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Abstract. In this paper, we propose three metrics to quantify the differences
between the results of diffusion tensor magnetic resonance imaging/@Yy-
fiber tracking algorithms: the area between corresponding fiberscofteandle,
the Earth Mover’s Distance (EMD) between two fiber bundle volumestlaad
current distance between two fiber bundle volumes. We also discusseaacin
tive fiber track comparison visualization toolkit we have developed basdte
three proposed fiber difference metrics and have tested on six widetyfiber
tracking algorithms. To show the effectiveness and robustness ofewics and
visualization toolkit, we present results on both synthetic data and high tiesolu
monkey brain DT-MRI data. Our toolkit can be used for testing the nofeetsf
on fiber tracking analysis and visualization and to quantify the differeatved®en
any pair of DT-MRI techniques, compare single subjects within an image atla

1 Introduction

After the invention of Diffusion Tensor magnetic resonaimaging (DT-MRI) [1], a
number of fiber tractography algorithms [2—7] have been @sed over the last decade.
The issues of noise, motion effects or imaging artifactatere certainty degree of
uncertainty for fiber algorithms and may produce misleadtiagking results. However,
quantifying and effectively visualizing the accuracy ane tincertainty between results
of different fiber tracking algorithms remains a significanallenge. For quantification,
many fiber bundle difference metrics have been proposed,[81&st of which use a
Euclidean distance measure based upon predefined cordespas. One problem with
the distance metrics is that it is easily disturbed by thalgfieed correspondences,
with most being overestimated, as shown in Section 3. Intimthgdimost difference
metrics do not take into account the local fiber directiomébimation and the local
fiber probability information, i.e. the fraction of fibersatipass through that voxel. This
will overweight the peripheral or tail voxels and ignore tligectional information of
the local diffusion profile. Recently, Wassermann et al] [d0t forward a Bayesian
framework based on Gaussian Processes, which takes indaraqgrior information
about the fiber structure. Unfortunately, this method assuthe distribution of the
fiber point position is Gaussian, which may not always to be.tin this paper we



proposed three similarity metrics: the area between cporeting fiber bundles, the
Earth Mover's Distance between two fiber bundle volumes, taedcurrent distance
between two fiber bundle volume that can help better quadiifgrences between fiber
bundles and better understand uncertainty associatedibéthtracking algorithms.

Visualization of error and uncertainty is a growing areahwinportant applica-
tions in science, engineering and medicine [11]. HoweVesrd are very few works
addressing the visualization of uncertainty or the acguodi¢ensor fields and specifi-
cally of fiber tracking algorithms. A recent paper by Bredlesi et al. [12], studies how
to effectively visualize how the stopping criteria of FACIGaerithm(Fiber Assignment
by Continuous Tracking), can influence the fiber trackingiitss However, this study
primarily illustrates the quantification of the differenasing a single algorithm and
does not provide methods for inter-algorithm comparisénsthermore, Brecheisen et.
al. use a technique in which seed points were placed maniylgxpert users. Such
manual placement can influence the outcome of the fiber trgekgorithm and some-
what time consuming. In this paper we describe an interaciincertainty visualization
toolkit. Users can choose different fiber tracking algarigh change the tracking crite-
ria, change how seed points are distributed. Furthermarepolkit provides the ability
to track uncertainties within different anatomical regpnasily observe areas of high
uncertainty and interactively explore such high uncetyaiegions locally.

2 MATERIALS AND METHODS

2.1 Data

Synthetic data: The synthetic data used in this paper was simulated by Neaiétiber
Generator (NFG) [13]. One B0 imagé £ 0s.mn?¥) and twenty diffusion weighted
images b = 3000.mn¥) were obtained. The image resolution id@m x 0.1mm x
0.1Immand the image matrix size is 2020 x 20 voxels.

High resolution monkey brain data: The monkey brain used in this study is the
right hemisphere of a whole brain. Imaging experiments werelucted on a Bruker
Biospec 7-T horizontal-bore system (Bruker Inc, Billerit#A). For data acquisition,
a standard 3D diffusion-weighted spin-echo sequence wed (iR 375 ms, TE 26
ms, field of view 70x 51 x 51mm, Matrix 233x 170x 170 which yielded an isotropic
resolution of 300 microns, b-value is 2,000 s/Am

