
Interactive Visualization of Volumetric White Matter Connectivity in

DT-MRI Using a Parallel-Hardware Hamilton-Jacobi Solver

Won-Ki Jeong, Student Member, IEEE, P. Thomas Fletcher, Ran Tao, and Ross T. Whitaker Member, IEEE

Abstract—In this paper we present a method to compute and visualize volumetric white matter connectivity in diffusion tensor
magnetic resonance imaging (DT-MRI) using a Hamilton-Jacobi (H-J) solver on the GPU (Graphics Processing Unit). Paths through
the volume are assigned costs that are lower if they are consistent with the preferred diffusion directions. The proposed method finds
a set of voxels in the DTI volume that contain paths between two regions whose costs are within a threshold of the optimal path. The
result is a volumetric optimal path analysis, which is driven by clinical and scientific questions relating to the connectivity between
various known anatomical regions of the brain. To solve the minimal path problem quickly, we introduce a novel numerical algorithm
for solving H-J equations, which we call the Fast Iterative Method (FIM). This algorithm is well-adapted to parallel architectures, and
we present a GPU-based implementation, which runs roughly 50-100 times faster than traditional CPU-based solvers for anisotropic
H-J equations. The proposed system allows users to freely change the endpoints of interesting pathways and to visualize the optimal
volumetric path between them at an interactive rate. We demonstrate the proposed method on some synthetic and real DT-MRI
datasets and compare the performance with existing methods.

Index Terms—Diffusion tensor visualization, graphics hardware, interactivity.

1 INTRODUCTION

Diffusion tensor magnetic resonance imaging (DT-MRI) is a power-
ful technique for imaging in vivo properties of white matter tissue in
the human brain. Visualizations of the white matter pathways and of
possible abnormalities along these pathways are an important tool for
clinicians studying neuropsychiatric disorders. The physical princi-
ple behind diffusion imaging is that the motion of water is impeded
in directions that are not parallel to the axons. In DT-MRI a diffu-
sion tensor at each voxel gives an estimated model of the pattern of
water diffusion aggregated over a point-spread function of the mea-
surements. The neural fiber orientation is typically inferred from the
principal eigenvector of the diffusion tensor, which is the direction of
highest probability of water motion.

Several methods based on the Hamilton-Jacobi (H-J) equation have
recently been introduced as a means for describing connectivity in
white matter. A considerable amount of research has focused on de-
veloping numerically efficient algorithms to solve the H-J equation.
Most solvers are based on either iterative schemes using pre-defined
update orders or one-pass schemes using sorted data structures. How-
ever, solving the H-J equation on highly anisotropic speed volumes,
such as those found in DT-MRI, usually requires at least a few minutes
even on the fastest processor, making the application less interactive.
Therefore, there remains a need for fast solutions to the H-J equation
in a variety of visualization-related applications..

GPUs have evolved into a massively parallelized multiprocessor
machine over the last few years. The current GPUs have up to 128
microprocessors running in a SIMD fashion, producing throughput of
several hundreds GFLOPS (Giga Floating Point Operations Per Sec-
ond). The GPU supports high precision computation up to 32bit float-
ing point (64bit is on its way), has extremely wide memory band-
width, and is fully programmable. In addition, the new generation
GPUs based on DirectX 10 support much more flexible flow con-
trols and memory management, and provide rich instruction sets and
high level languages for GPGPU (General Purpose computation on the

• Won-Ki Jeong, P. Thomas Fletcher, Ran Tao, and Ross T. Whitaker are

with the Scientific Computing and Imaging Institute, School of Computing,

University of Utah, 72 S. Central Camput Dr., Salt Lake City, UT 84112.

E-mail: {wkjeong, rantao, whitaker}@cs.utah.edu, fletcher@sci.utah.edu.

Manuscript received 31 March 2007; accepted 1 August 2007; posted online

27 October 2007.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

GPU) that help to reduce the overhead of executing graphics APIs and
provide more flexible programming models. Due to their increasing
computational power and programming flexibility, current GPUs are
becoming a very powerful parallel computing platform for GPGPU
problems [17].

In this paper we introduce an interactive system to compute and vi-
sualize volumetric white matter connectivity in DT-MRI volumes. Our
method is based on the framework for volumetric quantification of DTI
connectivity previously presented in [6]. While that work focused on
quantification of connectivity and the computations were done offline
on the CPU, this paper extends the visualization aspect of the method
and focuses on an efficient, interactive computational algorithm on the
GPU. Existing CPU-based methods to extract DT-MRI white matter
connectivity rely on the pre-computed distance volume because dis-
tance computation on the anisotropic speed volume is a highly time-
consuming process, and therefore, up to our knowledge, there are no
existing systems that can extract the pathways in the DT-MRI volumes
at an interactive rate. The proposed system uses the graphics proces-
sors to solve the H-J equation quickly, roughly 50-100 times faster
than traditional CPU-based solvers, allowing users to freely change
the endpoints of interesting pathways and to visualize the volumetric
connectivity between them at an interactive rate. The main contribu-
tion of this paper is introducing a novel numerical algorithm to solve
the H-J equation that can be well-adapted to various parallel archi-
tectures, an improved Godunov Hamiltonian computation, and a GPU
implementation of the proposed H-J solver.

