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Abstract

The three-site polarizable and flexible water potential employing the multistate empirical valence
bond (MS-EVB) description for the electronic polarizability [A. E. Lefohn, M. Ovchinnikov and
G. A. Voth, J. Phys. Chem. 105, 6628 (2001)] has been modified for better reproduction of
liquid water properties under ambient conditions. The improvement of the potential model was
accomplished by (i) replacing the point charge distribution associated with the atomic interaction
sites in the original model with a diffuse Gaussian charge distribution and (ii) reparameterizing the
molecular geometry, components of electronic polarizability tensor, the Lennard-Jones parameters,
and the widths of the Gaussian charge distribution. Static and dynamic properties, such as the
intermolecular interaction energy, radial distribution function, diffusion constant, and dielectric
constant, have been used in the model parameterization and the resulting model well reproduces
the experimental data. A closely related rigid version of the model is also developed and compared
with the flexible one. For computational efficiency, the extended Lagrangian algorithm for the
electronic degrees of freedom has been implemented in the MS-EVB molecular dynamics simulation
and utilized in the calculations. Relations between the new features of the potential model, such as
the Gaussian charge distribution and the anisotropy in the electronic polarizability, and the liquid

properties are estabilished and discussed.



I. INTRODUCTION

An accurate interaction potential model is essential to the molecular level understanding
of physical and chemical phenomena in condensed-phase water. Simple potential models
employing rigid geometry and fixed point charge distribution have been used in simulation
studies' and have provided considerable insight into the molecular origin of the unique
behavior of water in various phases and its role as a solvent.? These rigid, nonpolarizable
potential models, however, do not capture the molecular charge redistribution in response to
the environment? and the intramolecular atomic motions. While there exist a small number
of water potential models that incorporate these polarizability and flexibility effects,*2
their applicability in liquid state simulation is often limited by insufficient liquid property
characterization or their high computational demand.

Another important role of water in solution phase is as a proton donor or acceptor in acid-
base reactions. Here, the transfer of a proton requires that the potential model for water be
able to describe the O-H bond breaking and formation. The empirical valence bond (EVB)
method!'® has beed applied to this problem and shown to be a simple and effective way
to model the reaction system in aqueous solution.'**” In light of this and other successful
applications of the EVB method to the study of chemical reactions,'®'® the development
of a polarizable water potential model employing the same EVB approach would lead to a
unified description of the intra- and intermolecular electronic structure variation with high
efficiency and accuracy. The “Polarflex” model,?° a three-site flexible and polarizable water
model employing the multistate EVB (MS-EVB) method for the description of the electronic
polarizability, was developed for this purpose.

In this paper, we extend the original Polarflex model to provide a better description of
water at ambient liquid state conditions. The basic MS-EVB description of the molecular
electronic polarization will be retained. Even though the current model is focused on the cor-
rect reproduction of molecular ground-state electric properties, such as dipole moment and
electronic polarizability, we note that the same approach has been applied to the liquid-state
electronic spectroscopy?!?? through a consistent description of solvent excited states.2372°
Also, it can be extended in a straightforward way for a more refined electronic structure and

hyperpolarizability description?® and to the chemical reactions involving multiple electronic

potential energy surfaces. When compared to more elaborate ab initio molecular dynam-



ics methods now available,??® the MS-EVB approach has certain advantages in terms of
computational efficiency and transparent interpretation of results.

The improvement of the original Polarflex water model is achieved in two ways. First, we
employ the diffuse Gaussian charge distribution (GCD) for the interaction sites instead of
the more conventional point charge description. The point charge distribution has been used
in the majority of existing water potential models due to its simplicity. However, the short
range interactions from such models tend to be overestimated due to the divergent character
of point charge interactions at small separation. This becomes more severe with polariz-
able models that employ variable charge sites. For this reason, the Gaussian or other types
of diffuse charge distributions have been employed previously for inter- or intramolecular
interactions.???3! We employ the GCD for the evaluation of the intermolecular electrostatic
interactions involving the three atomic sites. Second, the model parameters, including the
equilibrium geometry, individual components of the polarizability tensor, the Lennard-Jones
(LJ) potential parameters, are optimized together with the widths of the GCD with the goal
of reproducing a set of experimental properties of ambient liquid water. In the parameter-
ization, the oxygen-oxygen radial distribution function and the self-diffusion constant were
chosen as the initial target properties. In addition, the intermolecular interaction energy and
the static dielectric constant were monitored so that the model provides a good description
of these properties as well. In order to isolate and study the effect of flexibility, we have also
developed a new rigid version of the MS-EVB water model which resembles the flexible one
in many aspects. Hereafter, the rigid model will be called Polarflex Rigid Gaussian (PRG)
and the flexible one, Polarflex Flexible Gaussian (PFG).