Adding noise: To test the robustness of our toolkit, different levels difiaial Ri-
cian noise were added to the synthetic and the monkey biffliisidin weighted images.
Six signal-to-noise (SNR) ratio levels of noise are 96,283,19 and 16, which cor-
responds to about 2%, 4%, 6%, 8%, 10% and 12% measured by if®mean and
divided by the signal mean. To guarantee the distributioadafed noise is Rician, we
proceed as follows: take the Fourier transform of the diffmsveighted image, add
Gaussian noise in both the real and imaginary part of, ta&kenfgnitude of the Gaus-
sian noise disturbed complex image, and implement the sevEourier transform of
the magnitude image to obtain the noisy image. The same guoesvas used for both
synthetic data and monkey brain data. One issue that nedmsdpecified is that the
smoothed monkey brain data was treated as the ground tndhdifferent levels of
noise were added directly to it. This is because there is nargt truth available for
real brain data and the main focus of this paper is on how tatifyand visualize the
uncertainties rather than the noise issue itself.



2.2 Fiber Tracking Algorithms and Tracking Parameters

In this study, we implement six algorithms, five determiiigines: the Streamline,
Tensorline, Tensor Deflection (Tend), Guided and Fast Magchlgorithm, and one
probabilistic algorithm: Stochastic Tractography.

The Streamline algorithm starts from seed points and iategralong the the major
eigenvector direction to form the fiber tracts. The Tenserklgorithm integrate along
the following outgoing vector directiongt = fey + (1 — f)((1—9)vjy +9D - Vip),
which is the weighted sum of the major eigenvector direatitthe current voxe¢; and
the previous voxe¥;,,, and the deflection terd - v;,,. Weinstein et al. [3] used a linear
anisotropy measure & and named the technique the Tensorline algorithm. Lazar et
al. [4] extended this idea to sétandg to any user defined number between 0 and 1, this
is the Tend algorithm. It is worth noting that whén= 1, both the Tensorline algorithm
and the Tensor Deflection algorithms are exactly the samteeaStteamline algorithm.
The Guided tracking algorithm integrates along the majgemiector direction while
being guided bya priori information, which can be anatomical knowledge or fiber
tracking results from some other algorithms. The Fast Magcalgorithm is based on a
fast marching level set method where a front interface pyafes in directions normal to
itself with a non-negative speed function. From this sperattion, three-dimensional
time of arrival maps will be generated, which will produce ttonnection paths among
brain regions. The Stochastic fiber tracking algorithm @lalies the probabilities of
connections based on a Bayesian framework. To facilitatecttimparisons, we use
the same start and end region for all of the six algorithms.ud linear anisotropy
(CL) rather than fractional anisotropy (FA) as the anigoyroalue for tracking. The
reason for this choice is that the tensor shape with high BAJisks, do not necessarily
have a clear contrast between the major and secondary algenin which case major
eigenvector direction may easily change by 90 degrees lmedrily on noise effects.
The step size was chosen to be 0.05 mm for the synthetic dede).a5 mm for the
monkey brain data, while the stopping criteria was CL=0rlbfath synthetic data and
monkey brain data. For all of the six algorithms, only fibects starting from the seed
region and ending in the end region are selected for congraris

3 Fiber Similarity Metrics

In this section we define three distance measures betweengidibersA andB, as
well as between fiber bundle$ = {A1,As,...} andB = {B1,By,...}. Each fiber is
described by a sequence of points, that is fiber (aj,ay,...). We can also represent
a fiberA by a piecewise-linear curve defined by segmexes, 1 between consecutive
fiber points. More conveniently, we can just denote a set atlothat a fiber goes
through. For a fibeA, denote this set of voxels &s= {a;,a, ...} and for a fiber bundle
Aitis denotedA = {a;,a,...}. Given a fiber bundlel, for each voxehy,, we can then
determine the fraction of fibers that pass through that v{tkel probability), denoted
asP5,. Additionally, we can calculate the average tangent diacdf the fibers that
pass through a voxe,, denoted aJg,. These quantities will be useful in the distance
measures we define for comparing fibers and fiber bundles.