2 RELATED WORK

2.1 DT-MRI connectivity

Much of the work in DT-MRI connectivity focuses on fiber tractog-
raphy [3], in which streamlines are computed, by forward integration
from a seed point, of the field of vectors defined by the principal eigen-
vector of the tensor at each point (interpolated between voxels), and
where the twofold ambiguity of eigenvector directions is resolved by
the continuity of paths. As a clinical tool for analyzing white matter
pathways, tractography suffers from several drawbacks. First, imaging
noise can cause fiber tracts to stray due to accumulating errors in the
integration. The second issue is partial voluming. The finite size of
a voxel measurement at fiber crossings (combined with sensor noise)
can cause the direction of the major eigenvector to be ambiguous, fur-
ther misleading the streamlines. This problem is aggravated by the fact
that streamlines are often computed, displayed, and analyzed at sub-
voxel resolution—suggesting a level of precision that is not warranted

Fig. 1. System Overview. From left to right: a) Input DT-MRI volume; b) Seed points (marked as red circles); c) Cost volume (blue to red : low to
high); d) Volumetric path along genu (blue).

by the data. Finally, region-to-region analysis with conventional trac-
tography is challenging, because there is no way to steer tracts from
a seed point toward a particular target region. To address these prob-
lems, several researchers propose tractography algorithms that rely on
a stochastic integration, in which flow vector are chosen from a distri-
bution around the principal eigenvector. These stochastic techniques
can be combined with Monte-Carlo simulations, which may include
tens of thousands of paths from a single seed, of which only a small
fraction will typically reach the target [13, 4, 19, 14].

Several H-J methods for white matter connectivity have been pro-
posed to overcome some of the difficulties arising in tractography.
These methods compute the cost of the shortest path from a seed re-
gion to every pixel in the volume (usually a white matter mask). This
cost function consists of an integral that depends on path position and
orientation, and typically penalizes paths that do not agree with the
tensors. These H-J formulations result in first-order partial differen-
tial equations (PDEs) which model evolving fronts whose speeds are
determined by information from the diffusion tensor. These methods
are inherently more robust to noise in the diffusion weighted measure-
ments than standard tractography. Parker et al. [18] evolve a front
with speed related to the inner product of the front normal with the
principal eigenvector of the tensor. O’Donnell et al. [16] propose us-
ing the diffusion tensor as a Riemannian metric in the image domain
and compute a front representing arrival time of geodesics beginning
at a single seed point. Connectivity to that point is defined as a ratio
of Euclidean path length to Riemannian distance. Jackowski et al. [8]
use a speed derived as a function of the diffusivity magnitude in the
front normal direction. They solve this Hamiltonian equation using a
Lax-Friedrichs scheme, also beginning with an initial seed point. Pi-
chon et al. [20] define a directionally dependent local cost function
that extends the H-J framework to high-angular diffusion data. In all
of these works, the end result is either a dense field of connectivities to
regions or a set of optimal paths emanating from a seed region, which
are determined by integrating the characteristics of the PDEs.

2.2 Hamilton-Jacobi equation solver

A number of different numerical strategies have been proposed to ef-
ficiently solve the H-J equation. These methods can be classified into
two groups. One is a class of iterative methods based on a fixed-point
update using Jacobi or Gauss-Seidel schemes. An early work by Rouy
et al. [23] solves the Eikonal equation, a special case of H-J equation,
by updating the solutions of the grid using a pre-defined updating or-
der and Godunov upwind Hamiltonian until they converge. Zhao [30]
proposed the Fast Sweeping method, which uses a Gauss-Seidel up-
dating order for fast convergence. Tsai et al. [29] employed the Fast
Sweeping method and a Godunov upwind discretization of the class of
convex Hamiltonians to solve anisotropic H-J equations. The proposed
Godunov Hamiltonian uses only 1-neighborhood pixels, so it maps
well on iterative schemes. However, there are many cases to check for
the correct solution of the Hamiltonian. Kao et al. [11] introduced a
new interpretation of Hamiltonians based on the Legendre transforma-
tion, and in a subsequent paper [10] they employed the Lax-Friedrichs

Hamiltonian for arbitrary static H-J equations. The proposed method
is simple to implement and can be used widely on both convex and
non-convex H-J equations, but it requires many more iterations than
the Godunov Hamiltonian and the solution shows excessive diffusion
due to the nature of the scheme.

Another class of H-J solvers is based on adaptive updating schemes
and sorting data structures. An earlier work by Qin et al. [22] and
later Sethian et al. [24, 25, 26] used a Dijkstra-type shortest path al-
gorithm to solve H-J equations, which is generally referred to as the
Fast Marching method. The main idea behind this method is that solu-
tions for a convex Hamiltonian depend only on the upwind neighbors
along the characteristics, so the causality relationship can be deter-
mined uniquely and the correct solutions can be computed by only a
single pass update. The complexity of the Fast Marching method is
O(NlogN), which is worst-case optimal, and the running time is not
much affected by the complexity of the speed. However, for a class
of general H-J equations [26], tracing the characteristics can cause ex-
pensive searching among a wider range of neighborhoods than solving
equations using an iterative numerical method. In addition, the method
uses a global sorting data structure, e.g., a heap, and therefore the par-
allelization is not straightforward.

Even though there has been much research effort on general pur-
pose computing using the GPU, so far no one has developed a parallel
algorithm for solving general H-J equations on the GPU. The closest
work has focused on the distance or Voronoi diagrams computations
on the GPU, which is equivalent to solving the Eikonal equation with
a constant speed, a special case of the H-J equation. Hoff et al. [7] first
used OpenGL API and hardware rasterization in the fixed graphics
pipeline to compute approximated Voronoi diagrams. Sigg et al. [27]
employed a scan conversion algorithm and used fragment programs to
compute the distance to triangular meshes within narrow bands around
the mesh. Sud et al. [28] proposed a method to reduce unnecessary
distance computations by using culling and clamping algorithms. The
distance transform approaches shown above are all based on the as-
sumption of isotropic constant speed over the domain, so they are
not applicable to solving the H-J equation based on anisotropic ten-
sor speed functions.

