction of the fibers that
pass through a voxel ¯ah, denoted asTāh . These quantities will be useful in the distance
measures we define for comparing fibers and fiber bundles.

Before we introduce the new measures, we first comment on commonly used dis-
tance measures in the literature. Given two fibersA andB, let thepointwise-order dis-
tance of the common area be definedDpo(A,B) = ∑i=1‖ai −bi‖. Let Bℓ denote the



point on the piecewise-linear curve of fiberB a distanceℓ from the start by arclength,
and letℓA(a) be the distance from the start of fiberA of a pointa∈ A. Then let thecorre-
sponding arc-length distance be definedDcal(A,B) = ∑i=1‖ai −BℓA(ai)‖+∑ j=1‖b j −
AℓB(b j)‖. Let φB(a) be the closest fiber point inB to point a. Then let thecorrespond-
ing closest point distance be definedDccp(A,B) = ∑i=1‖ai − φB(ai)‖+∑ j=1‖b j −

φA(b j)‖. These measures are illustrated in Figure 1 of two fibersA andB. Although,
these distances may be easy to compute, they typically take the sum or the average
of distances between points, which are overestimates of thetrue distances, due either
to bad alignments or discretization. Furthermore, for theDccp(A,B) distance, when
φA(φB(ai)) 6= ai, then there is different correspondences from different directions, thus
making it difficult to quantify the local distance between the fibers.

Fig. 1.Different distances: (left)Dpo(A,B), (middle)Dcal(A,B), (right) Dccp(A,B).

3.1 The Area Between Corresponding Fibers or CorrespondingPoints

We propose a distance measureDArea(A,B) that measures the distance between two
fibersA andB by the area between them. LetArea(a,b,c) describe the area of the trian-
gle between pointsa, b, andc. Let ψB(ai) andψA(b j) describe the mappings to points
in fiber B andA, respectively, defined by the discrete Frèchet correspondence [14]; the
closest distance from each point to the other fiber that also preserves the ordering along
the fibers. Formally

DArea(A,B) = ∑
i=1

∑
b j ,b j+1∈ψB(ai)

Area(ai,b j,b j+1)+ ∑
j=1

∑
ai,ai+1∈ψA(b j)

Area(b j,ai,ai+1).

We can also assign a local distance measure at each pointai ∈ A as

DArea(ai,B) =
1
2
· [

1
2

Area(ai−1,ai,ψ−
B (ai))+ ∑

b j ,b j+1∈ψB(ai)

Area(ai,b j,b j+1)

+
1
2

Area(ai,ai+1,ψ+
B (ai))],

whereψ−
B (ai) (resp.ψ+

B (ai)) is the min (resp. max) index point inψB(ai). We use
multiple terms for each point and divide by two so the local distance is symmetric (from
A to B or B to A) and the sum or the average of local distances is the global distance.



3.2 The Earth Mover’s Distance

The Earth Mover’s Distance, also called Kantorovich-Wasserstein distance, can be vi-
sualized as finding the optimal way to move piles of “earth” ordirt to fill a series of
holes, minimizing the total “work” or mass times distance [15]. Based on the voxelsize
representation̄A andB̄ of fiber bundlesA andB, the Earth Mover’s Distance between
two fiber bundles is defined as

EMD(Ā,B̄) =
∑i∈Ā ∑ j∈B̄ ci j fi j

∑i∈Ā ∑ j∈B̄ fi j
=

∑i∈Ā ∑ j∈B̄ ci j fi j

∑ j∈B̄ b̄ j
(1)

whereci j is the cost to move a unit of supply fromi ∈ Ā to j ∈ B̄, and fi j is the flow
that minimize the overall cost

∑
i∈Ā

∑
j∈B̄

ci j fi j (2)

subject the following constraints:

fi j ≥ 0 i ∈ Ā, j ∈ B̄; ∑
i∈Ā

fi j = b̄ j j ∈ B̄; ∑
j∈B̄

fi j ≤ āi i ∈ Ā (3)

where ¯ai is the total supply of supplieri andb̄ j is the total capacity of consumerj. In
this case, they both are the probability values at theith voxel of fiber bundleĀ and jth
voxel of fiber bundleB̄. The cost functionci j, which can be any predefined distance
measure in any dimension, is the Euclidean distance betweenthe fiber voxels of two
fiber bundles in this paper. Therefore, the Earth Mover’s Distance between two fiber
bundles is the minimum efforts to redistribute the probability of one fiber bundle to
match the other. This measure not only takes into account theEuclidean distance but
also considers the fiber probability difference as well.