The modeling of intramolecular flexibility within the MS-EVB framework requires careful
consideration. Since the molecular charge distribution is represented by partial charges
associated with atomic sites, the atomic motion will affect the former, and the electronic
polarizability is coupled to the intramolecular motion.%? In this study, we ignore any explicit
coupling of this kind and formulate the MS-EVB electronic polarizability at the equilibrium
geometry of the molecule. As a result, the MS-EVB Hamiltonian for an isolated molecule is
independent of the geometry of the molecule in our description. While this approximation
is expected to be reasonable considering the small amplitude of vibrational ground state
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motions in a pure water system,®® we note that the flexibility of the molecule could be

integrated in the MS-EVB polarizability for an even better description of charge distribution



10,34 i the future.

of a flexible water molecule

The current MS-EVB water model, and most other polarizable models, require a com-
putationally expensive iteration in order to ensure self-consistency in the system charge
distribution. In order to avoid this iteration and improve the computational efficiency, we
have developed an extended Lagrangian algorithm for the EVB degrees of freedom in a
molecular dynamics (MD) simulation. This algorithm provides a good approximation to
the self-consistent solution associated with the polarizability and is compulationally efficient
(i.e., only 10 % more expensive than a nonpolarizable model [Section IV]).

This paper is organized as follows. In Section II, we present the theoretical background
of the MS-EVB water model, including results relevant for GCD. In Section III, the rigid
(PRG) and flexible (PFG) MS-EVB potential models are described in detail and Sec. IV

provides the computational details. The calculated properties of the two potential models

are then presented in Section V. Finally, we discuss various related issues in Section VI.

II. THEORY

We first briefly review the MS-EVB method applied to the description of the electronic
polarizability of a water molecule.??335 The Hamiltonian and the Schrodinger equation
for the system of condensed-phase water are then developed employing the MS-EVB water
model. Explicit expressions for Gaussian interaction-site charge distribution are presented
next, and we then describe the extended Lagrangian algorithm for the treatment of the

system electronic polarizability within the MS-EVB framework.

A. MS-EVB description of the electronic polarizability

We consider an isolated water molecule represented by three atomic interaction sites. The
electronic structure of the molecule is spanned by three orthonormal basis states constructed
from possible charge fluctuations in the liquid phase. They are shown in Fig. 1 and will be

called the EVB basis set, Bgyg, collectively,

Beve = {|1),12),[3)};
(m|n) = 0pmn (Mmyn =1,2,3), (2.1)



where d,,, is the Kronecker delta function. In this basis, the molecular geometry is assumed
to be fixed at its equilibrium values. The partial charge distribution on an atomic site
« is represented by a charge density operator p,(r) centered at the atomic position r,

(=0, Hy, Hy) and its expectation value p7(r) for EVB basis state |n),

(m|pa(r)|n) = bmnply (x). (2.2)

We also introduce the charge operator ¢, and its expectation value ¢ defined by

— [drpueys  (mldaln) = G (2.3)

We obtain three Cy,-symmetry adapted eigenstates,?® v;’s, for the water molecule from

Bgys,

S
= —C|1>+$(|2>+\3)) p A

C

Py = S|1>+$(|2>+|3>) A (2.4)
1

Py = ﬁ(|2>—|3>) : B,

where S2 +C? =1 and A, and B, are irreducible representations of the Cy, group to which
the eigenstates belong. The electronic Hamiltonian of the molecule RO is diagonal when

expressed in these eigenstates,
h; = (0| BO|;) = 635 E; (2.5)

where Ej; is the energy eigenvalue associated with the eigenstate ;.

We complete the specification of the electronic structure of the molecule by determining
the unknown parameters in Egs. (2.4) and (2.5) from empirical data of dipole moment p°
and electronic polarizability o for an isolated water molecule. The expressions for u’ and

a® of the molecule in its ground electronic state (¢;) are given by

IJ'O = (%\ﬂl%) = Zra<w1‘(ja|wl> )

a

o = QZ T/fz|u|;/11 %JM\%)

_ QZZ Z wz|Qa|;{}1 <7211‘(Zﬂ\¢z) ’ (2.6)



where « and [ are atomic site indices and fi = ) daTo- By supplying empirical data
on the left-hand side of Eq. (2.6), the unknown parameters S, E; — Ej, and F3 — F; are
uniquely determined. Since the out-of-plane component of a cannot be described by the
current 3-site water model, only the two in-plane components are used in this procedure.
The quantities S, Fs, and E3 (with E; = 0) specify the gas-phase eigenstates [Eq. (2.4)]
and the electronic Hamiltonian [Eq. (2.5)]. We can express h° in the EVB basis set as a
nondiagonal 3x3 matrix hl,y after the transformation defined by Eq. (2.4). The electronic
structure and the electric properties of an isolated water molecule are completely determined
by Bryg and hlyp in the 3-site MS-EVB description. Since this parameterization is based
on the equilibrium geometry of an isolated water molecule, the flexibility of the molecule,

to be introduced below via a separate classical potential, does not affect hlyp.

B. System Hamiltonian and self-consistent field approximation

The Hamiltonian for a system of N water molecules are given as
IAJ: IAJO—f—f{cOu]—f-K-f-VLJ‘f’VIntra ) (2'7)

where HO is the sum of molecular electronic Hamiltonians introduced in Eq. (2.5), Heou is
the intermolecular Coulombic interaction, K is the kinetic energy, V1; is the Lennard-Jones
interaction, and Vin, is the classical intramolecular potential. Even though the MS-EVB
model is, in principle, capable of describing the intermolecular dispersion interaction, the
self-consistent field approximation employed in the following development lacks the inter-
molecular correlation effect necessary for such a description.?® Therefore, we describe the
dispersion interaction by the conventional Lennard-Jones potential, leaving the full quantum
description of this type of interaction for future study. The last three terms on the right-
hand side of Eq. (2.7) depend only on the atomic positions and velocities and therefore are
treated classically as c-numbers. On the other hand, H° and Hegy are quantum mechanical

operators given by
N
=i
Ao = —zzzz/ o [ LettlE) 29

(J ;éz



where i and j are molecular indices, ¢ is the electronic Hamiltonian of molecule i introduced
in Eq. (2.5), and the subscript ia stands for the site o of molecule i. We now construct the
system wavefunction ¥ as a direct product of the molecular wavefunctions * analogous to

the Hartree product in quantum chemistry, i.e.,
N
v=][v;: E=(vH), (2.9)
i=1

where E is the total energy of the system. Following the development of the Hartree-