3 REGION-TO-REGION CONNECTIVITY

Our formulation of region-to-region connectivity is based on the prin-
ciple of minimal cost paths. Using information from the entire dif-
fusion tensor, we construct a local cost function based on the current
position and directionality of a path. This leads to a first-order non-
linear PDE that computes the minimal cost from a starting region to
each point in the image. Unlike previous front-propagation methods
for DT-MRI, we then solve for minimal cost from a second target re-
gion. The two solutions are then combined, giving the minimal cost
through each voxel of paths restricted to travel between the two tar-
get regions. The minimal cost function can then be used to threshold
the data for visualization of only the pertinent white matter pathways.
Also, the cost function serves as a measure of the strength, or integrity,
of the connection. Visualizations of this cost function can be used to

locate abnormalities, or weaknesses, in the white matter pathways in
individuals with neuropsychiatric disorders.

An overview of our interactive region-to-region connectivity visu-
alization system is shown in Figure 1. First, a volume rendering of
the fractional anisotropy (FA), which is a measure of the anisotropy or
elongation of the tensors, is displayed. Next, two starting seed points
are chosen on 2D orthogonal slices of the FA map as the endpoints
of the desired white matter pathway. Next, the cost function is com-
puted using the GPU H-J solver as described in this paper. The cost
function is volume rendered, displaying the areas of high connectivity
between the two regions. Finally, the current pathway can be rendered
by thresholding the cost function.

Given a path c : [a,b]→ Ω, where Ω is a compact image domain,
we define the total cost of c as

E(c) =
∫ b

a
ψ(c(t),T (t))dt, (1)

where T (t) = c′(t)/‖c′(t)‖ is the unit tangent vector of c. The total

cost is defined as the integral of a local cost function, ψ : Ω×S1→R,
where ψ(x,v) gives the cost of moving in the unit direction v ∈ S1

from the point x ∈ Ω. We require that the local cost be symmetric,
ψ(x,v) = ψ(x,−v), which is generally consistent with the model of
diffusion through passive media.

This metric in (1) allows for a wide range of cost functions ψ that
incorporate tangents. Pichon et al. [20] describe the properties of
this metric, the choices of ψ for high-angular diffusion data, and the
relationship between this cost function and the corresponding speed
that controls the motion of the wavefront in the H-J formulation. In
this work we use a quadratic (bilinear) local cost function, with the
understanding that all of the results in this paper generalize to high-
angular data using the methods described in [20]. Thus we have

ψ(x,v) = vT M(x)v, (2)

where M(x) is a symmetric, positive-definite matrix defined at each
point x ∈Ω.

The relationship between the measured diffusion tensor field, D,
and the metric for the path cost, M, must be considered carefully. We
find that using the inverse of the original tensor field, M = D−1, as
proposed in most H-J DTI approaches [18, 8, 20], does not sufficiently
penalize paths in directions perpendicular to the major eigenvector. In
fact, shortest paths using this method typically look almost identical
to the paths defined by isotropic metrics constrained the white matter
mask. Thus, we use a sharpened tensor field, which is the original
tensor field raised to a power α . This must be combined with a nor-
malization, and for this work we normalize by the tensor volume. If
we consider the sharpened tensor to be speed (in the H-J formulation),
which gives low cost along the principal eigen directions, the cost is
the inverse, and we have

M(x) = |D(x)|−
1
3

(

D(x)

|D(x)|
1
3

)−α

, (3)

where α > 1 is a constant and |D(x)| denotes the determinant of D(x).
We used α = 3 for all of the experiments in this paper.

We can consider all paths emanating from a region R1 ⊂ Ω. Let
u1(x) denote the minimal cost as defined by (1) over all paths begin-
ning in the region R1 and terminating at the point x. Then u1 satisfies
the convex H-J equation given as follows:

H(∇u1,x) =
√

(∇u1)T M(∇u1) = 1, ∀x ∈Ω, (4)

where Ω is a domain in Rn, u1(x) is the travel time or distance from the
source, R1, and M is the speed matrix defined on Ω by Equation 3. We
use the Hamiltonian defined below for our 3D DT-MRI connectivity
problem:

H(p,q,r) =
√

ap2 +dq2 + f r2 +2(bpq+ cpr + eqr) (5)

M =

a b c
b d e
c e f

 , p =
∂ui

∂x
,q =

∂ui

∂y
,r =

∂ui

∂ z

where p,q, and r are partial derivatives of ui at x along x,y, and z axis,
and a,b,c,d,e, and f are triangular elements of the matrix M. Equa-
tion 4 becomes the Eikonal equation when M is an identity matrix.

While u1 gives us a measure of the connectivity from the region R1

to any point in the image, we would like to assess the specific connec-
tivity to a second target region. To do this, we define a second region
R2 ⊂ Ω and corresponding minimal cost function u2 also satisfying
(4). Consider all paths beginning in the region R1 and terminating in
R2. Now we define the total cost function for regions R1 and R2 to be
u(x) = u1(x)+u2(x). The value of u(x) is the minimal cost of all paths
between R1 and R2 that are constrained to pass through x. Figure 2
shows the cost functions for paths along genu ((a) u1, (b) u2, and (c)
the total cost u = u1 +u2).

(a) Cost u1 (b) Cost u2 (c) Total cost u

Fig. 2. The cost functions for genu. Blue to red: low cost to high cost.

We use the total cost function u to define which voxels in the image
are contained in the pathway of interest. Let γ be the minimal total cost
path, and fix a threshold ε ≥ 0, which is the tolerance of paths relative
to the optimum. We define an ε-point as a point whose constrained
minimum cost is less than (1 + ε)E(γ). The set of all such ε-points
defines an volumetric pathway between R1 and R2. This region is the
set of voxels that belong to the fiber connection between R1 and R2.
By definition, a volumetric pathway must contain γ for any value of
ε ≥ 0.