3.3 The Current Distance

The current distance was proposed by Glanués and Vaillant [16] as a measure to com-
pare a broad class of shapes (including point sets, curves, and surfaces) by how they
interact with each other. Recently, Durrleman et. al. [17] investigated medical applica-
tion in more depth and showed that the current distance is increasing with decreasing
signal-to-noise ratio of the image. The measure can be interpreted as implicitly lift-
ing each shape to a single point in a high (often infinite) dimensional Euclidean space,
specifically, a reproducing kernel Hilbert space, where thesimilarity can be measured
as the Euclidean distance. As such, fiber bundles can be interpreted as a set of curves,
and the high dimensional vectors corresponding to each curve can be summed to create
a single point representing a fiber bundle. This provides a natural distance to compare
fiber bundles. Furthermore, Joshi et al. [18] showed that we can approximate the cur-
rent distance between shapes arbitrarily well by a fine enough discretization. Thus, for
computational reasons, we approximate each fiberA by the set of voxels̄A it passes
through. Then the similarity between two fibers can be written as

κ(A,B) = ∑
i

∑
j

K(ai,b j)(Tāi ·Tb̄ j
), (4)



, whereK(a,b) is a kernel function (we use the Gaussian kernel with the bandwidth h
the same as the voxel size) and (Tāi ·Tb̄ j

) is the dot product between two tangent vectors.
Now the current distance is defined as

CD(A,B) = κ(A,A)+κ(B,B)−2κ(A,B). (5)

When using a fiber bundleA = {A1,A2, . . . ,An} instead of a single fiberAi, we can
compute the similarity between two fiber bundles as

κ(A,B) = ∑
Al∈A

∑
ai∈Al

∑
Bh∈B

∑
a j∈Ah

K(ai,b j)(Tāi ·Tb̄ j
). (6)

Because the similarity functionκ is a summation over terms, we can accumulate the
total number of fibers that pass through each voxel and take their average tangent vector
in each voxel, and then we can treat each (now weighted) voxelas a single point of the
fiber bundle. The self-similarity of a fiberκ(A,A) or of a fiber bundleκ(A,A) can be
viewed as a norm of that fiber or fiber bundle, denoting how large that shape is in the
high-dimensional vector space. Alternatively, the current distance between two fibers
(or fiber bundles) can be seen as the difference in how the fibers act on the underlying
space, measured by how they act on each other. This action is described by its local
influence in the space by the kernel functionK and in the direction it flows through the
tangent vector. Thus the current distance measures the difference in how two fibers (or
fiber bundles) flow through a given space.

4 RESULTS AND DISCUSSION

4.1 Fiber Track Difference Quantification

Figure 2 shows the tracking results of the Streamline, Fast Marching, Guided and the
Stochastic tracking algorithm on synthetic data and on the monkey brain data. Since the
Tensorline and the Tend method yield similar results to the Streamline algorithm, we
only show the Streamline algorithm result. The Stochastic tracking result is embedded
in each of the other three results as a semi-transparency isosurface. The color map
shows the local fractional anisotropy (FA) value. The startseed points are shown by the
smaller spheres while the ending region points are shown by the larger spheres.

Figure 3 shows the average closest distance (Dccp ) and average area between
corresponding fibers of noise free volume and each level of noisy volume using four
algorithm: Streamline, Tensorline, Guided and Tend algorithm, whose correspondence
between fibers or points are easily defined. For the syntheticdata, the tracking results
from each algorithms are compared with the ground truth, andfor the monkey brain
data, the tracking results of each algorithms under different noise levels are compared
with its own tracking result on the smoothed data without artificial Rician noise. One
can see that either the average distance or the average area difference increases with
the increasing noise level. The performance of these four algorithms are very similar,
except the Guided tracking algorithm yields slightly different results from the other
three methods. The fiber difference quantification using thecurrent distance and the
Earth Mover’s Distance for both synthetic and monkey brain data are shown in Figure 4.
The fiber tracks generated using all of the six tracking algorithms are compared with the



Fig. 2. The results for synthetic data (top) and monkey brain (bottom) of four tracking
algorithm, Streamline (left), Fast Marching, (middle), Guided tracking (right), Stochas-
tic tracking (embedded as isosurface), the larger sphere shows the end points, and the
smaller spheres show the starting points.

ground truth or smoothed monkey brain data. We can see that the Stochastic tracking
algorithm is very stable at different noise levels and produces the smallest difference for
both measures on both data sets, while the performance of Fast Marching Method is not
stable and tends to produce quite different results from thethe ground truth or smoothed
monkey brain data. These comparisons suggest that the Stochastic tracking algorithm
is less sensitive to noise, since the noise effects are already accounted for during fiber
tracking process. Furthermore, this suggests that the Stochastic fiber tracking algorithm
may be good at finding the major structure of the data set, evenat a very low signal to
noise ratio. The Earth Mover’s Distance and current distance can effectively capture the
level of uncertainty for most of the algorithms, and the distances tend to increase when
the noise level increase.

Although further detailed validation is required, the three metrics put forward in
this study show the potential for quantifying the difference between fibers. The area
difference is good at local uncertainty visualization and quantification, which we will
address in the next subsection, however it needs predefined correspondence. Both the
Earth Mover’s Distance and the current distance are global measures, but do not need
any correspondences. Therefore, the combination of these metrics can help to quantify
the uncertainty or accuracy both locally and globally.