23,36

Fock equation in quantum chemistry, we invoke the variational principle to E, that is,

minimize E with respect to 1* under the normalization condition for v, to obtain a set of

N coupled effective molecular Schrodinger equations,
heght') = €'lv') ;
N . .
. . AR T J Aia r’
P h2+222/dr/dr’ W ‘pﬁi !Qi,ip Lo (2.10)
a j=1 pB

(7#4)

Once these equations are solved for the ground-state £’s and [¢*)’s, the total energy of the

system is obtained from the following relation

N N N . . . .
_ i1 1 (' 1Dia (1) [9) (47| B (x') |47)
CEDIEEED DI L I L
i=1 i=1 a j=1 B
(5#4)
+ K + VLJ + Vintra . (211)

In practice, the molecular Schrédinger equations in Eq. (2.10) can be solved iteratively
to achieve self-consistency in the charge distribution among N molecules or be treated
approximately with the extended-Lagrangian algorithm [Section IID].

When periodic boundary conditions and the Ewald summation method are employed,
it is necessary to take into account the contributions from periodic images. We consider
this in the next section after we specify the atomic charge distribution p?(r) introduced in

Eq. (2.2).

C. Gaussian charge distributions

In many force fields employed in MD simulations, it is usual to represent the partial

charges on interaction sites by point charges. While the point charge model is a simple
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and efficient way to represent the leading-order multipole moments of the molecular charge
distribution, the short-range interactions in such a model may be too strong considering
the diffuse character of the actual electronic charge distribution. This was evident in our
initial MS-EVB water model (Polarflex),?® which employed the point charge model. In
that study, the introduction of polarizability through the MS-EVB description resulted in
improvements in the interaction energy and the hydrogen bond structure, as indicated by
the second peak of the oxygen-oxygen radial distribution function (RDF) when compared to
the results of its nonpolarizable counterpart, the SPC/F model.?” However, the first peak of
the oxygen-oxygen RDF was enhanced too much and the calculated diffusion constant was
smaller than the experimental data, indicating that the short-range electrostatic interaction
may be somewhat overestimated. In order to overcome these disadvantages, we employ here
the diffuse Gaussian charge distribution instead of the point charges used in our previous
study.

In the Gaussian charge distribution (GCD) model, the charge density operator p,(r)
associated with the atom a [Eq. (2.2)] becomes

pa(r) = (27E2) 732G, exp [—%} : (2.12)

where &, is the width (standard deviation) of the Gaussian distribution. We assume that
£o are identical for the same kind of atoms. Two GCD’s pj(r) and pj'(r), obtained from
Egs. (2.2) and (2.12), interact with each other with the interaction energy E}7 given by

wm 9095

aB — erf |ra _ r/j|

—r 7|, (2.13)
rammsl |\ 2E+e))

where ¢” is defined by Eq. (2.3) and erf is the error function. The treatment of the long-range

electrostatic interactions in this method are described in Appendix A.

D. Extended Lagrangian method for MS-EVB Molecular Dynamics

The computational demand of the MD simulation of Polarflex water using the self-
consistent iteration algorithm is about 2.5 times higher than that of its nonpolarizable
counterpart, the SPC/F model.?” The additional computation is required for the iterative
solution of the molecular Schrodinger equations until the self-consistency in the charge dis-

tribution is achieved. In order to improve the computational efficiency, we have adapted the



extended Lagrangian (ext-L) algorithm?"?3839 for the MS-EVB degrees of freedom in the
MD simulation. In the ext-L. method, a small mass is assigned to the system electronic de-
grees of freedom and its kinetic energy is included in the system Lagrangian. The equations
of motion for the electronic degrees of freedom resulting from the Lagrangian are then solved
along with the equations for the nuclear motion. The electronic degrees of freedom thereby
follow closely the actual solution so long as they are adiabatically separated from the nuclear
motions. This scheme enables us to avoid the expensive iteration steps and achieve a high
computational efficiency. In what follows, we develop the ext-L formulation appropriate
for the MS-EVB method. Our development is based on the GCD model and the Ewald
sum for the Coulombic interaction. The basic algorithm is adapted from the RATTLE-like
algorithm proposed by Tuckerman and Parrinello?® based on the velocity Verlet integration
method.*!

We first expand the ground-state molecular wavefunctions ¢ in the EVB basis states |n),

=3 i), (2.14)

and we take c'’s as real numbers. The system total energy in Eq. (2.11), expressed in terms
of the EVB basis states, can then be regarded as a function of the positions of the atomic

sites, their time derivatives, and the expansion coefficients of the wavefunctions

= E({ria}, {Fia}, {1}) = K({Fia}) + V({ria}. {c}}) , (2.15)

where ¥ denotes time derivative of r and V = (U|H°| W) + Ecou 4 Viy + Vintra [¢f. Eq. (AB)].