4 PARALLEL HAMILTON-JACOBI EQUATION SOLVER

4.1 Fast Iterative Method

FIM is a numerical algorithm to solve PDEs, such as Equation 4, on
parallel architectures. The main idea of FIM is to solve the H-J equa-
tion selectively on the grid nodes without maintaining expensive data
structures. FIM maintains a narrow band, called the active list, for stor-
ing the index of grid nodes to be updated. Instead of using a special
data structure to keep track of exact causal relationships, it maintains
a looser relationship and update all nodes in the active list simultane-
ously (i.e., Jacobi update). During each iteration, we expand the list of
active nodes, and the band thickens or expands to include all nodes that
could be influenced by the current updates. A node can be removed
from the active list when the solution is converged, and re-inserted
when any changes of its adjacent neighbors affect the solution of the
current node. Note that newly inserted nodes must be updated in the
following update iteration to ensure a correct Jacobi update. To com-
pute the solutions of the nodes in the active list, we use the Godunov
upwind discretization of the Hamiltonian (section 4.2). The key ideas
of the proposed algorithm are two fold: allowing multiple updates per
node by reinserting nodes to the active list, and using a Jacobi update
for parallel computation. It turns out that the proposed algorithm is an
example of a class of label-correcting algorithms [21]. Algorithm 4.1
is the pseudo code of FIM (Ux is a discrete approximation of u(x), and
g(Ux) is a new solution at x that satisfies Equation 4 computed using a
Godunov Hamiltonian HG in Equation 6).

Algorithm 4.1: FIM(X)

comment: 1. Initialization (X : set of all grid nodes, L : active list)

for each x ∈ X

do

if x is source
then Ux← 0
else Ux← ∞

for each x ∈ X

do

{

if any neighbor of x is source
then add x to L

comment: 2. Update nodes in L

while L is not empty

do

for each x ∈ L

do

Told ←Ux

Tnew← g(Ux)
if Told > Tnew

then
{

Ux← Tnew

if |Told −Tnew|< ε

then

for each 1-neighbor xnb of x

do

if xnb is not in L

then

Told ←Uxnb

Tnew← g(Uxnb
)

if Told > Tnew

then

{

Uxnb
← Tnew

add xnb to L

remove x from L

4.2 Godunov Hamiltonian

To efficiently solve convex H-J equations, we employ a similar Go-
dunov upwind Hamiltonian as introduced in [29]. The Godunov
Hamiltonian HG for the H-J equation on 3D grid can be defined as
follows:

HG(p,q,r) = extp∈I[p−,p+]extq∈I[q−,q+]extr∈I[r−,r+]H(p,q,r) (6)

where

extx∈I[a,b] = min
x∈[a,b]

if a≤ b

extx∈I[a,b] = max
x∈[b,a]

if a > b

p± = Dx
±u, q± = D

y
±u, r± = Dz

±u, and I[a,b] is the closed interval
bounded by a and b. This definition of the Godunov Hamiltonian looks
complicated, but the main idea is evaluating the Hamiltonian H(p,q,r)
with all possible combination of p = {p−, p+, pσ},q = {q−,q+,qσ},
and r = {r−,r+,rσ} where pσ ,qσ , and rσ are critical points (because
the extremum of a convex Hamiltonian occurs only on either the end
of the interval or the critical point), and taking the valid minimum
solution that satisfies Equation 4. To check the validity of the solution
for H(p,q,r), Tsai et al. proposed the following conditions [29].

H(sgnmax{(p−− pσ)+,(p+− pσ)−}+ pσ ,q,r) = 1

H(p,sgnmax{(q−−qσ)+,(q+−qσ)−}+qσ ,r) = 1

H(p,q,sgnmax{(r−− rσ)+,(r+− rσ)−}+ rσ) = 1

Even though the above test to check the validity of the solution
looks mathematically clean and works well, practically it is not ef-
ficient due to two reasons. First, this test requires three evalua-
tions of the Hamiltonian, which is an expensive operation. Sec-
ond, we need to use a threshold to numerically check the floating
point equality (|H − 1| < ε), which may induce numerical errors.
The new validity test we propose is based on the observation that
if the solution is valid then p, q, or r used to compute the solu-
tion must be a correct value. For example, if we use p = p−, then

sgnmax{(p−− pσ)+,(p+− pσ)−}+ pσ = p− must hold. Checking
equality for this equation can be done efficiently because we can en-
code the left and the right side of the equation using integers, +1, 0,
and -1, and compare equality of the integers. The right side index is
determined by p, and the left side index is determined by p−, p+, and
pσ based on the new solution.

Right side index =

0 if p = pσ

+1 if p = p+
−1 if p = p−

Left side index =

0 if p− < pσ < p+
+1 else if (p−+ p+)/2 < pσ

−1 else

The proposed test does not entail an extra burden of Hamiltonian
computations, and can be done using only simple integer equality and
float inequality comparisons. Our experiments show that using the
new validity test can increase the performance about 50% compared
to the original method [29]. The pseudo code for computing a new
solution g(Ux) is given in [9].

5 GPU IMPLEMENTATION

5.1 GPU FIM for H-J Solver

We have chosen the GPU to implement FIM to solve the H-J equa-
tion. The major difference between the CPU and the GPU imple-
mentation of FIM is that the GPU employs a block-based updating
scheme, as proposed by Lefohn et al. [15] in the context of interactive
level set computations, because the GPU architecture favors coherent
memory access and control flows. The original node-based FIM (Al-
gorithm 4.1) can be easily extended to a block-based FIM as shown
in Algorithm 5.1. For a block-based update, the domain is decom-
posed into pre-defined size blocks (we use a 43 cube for 3D in the
GPU implementation), and solutions of the pixels in the same block
are updated simultaneously with a Jacobi update scheme. Therefore,
the active list of the GPU maintains the list of active blocks instead of
nodes.