4.2 DT-MRI Uncertainty Visualization Toolkit

The interactive uncertainty visualization toolkit we designed to visualize the differences
between different fiber tracking algorithms, noise levels,and fiber difference metrics
was created using the SCIRun problem solving environment (http://www.sci.utah.edu/
software.html). After choosing two DT-MRI volumes to be compared, a user can select



Fig. 3. The average distance (top) and average area (bottom) between fiber tracking
results of the noise free volume and each level of the noisy volume for synthetic data
(left) and monkey brain data (right).

fiber tracking algorithms, tracking parameters such as the stopping criteria, the inter-
polation method and the integration method, etc. The available tracking algorithms are
the six algorithms discussed previously. We note that due tocomputational costs, the
Fast Marching and Stochastic algorithms cannot be currently used in interactive mode.
The interpolation methods in the toolkit are nearest neighbor, linear, B-spline, Catmull-
Rom, and Gaussian interpolation. An Euler method, as well asforth-order Runge-Kutta
integration methods are used to generate the fiber tracks. The stopping criteria includes,
the threshold for the length of the fiber, the local anisotropy value, the local curvature,
and the number of integration steps. The user can move a widget inside the DT-MRI
volume, the position of the seed points will be linearly interpolated along the widget,
and the local area difference between two preselected volumes will be interactively vi-
sualized. Furthermore, the length of the widget, the shape of the widget and the seed
points density can also be changed interactively. Then correspondence of fibers between
any two volume is defined by whether the fibers come from the same seed points. Fig-
ure 5 illustrates the global and local visualization windows. The left hand side shows
the interactive uncertainty visualization of the synthetic data, the middle column shows
the interactive uncertainty visualization of the monkey brain data and the right column
shows the zoom in view of the monkey brain data. The fiber tracks are generated us-
ing the Streamline algorithm. The global and local difference histograms are shown
through an attached UI interface, and the local difference histogram (in red) is updated
interactively. Through this interactive UI, the user can easily compare the uncertainty or



Fig. 4. The fiber difference quantification using Earth Mover’s Distance (left) and cur-
rent distance (right) on synthetic data(top) and monkey brain data (bottom).

accuracy of the current fiber track with fiber tracks from different anatomical regions,
which helps quickly locate areas with high uncertainty.

In general, the end points of the fibers have a larger uncertainty due to the accu-
mulated tracking error. As shown in Figure 5, these areas arehighlighted and easily
located by the average area metric rather than average closesest distance metric, es-
pecially within the monkey brain data. One can also notice that the area with high
uncertainty is located to the right and towards the end of thetracking for the monkey
brain. While this area is visible in the distance difference visualization, it is more clearly
highlighted through the local area difference visualization upon closer inspection at the
right column. Taken together, a user can interactively explore, quantify, and visualize
uncertainties within DTI-MR data using the our uncertaintyvisualization toolkit.

5 CONCLUSION AND FUTURE WORK

In this paper, we put forward three metrics to quantify the difference between two fiber
bundles. The quantification results on synthetic data and the monkey brain data show
that the area between corresponding fibers can effectively capture the local or global un-
certainty. The Earth Mover’s Distance, which considers thelocal fiber probability, also
shows good quantification of the fiber difference. The current distance metric, which
considers the local fiber probability, the local fiber directional information illustrates



the power of quantifying the global uncertainty. Based on all of these metrics, we illus-
trated an interactive uncertainty visualization toolkit within the SCIRun environment
that includes six fiber tracking algorithms were implemented and associated tracking
parameter and noise level options. The location and the density of the seed points can
be changed interactively, and most importantly, the uncertainties can be visualized in-
teractively and quantitatively compared with the fiber tracks in different anatomical
regions. Thus our toolkit facilitates DT-MRI tracking algorithm comparison, the impact
of noise or other artifacts, and visual uncertainty localization.

Currently, we are working on the analysis of the fiber differences between subjects
from different age groups within a human brain atlas. In future, we will apply the met-
rics defined in this study to fiber clustering and segmentation, which may potentially
improve fiber clustering and segmentation accuracy. Fiber bundle difference quantifica-
tion can be cast as a registration problem, therefore all of the other metrics already used
in image registration, such as mutual information, may be useful for fiber bundle dif-
ference quantification. Furthermore, since the metrics we presented here are easily ex-
tended, we plan to compare q-ball and other higher order fibertracking algorithms. We
are also working with a group of neurologists to obtain anatomical axon tracks within
the monkey brain as to compare histological ground truth of the brain connections with
the tracking results of different algorithms. Finally, ourinteractive quantification and
visualization toolkit may potentially be used as a tool for surgical planning aiding the
further improvement of validation of Diffusion Tensor imaging.
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