We assign a small mass m, to the ¢’s and consider the resulting kinetic energy Koy

Ko ({0}) mc Z Z AR (2.16)

The dynamics of the system including that of ¢!’s is governed by the extended Lagrangian

Lext

Lt = K({Fia}) + Kex({¢1}) — V({ria}, {c,}) Z Z enl” = (2.17)

where the last term involves the Lagrangian multipliers A; to ensure the normalization of

the ground state wavefunction 1¢. The equations of motion for c¢!’s are obtained from Ley;



as

.y aLext
Ten = e
= —QZcin(h%VB) —2c Zq ia(Tia) + 2Ac)
= —2Zc L) mn + 20 (2.18)

where (hSyg)mn = (m|h®|n) and is identical for all molecules in the system, (hig)mn =
(m|hign), and the last identity comes from Egs. (A4) and (A5). The numerical algorithm

for integrating these equations is described in Appendix B.

III. POTENTIAL MODELS

In this section, we describe the Polarflex flexible three-site water potential model (PFG)
employing the MS-EVB description of electronic polarizability and the Gaussian charge
distribution. For comparison, we also construct a closely related rigid version of the model
(PRG). The properties of liquid water using these models are then presented in the following
sections.

For both PRG and PFG models, the short-range dispersion-repulsion interactions are

described by the LJ potential between oxygen atoms only

Viy = Z Z de [(no’]o> o (T;jo)j , (3.1)

=1 j=1
(#1)

where the parameters € and o are given for each model in Table 1.

For the PFG model, we have attempted to optimize the geometry, the widths of the Gaus-
sian charge distribution, and the LJ interaction parameters with the goal of reproducing the
experimental oxygen-oxygen radial distribution function and self-diffusion constant under an
ambient condition. The intermolecular interaction energy and dielectric constant were also
monitored in order to identify and discard models with large deviations of these properties
from experimental data. In addition, recognizing the anisotropic change in polarizability as
the molecule deforms in the liquid (see Appendix C), we have individually adjusted the two
in-plane polarizability components, oy, and o, (with the molecule on the yz-plane and the

molecular axis in the z direction). The parameters for the rigid PRG model were mainly
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determined with the same principle. However, some of its parameters were taken from the

PFG model in order to facilitate direct comparison between the two models.

A. Rigid model (PRG)

First, we specify the geometry, dipole moment, and in-plane polarizability necessary for
the characterization of the electronic ground state of an MS-EVB water molecule. These in-
put values are given in Table I and used to obtain the single-molecule electronic Hamiltonian
h%p according to the prescription of Section IIA. We employed the OH bond length of 1.0
A, the value of the SPC model.*? The bond angle ZHOH was taken as 107.47°, a decrease
from the SPC value of 109.47°, so that it is close to the average liquid-phase geometry of
the flexible PFG model described below. Likewise, a slightly increased OH bond length
of 1.02 A was tried but rejected since it lead to higher dielectric constant in liquid. The
dipole moment and electronic polarizability of an isolated molecule were taken from exper-
imental values.**** The out-of-plane component of the polarizability cannot be modeled by
the three site model and was ignored. Also given in Table I are the widths of the GCD &,
and parameters for the LLJ interaction between oxygen atoms. The widths of the GCD are
the optimal values for the flexible model described below. Finally, the LJ parameters for
the SPC model were employed without modification since these values, in combination with

other parameters, produced a reasonable interaction energy in liquid.

B. Flexible model (PFG)

In principle, flexibility can be incorporated in the MS-EVB formulation by modeling
the internal vibration of the EVB basis states empirically so that the resulting ground state
potential energy surface reproduces a target surface. In this study, however, we take a simpler
approach originating in Ref. 20. Here, we assume that the molecular electronic Hamiltonian
R [Eq. (2.5)] is independent of atomic positions and its representation in the EVB basis
set, hyp, remains constant regardless of molecular deformation once it is determined from
the equilibrium geometry as described in Section ITA. The potential energy surface of

a molecule is separately modeled by a classical potential function. For this purpose, we
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employ the harmonic potential function of Toukan and Rahman?®” given by

1 1
Vintra = 5(1 [(ATOH1)2 + (ATOH2)2] + éb(ATHIHZ)Q

+ C(A’I‘OH1 + A’I‘OH2)AT’H1H2 + dATOHIATOH2 y (32)

where Aryg =105 — rgﬂ with rgﬂ the equilibrium distance between atoms « and [ in the gas
phase and the force constants a, b, ¢, and d are given in Table II. Also shown there are the
vibrational frequencies of an isolated molecule at 1 K, determined from the Fourier transform
of atomic velocity trajectories.*® The frequencies at 300 K agree with the 1 K values within
1 cm . We note that the vibrational frequencies of the model function do not agree exactly
with the experimental values since the parameters of the Toukan-Rahman potential were
determined from the “harmonic” frequencies.*6*” There is also a small change in frequencies
from the Toukan-Rahman model, especially for the bending mode, due to the different
equilibrium geometry employed. As we can see from the molecular Schrodinger equation
[Egs. (2.10) and (A4)], the intramolecular motion is coupled to the electronic degrees of
freedom in the condensed phase through the intermolecular Coulombic interaction.