Algorithm 5.1: GPU FIM(L,V)

comment: Update blocks b in active list L, V :list of all blocks

while L is not empty

do

comment: Step 1 - Update Active Blocks

for each b ∈ L

do

for i = 0 to n

do
{

(b,Cp(b))← g(b)
Cb(b)← reduction(Cp(b))

comment: Step 2 - Check Neighbors

for each b ∈ L and

do

if Cb(b) = true

then

for each 1-neighbor bnb of b

do

{

(bnb,Cp(bnb))← g(bnb)
Cb(bnb)← reduction(Cp(bnb))

comment: Step 3 - Update Active List

clear(L)
for each b ∈V

do

{

if Cb(b) = false

then
{

Insert b to L

The GPU FIM algorithm consists of three steps. First, each active
block is updated with a pre-defined number of iterations. During each
iteration, a new solution of Equation 4 is computed, replace the old
solution if the new solution is smaller, and its convergence is encoded
as a boolean value. After the update step, we perform a reduction

(Section 5.2.3) on each active block to check whether it is converged or
not. If a block is converged, we mark it as to-be-removed. The second
step is checking which neighbor blocks of to-be-removed blocks need
to be re-activated. To do this, all the adjacent neighbor blocks of to-
be-removed blocks are updated once, and another reduction operation
is applied on each of the neighbor blocks. The final step is updating
the active list by checking the convergence of each block. Only non-
converged blocks (i.e., Cb is false) will remain in the active list. The
pseudo code for GPU FIM is given in Algorithm 5.1 (Cp and Cb are
introduced in Section 5.2).

5.2 Implementation Detail

Our GPU H-J solver is implemented on an NVIDIA GeForce 8800
GTX graphics card. NVIDIA CUDA [2] is used for GPU program-
ming, and we will explain the GPU implementation details based on
the CUDA programming model (please refer to the CUDA program-
ming guide [2] for more details about the GPGPU programming us-
ing CUDA). Computation on the GPU entails running a kernel with a
batch process of a large group of fixed size thread blocks, which fits
well the block-based update method used in the FIM algorithm. We
fix the block size to 43, so 64 threads share the same shared memory
and are executed in parallel on the same processor unit.

It is not necessary to use special data structures, e.g., list or vector,
to implement the active list on the GPU. Therefore, we use a simple
1D integer array whose size is the total number of blocks to store ac-
tive blocks. Only the array elements of index ranging between 0 to
(number of total active blocks-1) are valid at any given time. For each
CUDA kernel call, the grid size is adjusted to the current number of
active blocks, and when a block is being processed, its block index is
retrieved from the active list on the GPU. Updating solutions and re-
ductions, which are computationally dominant in the overall process,
are done entirely on the GPU.

In the GPU memory, we create two sets of boolean arrays, one Cp

with a size of the number of pixels (i.e., nodes), and the other Cb with a
size of the number of blocks, to store convergence of pixels and blocks,
in addition to a float array with a size of the number of pixels to store
solutions. To check the convergence of blocks, we run a reduction
on Cp to get Cb. Managing the active list, e.g., inserting or deleting
blocks from the list, is efficiently done on the CPU by reading back Cb

to the CPU and looping over it to insert only non-converged blocks to
the active list. When the list is completely updated on the CPU, it is
copied to the GPU, but only a small part of the active list is actually
used at any given time (index 0 to (number of active blocks-1)), so
only a small fraction of contiguous memory needs to be copied to the
GPU.

5.2.1 Data Packing for Coalesced Global Memory Access

To efficiently move data from global to shared memory on the GPU,
we need to pack the data in the GPU memory space in a certain way to
access global memory as a single contiguous, aligned memory access
(coalesced memory access [2]). Volumes are stored in memory as an
1D array with a certain traversing order. Figure 3 shows an example of
two different cases of storing a 4x4 image in the GPU global memory
space as 1D array when a block is copied to shared memory. Host
memory is the CPU side memory, and global / shared memory is the
GPU side memory. Color represents the pixels in the same block.
Usually pixels are stored from the fastest to the slowest axis order, as
shown in Figure 3 (a). In this case, a block is split into two regions in
global memory space, which leads to split block accesses. However,
if we re-order global memory as shown in Figure 3 (b), accessing a
block can be a single coalesced memory access, which is the most
efficient way to access global memory on the GPU. Hence, whenever
input volumes are copied from the CPU to the GPU memory, a proper
re-ordering should be applied so that the block access can be done
through a coalesced memory access.

5.2.2 Efficient Neighbor Access using Shared Memory

Another factor that affects the GPU performance is accessing shared
memory. The shared memory space in the NVIDIA G80 architec-

Global Memory

1

2

3

4

5

6

7

8

....

1

2

5

6

Host Memory Shared Memory

16

21 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) Non-coalesced

Global Memory

1

2

5

6

Host Memory

1

2

....

3

4

5

Shared Memory

12

13 14 15 16

6

7

821 3 4

5 6 7 8

9 10 11

(b) Coalesced

Fig. 3. Example of coalesced/non-coalesced global memory access

ture is divided into 16 banks, and 16 shared memory accesses can
be done simultaneously as long as all the memory requests refer to
different memory banks or to the same memory bank. If any two
memory requests, but not all, refer to the same memory bank, i.e.,
bank conflict, then this request must be serialized, and this impairs
the performance. Because the block size is fixed to 43, there is no
bank conflict to access pixels inside blocks (block size is a multiple
of warp size [2]). However, we need adjacent neighbor pixels to solve
the PDEs, so we should set up an additional shared memory space
for left/right/up/down/top/bottom neighbors of the boundary pixels of
each block.