Before we introduce the new measures, we first comment on comyrnased dis-
tance measures in the literature. Given two fibkendB, let the pointwise-order dis-
tance of the common area be defin@ho(A,B) = Fi_1 ||a —bil|. Let B, denote the



point on the piecewise-linear curve of fibBra distance from the start by arclength,
and let/s(a) be the distance from the start of fibepf a pointa € A. Then let thecorre-
sponding arc-length distance be defined 4 (A,B) = ¥i_1[|a — By,(a)ll + 3 j=1lIbj —
Avg(byll- Let gs(a) be the closest fiber point iB to pointa. Then let thecorrespond-
ing closest point distance be definedDccp (A B) = Yi1llai — @s(@)|| + ¥ j-1 /b —
@n(bj)||. These measures are illustrated in Figure 1 of two fideandB. Although,
these distances may be easy to compute, they typically teksum or the average
of distances between points, which are overestimates dftleedistances, due either
to bad alignments or discretization. Furthermore, for Egp(A,B) distance, when
on(@s(a)) # &, then there is different correspondences from differergations, thus
making it difficult to quantify the local distance betweee fibers.

Fiber A

Fiber A Fiber A

Fiber B Fiber B Fiber B

Fig. 1. Different distances: (IeftPpo (A, B), (middle) D4 (A, B), (right) Decp (A, B).

3.1 The Area Between Corresponding Fibers or Correspondingoints

We propose a distance measilg, (A B) that measures the distance between two
fibersA andB by the area between them. LAtea(a, b, ¢) describe the area of the trian-
gle between pointa, b, andc. Let yg(a) andya(b;) describe the mappings to points
in fiber B andA, respectively, defined by the discrete&Ehet correspondence [14]; the
closest distance from each point to the other fiber that alssgoves the ordering along
the fibers. Formally

Darea(A:B) = Z > Area(abba)+y Y Area(byaa)
i=1bj,bj1€¥p(a) Sla,a,1€Wa(b))

We can also assign a local distance measure at eachgpai as
1.1 _
Darea(@;B) = 5 [éArea(ai_l,ai, Wg (&) + z Area(a;, bj, bj 1)
bj.bj1€WB(a)

1
+5Area(a; a1, Yg (&),
where Y (&) (resp. g (a)) is the min (resp. max) index point ig(a). We use
multiple terms for each point and divide by two so the locatalice is symmetric (from
AtoBorBtoA) and the sum or the average of local distances is the globirdie.



3.2 The Earth Mover's Distance

The Earth Mover’s Distance, also called Kantorovich-Westegn distance, can be vi-
sualized as finding the optimal way to move piles of “earth’tot to fill a series of
holes, minimizing the total “work” or mass times distancé&][Based on the voxelsize
representatiotl andB of fiber bundlesA and3B, the Earth Mover’s Distance between
two fiber bundles is defined as

_ Yiea2jesGifii _ YieaZjesGifiy

EMD(A, B)
QicA 2jch fij Zjeﬁbj

1)

whereg;; is the cost to move a unit of supply froine Ato IKS B, and fjj is the flow
that minimize the overall cost
> > cifi ()

icAjeB
subject the following constraints:

fijZOieff,jeZ?; Zfij:kﬁjef%; Zfijga_iieff (3)
iceA jeB

wherea; is the total supply of supplidgrandb; is the total capacity of consumgrIn
this case, they both are the probability values atitih@oxel of fiber bundled and jth
voxel of fiber bundleB. The cost functiorz;j, which can be any predefined distance
measure in any dimension, is the Euclidean distance bettteefiber voxels of two
fiber bundles in this paper. Therefore, the Earth Mover'sddise between two fiber
bundles is the minimum efforts to redistribute the proligbibf one fiber bundle to
match the other. This measure not only takes into accouriEtisidean distance but
also considers the fiber probability difference as well.

3.3 The Current Distance

The current distance was proposed by GeEmand Vaillant [16] as a measure to com-
pare a broad class of shapes (including point sets, curméssafaces) by how they
interact with each other. Recently, Durrleman et. al. [hvEstigated medical applica-
tion in more depth and showed that the current distance re&sing with decreasing
signal-to-noise ratio of the image. The measure can bepirgtd as implicitly lift-
ing each shape to a single point in a high (often infinite) disienal Euclidean space,
specifically, a reproducing kernel Hilbert space, wheresihglarity can be measured
as the Euclidean distance. As such, fiber bundles can bgiated as a set of curves,
and the high dimensional vectors corresponding to eacleaan be summed to create
a single point representing a fiber bundle. This providestarabdistance to compare
fiber bundles. Furthermore, Joshi et al. [18] showed thatameapproximate the cur-
rent distance between shapes arbitrarily well by a fine eimaiigrretization. Thus, for
computational reasons, we approximate each #oby the set of voxel#\ it passes
through. Then the similarity between two fibers can be write

KAB) =Y S K(ab)(Ts Ty (4)
T



, whereK (a, b) is a kernel function (we use the Gaussian kernel with the watit h
the same as the voxel size) affg (ng ) is the dot product between two tangent vectors.