Other parameters of the PFG model are shown in Table I. The equilibrium geometry of
an isolated water molecule is taken as rQ; = 1.0 A and (ZHOH)® = 112°. The OH bond
length is identical to that for SPC model and the HOH angle is increased from the SPC
value in order to improve the calculated dielectric constant in the liquid [Section V B4].
As in the PRG model, the dipole moment p° of an isolated molecule is taken to be the
experimental value of 1.855 D. The polarizability components employed for an isolated
molecule are o), = 1.2928 A% and o2, = 0.9542 A3, corresponding to 84.6 and 65.0 % of the
gas-phase experimental values, respectively. As explained in Appendix C, «,, is enhanced in
the liquid to a larger extent than oy, as a result of the change in average molecular geometry.
Therefore, the anisotropic scaling of polarizability components as applied here for the isolated
molecule would result in near isotropic polarizability in liquid at approximately 80 % of the
gas-phase experimental value. A further discussion on the effects of polarizability anisotropy
on properties will be given in Section VI.

The widths of the Gaussian charge distribution are specified to be 0.8 A both for the
oxygen and hydrogen sites. Due to the large number of parameters subjected to optimiza-
tion and their interrelation with regard to the computed properties, it is very difficult to

determine a unique value of the Gaussian width. However, the current choice is in line with
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previous water modeling studies that have employed Gaussian charge distribution
produces a reasonable set of properties when used in combination with other model param-
eters. We have also tried differing Gaussian widths for the oxygen and hydrogen sites. In
principle, this provides even better control over the short-range interactions between differ-
ent kinds of atomic sites. However, in the current model, it did not result in a significant
improvement and was therefore discarded for the sake of simplicity.

The LJ parameters for PFG has a larger o (3.215 A) and a smaller € (0.139896 kcal /mol)
value than the SPC values (o = 3.165 A and € = 0.15544 kcal/mol). Therefore, the model
exhibits a stronger repulsion and slightly weaker dispersion interaction compared to the
SPC water. This choice was mainly governed by the enhanced interactions arising from the
induced dipole moments. With this choice, the oxygen-oxygen radial distribution function,
sensitive to the LJ parameters, is found to have good positions of the first and second peaks
[Section V B2].

The quadrupole moment of an isolated molecule derived from the geometry and dipole
moment is shown also in Table I for the two models. These values are sensitive to the value
of the HOH bond angle and are underestimated compared to the experimental data. This
is a general limitation of a 3-site modeling of water and cannot be significantly improved

unless additional interaction charge sites are introduced in the model.

IV. MD SIMULATION DETAILS

Liquid phase MD simulations were carried out with 256 water molecules in a cubic box
of length L = 19.73 A, corresponding to a density of 0.997 g/cm®. The velocity Verlet
algorithm*! was employed to integrate the atomic equations of motion with time step size
of 0.5 fs (PFQG) or 1.0 fs (PRG). The system was initially equilibrated at ~ 300 K for more
than 100 ps. The simple velocity scaling method was used to control the system temperature
during this equilibration stage. The production runs were then carried out in the micro-
canonical ensemble without velocity scaling or thermostat. Periodic boundary conditions
were imposed. For short-range LJ interactions, all minimum image pairs were included in
the potential and force calculations. For the calculation of electrostatic interactions, the
Ewald sum method was employed with the conducting boundary condition [Appendix A].

The width of the Gaussian screening charge distribution &, was chosen as 2.18 A and the
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k-space summations were truncated such that n? < 54 and n, < 8, where n = Lk/(27).
The value of & corresponds to k45 = 6.4/L in the point charge limit ({, = 0) [Eq. (A2)].

In this study, we have used both the iteration method?® and the extended Lagrangian
method [Section ITD] to treat the MS-EVB electronic degrees of freedom. For the iteration
method, we used a relative convergence criterion of 107'2 in terms of the total energy.
With this, convergence was achieved in 7-8 (PFG) and 9-10 (PRG) iterations and the total
energy was conserved within 0.001 kcal /mol/100 ps. In the extended Lagrangian calculation,
we determined the smallest possible values of the fictitious mass m, which did not cause
numerical instabilities. The optimal values are found to be 108 au ([energy]x[time]|?) for
PFG and 390 au for PRG. With these values, the total energy of the real system [Eq.
(2.15)] is conserved within 0.0005 kcal/mol/100 ps. We note that the energy conservation
with the rigid model is 2-4 times better than that with the flexible model for a given
integration method. This is likely due to more degrees of freedom and faster intramolecular
motions present in the PFG model. Even though the ext-L. method results in a better
energy conservation than the iteration for a short trajectory (< 400 ps for PRG, < 200
ps for PFG), the kinetic energy Ky of the fictitious electronic degrees of freedom in the
former will eventually become significant and the real system dynamics will be affected
at longer times. Therefore, when a long trajectory is required, the ext-L. simulation was
truncated after 200 ps (PFG) or 400 ps (PRG) and resumed with a single iteration step in
the beginning, resetting K to zero. In addition, for both iteration and ext-L simulation,
a short velocity scaling period (~ 2 ps) was inserted between production trajectories every
0.5-1 ns in order to maintain the target temperature of 300 K. The errors associated with
the ext-L calculation will be discussed in Section VI.