To avoid bank conflicts, we assign the neighbor pixels to pre-
defined banks, which requires a slightly larger extra shared memory
space. Figure 4 shows a 2D example of the bank assignment that
avoids bank conflicts for neighbor pixel access. The block size for this
example is 16 (4x4), which is drawn as a yellow box on the leftmost
image in Figure 4. The extra four pixels on each left/right/up/down
side of the block are neighbor pixels. The number on each pixel rep-
resents the bank number to be assigned. By assigning pixels to shared
memory in this pattern, memory requests for left/right/up/down neigh-
bors can be done simultaneously without a bank conflict (Figure 4 red
: left neighbors, cyan : right neighbors, green : up neighbors, blue :
down neighbors). We need shared memory of size 3*blocksize to store
a block and its neighbors because some bank numbers appear twice (1,
4, 13, and 16 in Figure 4). Figure 5 shows an example of actual pixel
assignment in shared memory. Figure 5 (a) shows a 2D block diagram
with pixel indices (not bank numbers). Figure 5 (b) shows which bank
each pixel is actually assigned to. Figure 5 (c) shows a snapshot of a
shared memory access pattern when left neighbors are accessed (same
case as the second diagram from left in Figure 4). Pixels colored in
red are accessed by 16 threads in parallel. Because there is no bank
conflict, this memory request can be processed simultaneously. The
2D bank assignment technique can be easily extended to 3D by using
slightly larger shared memory for storing top and bottom neighbors.

1 12 3 4

5 6 7 8

9 10 11 12

13 14 15 16

5

9

13

16151413

4

8

16

12

1 2 3 4

1 12 3 4

5 6 7 8

9 10 11 12

13 14 15 16

5

9

13

16151413

4

8

16

12

1 2 3 4

1 12 3 4

5 6 7 8

9 10 11 12

13 14 15 16

5

9

13

16151413

4

8

16

12

1 2 3 4

1 12 3 4

5 6 7 8

9 10 11 12

13 14 15 16

5

9

13

16151413

4

8

16

12

1 2 3 4

1 12 3 4

5 6 7 8

9 10 11 12

13 14 15 16

5

9

13

16151413

4

8

16

12

1 2 3 4

Fig. 4. Neighbor pixel access without shared memory bank-conflict

32

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

25

17

18

19

20

21

22

23

24

26 27 28

29 30 31

(a) Pixel indices

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

Bank 16

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

Bank 15

Bank 1

(b) Bank assignment

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bank 16

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

Bank 8

Bank 9

Bank 10

Bank 11

Bank 12

Bank 13

Bank 14

Bank 15

(c) Left neighbors

Fig. 5. Bank assignment example

Fig. 6. Volumetric pathways extractions using the proposed method. From left to right: a) cortocospinal tract; b) isosurface rendering of volumetric
paths shown with FA slice; c) isosurface rendering of volumetric paths only. GCC(cyan), BCC(yellow), SCC(red), LCG(green), and RCG(blue). The
SCIRun software [1] is used to render final isosurfaces.

5.2.3 Reduction

Reduction is one of the commonly used computational techniques in
the streaming programming model to produce a smaller stream from
a larger input stream. To check the convergence of a block, we need
to check the convergence of every pixel in the block. Therefore, we
need to reduce a block down to a single pixel that represents the con-
vergence of the block. Lefohn et al. proposed a reduction on the GPU
using a fragment shader to check the activity in blocks in [15]. We
implemented a parallel reduction in a single kernel execution using a
block-level thread synchronization provided by CUDA. To reduce a
block of size n, start with n

2 threads. For each iteration, every thread
participating in reduction reads two convergence values from the cur-
rent block and write a true or false to one of the original locations (both
converge : true, else false). In the next iteration, the number of par-
ticipating threads is halved and the same reduction is performed. This
process is repeated until a block is reduced to a single pixel.

6 RESULTS

6.1 Connectivity Visualization

To demonstrate our interactive DTI connectivity visualization for real
clinical data, we applied our method to a single high-resolution (2×
2×2.5mm3) 3T image from a database of healthy controls. Using an
interface in which points can be selected interactively on the tensor
data set, we selected the terminal regions R1 and R2 at the white/grey
matter interface for each tract we analyzed.

Figure 6 (a) shows the interactive path extraction using two selected
points along the cortocospinal tract. A volume rendering of the total
cost function u is displayed with blue representing lowest cost regions.
The total cost function represents the strength, or integrity, of the con-
nection, and this visualization could be used by clinicians to locate
degradations in the white matter. The cortocospinal tract, which is
a major pathway connecting the spinal cord to the motor cortex, has
high connectivity and thus shows up as bright blue. Next, we selected
five tracts for visualization: three bundles through the genu (GCC),
splenium (SCC), and body (BCC) of the corpus callosum, and the left
(LCG) and right (RCG) cingulum bundles. Figure 6 (b) and (c) show
isosurface renderings of the resulting volumetric pathways from the
five selected tracts. These volumetric pathways can then be used to
define a culling region for displaying the tensor data only in the path-
ways of interest, as shown in Figure 7. In [6] the authors describe
nonparametric methods for quantifying DTI and geometric informa-
tion along tracts.

6.2 Running time comparison

Table 1 and Figure 8 show the running time of three H-J equation
solvers (GPU, CPU Fast Sweeping with Godunov Hamiltonian, and
CPU Fast Sweeping with Lax-Friedrichs Hamiltonian) and their solu-
tions on three synthetic and real tensor volumes. We have tested H-J
solvers on a PC equipped with a Intel Core 2 Duo 2.4GHz processor
and an NVIDIA GeForce 8800 GTX graphics card.

Example 1 is a 643 volume with a constant tensor elongated along
the diagonal direction (a = d = f = 1.0 and b = c = e = 0.9). The level
sets of the solution on this volume is shown in Figure 8 (a). The GPU
solver took only 1 sec while the CPU solvers take about 1–2 minutes
to compute the solution on this volume.