Now the current distance is defined as
CD(A,B) = k(A/A) +k(B,B) — 2k (A,B). (5)

When using a fiber bundld = {A1,Az,...,Aq} instead of a single fibef, we can
compute the similarity between two fiber bundles as

A,B) = K(a,bi)(Ts - To ). 6
AB)= 5 5 35 Kb (6)

Because the similarity functior is a summation over terms, we can accumulate the
total number of fibers that pass through each voxel and tateaberage tangent vector
in each voxel, and then we can treat each (now weighted) \asxalsingle point of the
fiber bundle. The self-similarity of a fiber(A, A) or of a fiber bundle<(A, A) can be
viewed as a norm of that fiber or fiber bundle, denoting howdadhat shape is in the
high-dimensional vector space. Alternatively, the curidistance between two fibers
(or fiber bundles) can be seen as the difference in how thesfdzron the underlying
space, measured by how they act on each other. This actiassibed by its local
influence in the space by the kernel functkdrand in the direction it flows through the
tangent vector. Thus the current distance measures ttegatiffe in how two fibers (or
fiber bundles) flow through a given space.

4 RESULTS AND DISCUSSION

4.1 Fiber Track Difference Quantification

Figure 2 shows the tracking results of the Streamline, Fastthing, Guided and the
Stochastic tracking algorithm on synthetic data and on thekay brain data. Since the
Tensorline and the Tend method yield similar results to ttiea®line algorithm, we
only show the Streamline algorithm result. The Stochasgicking result is embedded
in each of the other three results as a semi-transparensyrfage. The color map
shows the local fractional anisotropy (FA) value. The stadd points are shown by the
smaller spheres while the ending region points are showhéiarger spheres.

Figure 3 shows the average closest distanBedp ) and average area between
corresponding fibers of noise free volume and each level ynmlume using four
algorithm: Streamline, Tensorline, Guided and Tend atgorj whose correspondence
between fibers or points are easily defined. For the syntdati, the tracking results
from each algorithms are compared with the ground truth,fandhe monkey brain
data, the tracking results of each algorithms under diffen@ise levels are compared
with its own tracking result on the smoothed data withoufiei@l Rician noise. One
can see that either the average distance or the averageifieeande increases with
the increasing noise level. The performance of these fgor#éhms are very similar,
except the Guided tracking algorithm yields slightly diéfet results from the other
three methods. The fiber difference quantification usingctireent distance and the
Earth Mover’s Distance for both synthetic and monkey braitacére shown in Figure 4.
The fiber tracks generated using all of the six tracking atlgors are compared with the



Fig. 2. The results for synthetic data (top) and monkey brain (Inottof four tracking
algorithm, Streamline (left), Fast Marching, (middle),i@Gad tracking (right), Stochas-
tic tracking (embedded as isosurface), the larger sphewssthe end points, and the
smaller spheres show the starting points.

ground truth or smoothed monkey brain data. We can see ta&ttithastic tracking
algorithm is very stable at different noise levels and poedithe smallest difference for
both measures on both data sets, while the performance offaashing Method is not
stable and tends to produce quite different results frontitéground truth or smoothed
monkey brain data. These comparisons suggest that theaStoxlracking algorithm
is less sensitive to noise, since the noise effects aredgir@ecounted for during fiber
tracking process. Furthermore, this suggests that thé&stic fiber tracking algorithm
may be good at finding the major structure of the data set, avarvery low signal to
noise ratio. The Earth Mover’s Distance and current distaran effectively capture the
level of uncertainty for most of the algorithms, and thealistes tend to increase when
the noise level increase.

Although further detailed validation is required, the #hmaetrics put forward in
this study show the potential for quantifying the differertaetween fibers. The area
difference is good at local uncertainty visualization amuification, which we will
address in the next subsection, however it needs predeforeespondence. Both the
Earth Mover’s Distance and the current distance are glolealsures, but do not need
any correspondences. Therefore, the combination of thesgcsican help to quantify
the uncertainty or accuracy both locally and globally.