The use of GCD instead of point charges incurs about 40 % increase in computational time
for nonpolarizable models such as SPC and SPC/F. When the polarizability is also added
to these, there is an additional factor of 1.1 (ext-L algorithm) or 2.5 (iteration algorithm)
increase in computational time. As a result, the computational demand of the PRG model
is 1.5 (with ext-L algorithm) and 3.5 (with iteration) times higher than that of the SPC
model. Likewise, the PFG model is 1.6 (with ext-L algorithm) and 3.3 (with iteration) times
more expensive than the SPC/F model. These modest increases in computational demand,

especially for the ext-L approach, are quite encouraging for treating realistic systems.
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V. RESULTS
A. Dimer properties

Even though the current MS-EVB water models were developed with the purpose of re-
producing ambient liquid water properties, it is of interest to study their dimer properties
because they indicate the phase-transferability of the model. The equilibrium geometry of
the dimer cluster was obtained by gradual velocity scaling to the target temperature of 0.1
K. At this temperature, the kinetic energy of the system is negligible compared to the po-
tential energy. In Table III, we have listed the equilibrium geometry and the dissociation
energy obtained from the PRG and PFG models. From the O-O distance roo and the dis-
sociation energy D., we note that PRG yields a slightly stronger intermolecular interaction
than PFG. Aside from the small effect on the PFG dimer of the increased OH bond length
(1.014A) participating in the hydrogen bond, this effect is mainly due to the higher vacuum
polarizability of the rigid model. This picture may also change in the liquid phase: since the
average ZHOH of PFG in liquid (107.39°, Section V B) is significantly smaller than that in
dimer (110.6° for the hydrogen-bond donor and 110.9° for the acceptor), the effective molec-
ular polarizabily of the flexible model will be higher in liquid than in dimer (see Appendix
C) with the resulting increase in electrostatic interaction in liquid. The two MS-EVB water
dimer results and the experimental data shows a good agreement in general. The only excep-
tion is the angle between the O-O axis and the symmetry axis of the acceptor molecule, 6,,
for which the two MS-EVB model predictions are much smaller than the experiment. This
seems to be a general limitation of a three-site water model.5>2 Nonetheless, the current
models provide a distinctive improvement in dimer properties compared to nonpolarizable

three-site potential models, such as SPC, SPC/E, and TIP3P.5%:5!

B. Properties in the liquid
1. Molecular properties

The average molecular geometry of the PFG model undergoes a significant change in going
from gas phase to liquid. As shown in Table IV, the average OH bond length rog increases

by 0.02 A and the average HOH bond angle ZHOH decreases by 4.6° from the equilibrium
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values. While the increase of 7oy is in agreement with experiment,> the large decrease of
/HOH contradicts experimental data® and theoretical results employing quantum chemical
methods.’*¢ This problem is common in the majority of flexible water potential models
and arises because the molecular charge distribution cannot adjust properly to the changing
geometry. We address the consequences of this problem and possible solutions in Section VI.
Despite this, ZHOH is within the range of experimental estimates thanks to the adjusted
value of (ZHOH)?.

The average molecular dipole moments in liquid, g, of the PRG and PFG models are
2.590 and 2.604 D, respectively. They are in line with many other polarizable water potential
models.243057760 We note that i of the PFG model is slightly higher than that of the PRG
model even though the PRG model has a higher gas phase polarizability. As mentioned in
the previous section and Appendix C, this is because the decrease of ZHOH results in an

enhanced polarizability (both electronic and atomic) for the PFG model in liquid.

2. Structure

The radial distribution functions of the PRG and PFG models are shown in Figs. 2-4

120 and data extracted from x-ray

together with the results for the original Polarflex mode
scattering®® or neutron diffraction® experiments.

The oxygen-oxygen distribution goo [Fig. 2] was used in the parameterization of the PRG
and PFG models. As a result, these models show very good agreement with the experimental
goo of Sorenson et al.®! in terms of the positions of the first peak and the position and height
of the second peak. The height of the first peak is somewhat too high and the first minimum
is located too low and inward for these models. These discrepancies could not be removed
without an impact on the reproduction of other properties. We note that the overstructuring
of the goo first peak is a general tendency of polarizable potential models®! and was greatly
improved by the employment of GCD in the current models instead of the point charges (the
original Polarflex model shows a similar first peak height but its dipole moment in the liquid
is about 0.05 D less than those of PFG and PRG.?). The coordination numbers of the first
solvation shell obtained by integrating goo up to the first minimum are 4.0, 4.2, and 4.3 for
the original Polarflex, PRG, and PFG model, respectively. These values compare favorably
to the x-ray scattering result of 4.7 (Ref. 61) or the neutron diffraction result of 4.5 (Ref.

16



62). The lower values for the PRG and PFG models are another manifestation of stronger
short-range interaction for these models. These values are very sensitive to the position of
the first minimum and can be brought closer to the experimental data if the experimental
minimum position (~3.4 A) instead of the model prediction (~3.3 A) is used as the upper
limit of integration.