Example 2 is a 643 volume with tensors aligned to a helix. We built
a tensor whose dominant eigenvector is parallel to the tangent vector
of the helix curve, and set the dominant eigenvalue as 1.0 and the other
two eigenvalues as 0.0001. Figure 8 (b) is the solution and character-
istic paths tracing from randomly distributed points to the seed point
placed on the center of the bottom slice. The GPU solver took 1.5
second, while the CPU solvers took 1–3 minutes on this volume.

Example 3 is a DT-MRI brain volume of size 256x256x100, with
the number of effective pixels is 196K (we only run the solver inside
the white matter mask), and the solution is given in Figure 8 (c). We
put a seed at the center of the white matter region. The GPU solver
runs less than 3 seconds while the CPU solver took 5 minutes on this
volume. Overall, the proposed GPU H-J solver runs roughly 50–100
times faster than the commonly used CPU-based methods, allowing
users for interactive volumetric paths extraction in DT-MRI volumes.

Example 1 Example 2 Example 3

GPU FIM 1 sec 1.5 sec 2.8 sec

CPU FS Gdv 54 sec 76 sec 301 sec

CPU FS L-F 142 sec 220 sec N/A

Table 1. Running time on 3D tensor volumes. L-F was not tested on
example 3 due to its complex boundary.

6.3 Discussion

The proposed GPU-FIM algorithm, in contrast to other label-
correcting algorithms [21], scales well on massively parallel archi-
tectures by adopting a block-based parallel updating scheme. The
proposed method uses the same discretization of Godunov Hamilto-
nian that is used in [29], so the solutions are exactly same as the fast
sweeping methods. However, due to the hardware floating point im-
plementation on different architectures (CPU and GPU), there is a
small numerical difference between the solutions of those methods,
but the difference is minimal and does not affect the quality of the
extracted paths.

Even though this paper focuses mainly on the computational as-
pect of the white matter pathway visualization, it is worth mentioning
the pros and cons of the proposed method compared to the existing
tractography methods. Global tractography gives interesting holistic
visualizations of white matter architecture, which may be useful to the
uninitiated. In contrast, the proposed method can provide a system-
atic method to query the quality of a particular path of interest, which
is useful to experienced neuroscientists who already know the white
matter architecture but wish to be able to easily and repeatably iden-

Fig. 7. Tensor field visualization along the volumetric pathways using superquadric glyphs [12] using the SCIRun software [1]. From left to right: a)
tensor visualization; b) zoom in view near BCC.

Fig. 8. Visualization of distance from a seed point. From left to right: a) Example 1 : tensor elongated toward diagonal direction; b) Example 2 :
helix; c) Example 3: DT-MRI brain data.

Fig. 9. Comparison between the proposed method and tractography method to extract the arcuate fasciculus connecting frontal and temporal
cortex. Left : Volumetric path from the proposed method. Right : Paths from the tractography method. Yellow dotted curve represents the arcuate
fasciculus area.

tify white matter circuitry across populations of subjects or patients.
In addition, tractography is sensitive to noise and oblique shapes in
DT-MRI, while the proposed method is robust to them. A nice exam-
ple is the arcuate fasciculus, which connects Wernicke’s and Broca’s
areas (frontal and temporal cortex) shown in figure 9. This tract is
not easy to find because it crosses through some ambiguous regions as
it descends to the temporal lobe (temporoparietal junction). Figure 9
right shows a close up picture of a typical result from tractography that
shows the difficulty of locating tracts that connect these two relatively
small regions, especially where the alignment of the tensors become
ambiguous. The tractography result ends abruptly, and none of the
many thousands of tracks we seeded successfully connected these two
regions. In contrast, the proposed method robustly finds the optimal
path between the end points that minimizes the total cost value, which
are much less affected by noise and ambiguity (figure 9 left).

7 CONCLUSION

A fast method to compute and visualize white matter connectivity in
DT-MRI volume using graphics hardware is presented. The proposed
method computes the connectivity as the minimum distance from a
given source region, and define the total cost by summing the connec-
tivity value from each source region. The proposed method finds a
volumetric optimal path as a set of voxels in the DTI volume that con-
tain paths between two regions whose costs are within a threshold of
the optimal path. To quickly compute the cost function, we introduce
a novel GPU H-J solver, which runs roughly 50-100 times faster than
existing CPU-based solvers, allowing users to freely change the end-
points of interesting pathways and to visualize the optimal volumetric
path between them at an interactive rate.

Introducing a fast volumetric connectivity extraction tool opens up
numerous interesting future research directions. Because the GPU im-
plementation of the FIM allows rapid computation of white matter
connections, this makes computation of a full brain connectivity map
feasible. This process could be automatically initialized with start-
ing regions from a parcellation of the cortical surface, such as that
produced by Freesurfer [5]. The proposed GPU H-J solver can be
also applied to wider range of applications other than DT-MRI im-
age analysis. For example, seismic wave propagation simulation in an
anisotropic speed volume will be a direct application of the GPU H-J
solver for geoscience research. Extensive performance analysis and
comparison of the GPU solver with existing solvers will be another
interesting future work.

ACKNOWLEDGEMENTS

This work is part of the National Alliance for Medical Image Com-
puting (NAMIC), funded by the National Institutes of Health through
the NIH Roadmap for Medical Research, Grant U54 EB005149. This
work has been supported in part by ExxonMobil Upstream Research
Company. The visualizations in Figure 6 and 7 in this paper were
produced with the BioPSE/SCIRun software package released by the
Center for Integrative Biomedical Computing, NIH NCRR Project 2-
P41-RR12553-07

REFERENCES

[1] SCIRun: A scientific computing problem solving environment, Scientific

Computing and Imaging institute (SCI), 2002. http://software.sci.

utah.edu/scirun.html.

[2] NVIDIA CUDA programming guide, 2007. http://developer.

nvidia.com/object/cuda.html.