4.2 DT-MRI Uncertainty Visualization Toolkit

The interactive uncertainty visualization toolkit we dgséd to visualize the differences
between different fiber tracking algorithms, noise levelsd fiber difference metrics
was created using the SCIRun problem solving environmetg: (fwww.sci.utah.edu/
software.html). After choosing two DT-MRI volumes to be quewned, a user can select
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Fig. 3. The average distance (top) and average area (bottom) beffibes tracking
results of the noise free volume and each level of the noigynve for synthetic data
(left) and monkey brain data (right).

fiber tracking algorithms, tracking parameters such as tihygping criteria, the inter-
polation method and the integration method, etc. The availmacking algorithms are
the six algorithms discussed previously. We note that dusotoputational costs, the
Fast Marching and Stochastic algorithms cannot be cuyrestd in interactive mode.
The interpolation methods in the toolkit are nearest neaghmear, B-spline, Catmull-
Rom, and Gaussian interpolation. An Euler method, as wétiréis-order Runge-Kutta
integration methods are used to generate the fiber tracksstobping criteria includes,
the threshold for the length of the fiber, the local anisotreglue, the local curvature,
and the number of integration steps. The user can move a wiilgide the DT-MRI
volume, the position of the seed points will be linearly iptdated along the widget,
and the local area difference between two preselected eslwmill be interactively vi-
sualized. Furthermore, the length of the widget, the shdjpleowidget and the seed
points density can also be changed interactively. Therespondence of fibers between
any two volume is defined by whether the fibers come from theesserd points. Fig-
ure 5 illustrates the global and local visualization windowhe left hand side shows
the interactive uncertainty visualization of the syntbefata, the middle column shows
the interactive uncertainty visualization of the monkegibrdata and the right column
shows the zoom in view of the monkey brain data. The fiber gak generated us-
ing the Streamline algorithm. The global and local diffe@mistograms are shown
through an attached Ul interface, and the local differensmgram (in red) is updated
interactively. Through this interactive Ul, the user cagsilyacompare the uncertainty or
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Fig. 4. The fiber difference quantification using Earth Mover's Bigte (left) and cur-
rent distance (right) on synthetic data(top) and monkeinltata (bottom).

accuracy of the current fiber track with fiber tracks frometiént anatomical regions,
which helps quickly locate areas with high uncertainty.

In general, the end points of the fibers have a larger unogytdue to the accu-
mulated tracking error. As shown in Figure 5, these areasigidighted and easily
located by the average area metric rather than averagesekisgistance metric, es-
pecially within the monkey brain data. One can also notia the area with high
uncertainty is located to the right and towards the end otrtheking for the monkey
brain. While this area is visible in the distance differeniseiglization, it is more clearly
highlighted through the local area difference visualimatiipon closer inspection at the
right column. Taken together, a user can interactively @eplquantify, and visualize
uncertainties within DTI-MR data using the our uncertawisualization toolkit.

5 CONCLUSION AND FUTURE WORK

In this paper, we put forward three metrics to quantify tHéedeénce between two fiber
bundles. The quantification results on synthetic data aadrtbnkey brain data show
that the area between corresponding fibers can effectiagiyce the local or global un-
certainty. The Earth Mover’s Distance, which considersltical fiber probability, also
shows good quantification of the fiber difference. The curdéstance metric, which
considers the local fiber probability, the local fiber direcal information illustrates



the power of quantifying the global uncertainty. Based dofahese metrics, we illus-

trated an interactive uncertainty visualization toolkithin the SCIRun environment
that includes six fiber tracking algorithms were implemdra@d associated tracking
parameter and noise level options. The location and theitgesfehe seed points can
be changed interactively, and most importantly, the uagaies can be visualized in-
teractively and quantitatively compared with the fiber ksam different anatomical

regions. Thus our toolkit facilitates DT-MRI tracking akifbm comparison, the impact
of noise or other artifacts, and visual uncertainty locglan.

Currently, we are working on the analysis of the fiber differes between subjects
from different age groups within a human brain atlas. Inrfefuwe will apply the met-
rics defined in this study to fiber clustering and segmentatichich may potentially
improve fiber clustering and segmentation accuracy. Fibedle difference quantifica-
tion can be cast as a registration problem, therefore aflebther metrics already used
in image registration, such as mutual information, may kefulgor fiber bundle dif-
ference quantification. Furthermore, since the metrics ngegnted here are easily ex-
tended, we plan to compare g-ball and other higher order fiilaeking algorithms. We
are also working with a group of neurologists to obtain amatal axon tracks within
the monkey brain as to compare histological ground truthefarain connections with
the tracking results of different algorithms. Finally, doteractive quantification and
visualization toolkit may potentially be used as a tool forgical planning aiding the
further improvement of validation of Diffusion Tensor imag.
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