The oxygen-hydrogen and hydrogen-hydrogen radial distributions of the PRG and PFG
models [Figs. 3 and 4] also show positions of the first and second peaks in good accord with
the neutron diffraction results of Soper.®? The peak heights are, on the other hand, over-
estimated compared to the experimental results. While this indicates that the short-range
interactions are too strong, a comparison of classical gog and ggg with experiment involves
more uncertainty due to a significant nuclear quantum effect expected for the hydrogen

atoms. 53,64

3. Energetics

The intramolecular potential energy, Vinya, of the PFG model in liquid is 1.79 kcal/mol
and is 0.28 kcal/mol higher than the value for SPC/F (Table IV). This occurs because the
stronger intermolecular interaction of polarized molecules favors more distortion of the PFG
water geometry. This is a large increase from the gas-phase value at 300 K (0.93 kcal/mol
for both SPC/F and PFG models, which is close to the harmonic value of 0.89 kcal/mol).
We note that Stern and Berne® estimated quantum corrections to the intramolecular energy
based on a harmonic oscillator model and found a value of —0.6 kcal/mol for the difference
between the quantum corrections in the liquid and gas phase. If this is applied to the current
result, the liquid state Vi of the PFG model would be much closer to the gas-phase value.

The intermolecular potential energy Vipter of the PRG and PFG models are —10.02 and
—10.56 kcal/mol, respectively (Table IV). This is higher than the SPC/F value of —11.36
kcal/mol. However, Vi for polarizable models include self-polarization energy given by
SO AQ Ty — ¢ éas\ﬁg |1z.s)] and the electrostatic part of Vige would in fact be much
stronger for the polarizable models. The difference in the total potential energy V' (= Vipgra+
Vinter) between the liquid and gas phase can be compared to the experimental configuration
energy of —9.92 kcal/mol®® and was actually monitored during the parameterization process.

The PRG and PFG models show good agreement with the experimental value to within
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~ 0.2 kcal/mol. It should be noted that the nuclear quantum effect can make ~ 1 kcal/mol

63-65

difference in the liquid-state interaction energy but this was not taken into account here.

4. Dielectric and dynamic properties

We evaluate the optical and static dielectric constants, relaxation times of dipole mo-

ments, and the diffusion constant of the PRG and PFG models. The optical dielectric

constant €4, is calculated from the expression®
aT
oo =1+ —=TrA, 5.1
00 v (5.1)

where V is the volume of the system, A is the total polarizability tensor of the system and
Tr A is the trace of A. The tensor A is obtained by applying a uniform electric field of small
but finite intensity to the system and evaluating the linear response of the system dipole
moment to the field (finite field method). The results of 1.41 for the PRG and 1.32 for the
PFG model [Table IV] is lower than the experimental value of 1.79. This underestimation
of €5 occurs mainly because the out-of-plane polarizability component is not included in
the models. There is an additional contribution for the PFG model arising from reduced
electronic polarizability. For reference, we note that this result changes a little if we use
the sum of the gas-phase molecular polarizability in place of Tr A: 1.42 and 1.31 for the
PRG and PFG models, respectively. Even though the changes are small, we observe a
distinctive reduction of polarizability in liquid for the PRG model. For the PFG model,
the slight increase in €4, with the finite field method indicates the increase in electronic
polarizability due to the change in geometry [Appendix C]. In passing, we mention that the
use of Clausius-Mossotti equation®” instead of Eq. (5.1) would yield a higher value of g4,
(1.47 for PRG and 1.36 for PFG).

The static dielectric constant £q is obtained from the fluctuation of the system total dipole

moment M (=Y, u;),%

47 9

where kg is Boltzmann constant and the angular brackets denote an equilibrium average.

The average (M?) was calculated from a 2 ns trajectory for each model. The standard
deviation was evaluated from averages over 400 ps blocks of the total trajectory. The result

given in Table IV shows that the iteration and ext-L integration method yield identical
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results within the standard deviation. If the total average is taken over the entire trajectory
combining the iteration and ext-L results, we find g = 99 4+ 6 for the PRG and 99 + 8 for
the PFG model. This is about 25 % higher than the experimental value of 78, but it should
be noted that this is near optimal result within the framework of the current model. We
discuss the possible reasons for the overestimation of €3 and ways to improve it in Section
VL

In order to further study dielectric relaxation behavior of the models, we have calculated

i eff

the effective relaxation times 77" and 7}’ of the single-molecule and total-system dipole

moment time correlation functions (TCF), C,(t) and Cj(t), where

Cu(t) = (mi(t) - pus(0))
Cu(t) = (M(t) - M(0)) . (5.3)

Here, 7°T and 78T are time constants of the long time exponential decay of C),(t) and Cy(t),
respectively. Since the actual decay of the TCFs is not a perfect exponential, 7¢% and 7& are
slightly larger than the corresponding correlation times obtained by integrating C),(¢) and
Cu(t) from ¢t = 0 to oo. However, the difference between the effective relaxation time and
the correlation time was less than 10 % for the models studied here and we consider only
e and 78T, From Table IV, after averaging the iteration and ext-L results, it is found that
7% ~ 5.1 ps and 78! ~ 11.6 ps. Remarkably, these dipole relaxation times are essentially
identical to the SPC/F values. They are also in line with the values for nonpolarizable,
rigid SPC and SPC/E models: 7, = 3.3 £ 0.2 (SPC) and 5.3+ 0.3 (SPC/E),*® /y = 11+ 2
(SPC)% and 10+ 3 (SPC/E).® The value of m, for these models are somewhat higher than
the experimental value of 7.9 ps.