[3] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi. In-vivo

fiber tractography using DT-MRI data. Magnetic Resonance in Medicine,

44:625–632, 2000.

[4] T. Behrens, M. Woolrich, M. Jenkinson, H. Johansen-Berg, R. Nunes,

S. Clare, P. Matthews, J. Brady, and S. Smith. Characterization and prop-

agation of uncertainty in diffusion-weighted MR imaging. Magnetic Res-

onance in Medicine, 50:1077–1088, 2003.

[5] B. Fischl, A. van der Kouwe, C. Destrieux, E. Halgren, F. Sgonne, D. H.

Salat, E. Busa, L. J. Seidman, J. Goldstein, D. Kennedy, V. Caviness,

N. Makris, B. Rosen, and A. M. Dale. Automatically parcellating the

human cerebral cortex. Cerebral Cortex, 14(1):11–22, 2004.

[6] P. T. Fletcher, R. Tao, W.-K. Jeong, and R. T. Whitaker. A volumetric

approach to quantifying region-to-region white matter connectivity in Di-

fusion Tensor MRI. In Information Processing in Medical Imaging 2007

Conference Proceedings (to appear), 2007.

[7] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast com-

putation of generalized Voronoi diagrams using graphics hardware. In

SIGGRAPH 1999 Conference Proceedings, pages 277–286, 1999.

[8] M. Jackowski, C. Y. Kao, M. Qiu, R. T. Constable, and L. H. Staib. Es-

timation of anatomical connectivity by anisotropic front propagation and

diffusion tensor imaging. In MICCAI, pages 663–667, 2004.

[9] W.-K. Jeong and R. T. Whitaker. A fast iterative method for a class

of Hamilton-Jacobi equations on parallel systems. Technical Report

UUCS-07-010, University of Utah, 2007. http://www.cs.utah.edu/

research/techreports.shtml.

[10] C. Kao, S. Osher, and J. Qian. Lax-friedrichs sweeping scheme for

static Hamilton-Jacobi equations. Journal of Computational Physics,

196(1):367–391, 2004.

[11] C. Kao, S. Osher, and Y. Tsai. Fast sweeping methods for static Hamilton-

Jacobi equations. Technical report, Department of Mathematics, Univer-

sity of California, Los Angeles, 2002.

[12] G. Kindlmann. Superquadric tensor glyphs. In Proceedings of IEEE

TVCG/EG Symposium on Visualization 2004, pages 147–154, May 2004.

[13] M. A. Koch, D. G. Norris, and H.-G. M. An investigation of functional

and anatomical connectivity using magnetic resonance imaging. Neu-

roImage, 16:241–250, 2002.

[14] M. Lazar and A. L. Alexander. Bootstrap white matter tractography

(BOOT-TRAC). NeuroImage, 24:524–532, 2005.

[15] A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. Interactive deformation

and visualization of level set surfaces using graphics hardware. In IEEE

Visualization 2003 Conference Proceedings, pages 75–82, 2003.

[16] L. O’Donnell, S. Haker, and C.-F. Westin. New approaches to estimation

of white matter connectivity in diffusion tensor MRI: elliptic PDEs and

geodesics in a tensor-warped space. In MICCAI, pages 459–466, 2002.

[17] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell. A survey of general-purpose computation on

graphics hardware. Computer Graphics Forum, 26(1):80–113, March

2007.

[18] G. Parker, C. Wheeler-Kingshott, and G. Barker. Estimating distributed

anatomical connectivity using fast marching methods and diffusion tensor

imaging. Transactions on Medical Imaging, 21:505–512, 2002.

[19] G. J. M. Parker, H. A. Haroon, and C. A. M. Wheeler-Kingshott. A frame-

work for a streamline-based probabilistic index of connectivity (PICo)

using a structural interpretation of MRI diffusion measurements. Journal

of Magnetic Resonance Imaging, 18:242–254, 2003.

[20] E. Pichon, C.-F. Westin, and A. Tannenbaum. A Hamilton-Jacobi-

Bellman approach to high angular resolution diffusion tractography. In

MICCAI, pages 180–187, 2005.

[21] L. C. Polymenakos, D. P. Bertsekas, and J. N. Tsitsiklis. Implementa-

tion of efficient algorithms for globally optimal trajectories. IEEE Trans.

Automatic Control, 43(2):278–283, 1998.

[22] F. Qin, Y. Luo, K. Olsen, W. Cai, and G. Schuster. Finite-difference

solution of the eikonal equation along expanding wavefronts. Geophysics,

57(3):478–487, 1992.

[23] E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-

shading. SIAM Journal of Numerical Analysis, 29:867–884, 1992.

[24] J. Sethian. A fast marching level set method for monotonically advancing

fronts. In Proc. Natl. Acad. Sci., volume 93, pages 1591–1595, February

1996.

[25] J. Sethian. Fast marching methods. SIAM Review, 41(2):199–235, 1999.

[26] J. A. Sethian and A. Vladimirsky. Ordered upwind methods for static

Hamilton-Jacobi equations: Theory and algorithms. SIAM Journal of

Numerical Analysis, 41(1):325–363, 2003.

[27] C. Sigg, R. Peikert, and M. Gross. Signed distance transform using graph-

ics hardware. In IEEE Visualization 2003 Conference Proceedings, pages

83–90, 2003.

[28] A. Sud, M. A. Otaduy, and D. Manocha. Difi: Fast 3d distance

field computation using graphics hardware. Computer Graphics Forum,

23(3):557–566, 2004.

[29] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao. Fast sweeping

algorithms for a class of Hamilton-Jacobi equations. SIAM Journal of

Numerical Analysis, 41(2):659–672, 2003.

[30] H. Zhao. A fast sweeping method for eikonal equations. Mathematics of

Computation, 74:603–627, 2004.