The translational self-diffusion constant D has been used in many water modeling studies

as a representative dynamical property. We calculated D from the slope of the mean square

displacement,
.14 c
D = lim = (e () =7 (0)F) (5.4)
where ™ is the center-of-mass position of molecule i and angular brackets denote an

equilibrium average. The slope was obtained from a segment between 2 and 20 ps in the
mean square displacement. The values reported in Table IV were obtained by taking average
and standard deviation from multiple blocks each of which are at least 50 ps long. The value

of D is one of the target properties in the parameterization of the PRG and PFG models.
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The resulting values of 2.42 (PRG) and 2.29%107° m?/s (PFQG) are in excellent agreement
with the experimental value of 2.4x107° m?/s at 300 K. We note that the ext-L method

produces D identical to the iteration result within the standard deviation.

5. Infrared absorption

The infrared (IR) absorption coefficient a(w) is given by™

2w o0 :
— _ —Bhw —iwt
a(w) PT— (1-—e )/_oodte Cu(t) , (5.5)

where £ is Planck constant divided by 2w, c¢ is the speed of light, n is the real part of
the medium refractive index and Cj,(¢) is given in Eq. (5.3). Since this expression does

not satisfy the detailed balance condition,”"?

2/(1 + e ™) to obtain

we multiply by the desymmetrizing factor of

o(w)n(w) = 34;‘;’/ tanh (%“) / Tt e Oy () | (5.6)

This choice of quantum correction is not unique and different methods result in large dif-
ferences in the corrected spectrum. The correction chosen here is a very weak one and
has been employed in previous studies on far IR spectrum of water.'»2%:73™ Duye to a large
uncertainty associated with the amplitude of the corrected spectra in the high frequency
region, we present the intermolecular spectrum in the far IR region [Fig. 5] and consider
only the peak positions at higher frequency [Table V|.

The experimental IR spectrum”™ in Fig. 5 shows two distinct peaks near 180 and 620
cm™', generally associated with hindered translation and libration (hindered rotation),
respectively.? The PRG and PFG models produce very similar spectrum in this frequency
region. The librational peak is well reproduced with these models, although its position is
higher at ~ 750 cm~! compared to experimental and SPC/F spectra. The distinct shoulder

1

near 250 cm~! matches the experimental 180 cm™' peak. This shoulder is absent in the

SPC/F spectrum, in line with previous studies that have shown that this translational band

originates from induced dipole correlation?6"

associated with hydrogen-bonding antisym-
metric stretching.” Turning to the intramolecular region, we find from Table V that the
blue shift of the intramolecular bending mode and the red shift of the stretching modes are

well reproduced by the PFG model. There still exists a sizable discrepancy in the peak
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positions. We attribute this, in part, to the neglect of anharmonicity in the intramolecular
potential of PFG, which is mainly responsible for the large red shift in the OH stretching

3776 and the uncertainties related to geometry change in liquid. Specifically, a more

modes,
correct accounting of the geometry dependence of charge distribution, as well as a more
refined intramolecular potential function, is required for a quantitative reproduction of in-
tramolecular IR spectrum. A quantization of the anharmonic vibrational modes may also

be required to properly capture the vibrational red shifts and absorption intensities.

VI. DISCUSSION AND CONCLUDING REMARKS

We have developed a three-site polarizable and flexible water model (PFG) by employing
the effective quantum mechanical description (MS-EVB) for electronic polarizability and
a diffuse Gaussian charge distribution for atomic interaction sites. In order to investigate
the effect of the flexibility, the rigid PRG model was also developed. As was seen in the
previous section, the liquid properties of the two models are very close in most cases. Since
they share a similar liquid geometry and interaction energy, we conclude that the effect of
flexibility is not significant for the liquid properties investigated in this study as long as
molecular geometry and electric properties are kept close in liquid between the rigid and
flexible models. The only exception is properties directly related to intramolecular degrees
of freedom, such as heat capacity and vibrational spectrum. This conclusion is in accord
with many previous studies on the role of flexibility using nonpolarizable models.”” "

The present models produce liquid properties in generally good agreement with exper-
iment. They show good peak positions in the radial distribution functions and the coor-
dination number closely matches experimental data. The liquid-state interaction energy
and diffusion constant also agree well with experiment. The high dielectric constant and
relaxation time for the collective dipole moment are correctly exhibited. The intermolecular
dynamics, as determined by the far IR spectrum, and the influence of the medium on the
intramolecular vibration, are also captured by the models.

The geometry of the flexible PFG model undergoes a large change in liquid: the OH bond
length increases by 2 % and the HOH bond angle decreases from 112° to 107.4°. The change
in the HOH bond angle, in particular, is at odds with experiment and has a far-reaching

effect on the liquid properties. As shown in Appendix C, it leads to a large increase in
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molecular dipole moment both directly and indirectly by enhancing the electronic polar-
izability. The resulting increase in electrostatic interaction affects most properties studied
here significantly. Moreover, the molecular quadrupole moment, already underestimated
by the limitation of the 3-site modeling, decreases even further as a result of smaller HOH
angle. This problem was handled in two ways in the current study. First, the gas-phase
electronic polarizability components were adjusted individually in order to counterbalance
the atomic polarization effect. As a result, the total polarizability (electronic plus atomic)
of the PFG molecule in liquid is comparable to that of the PRG molecule and the average
dipole moments of the two models in liquid are similar. Second, the equilibrium HOH angle
was increased to 112° so that its value in liquid is in line with experimental data. While this
provides a reasonable solution with good liquid properties, we plan to pursue a more funda-
mental remedy?%10:34

of the EVB basis states.

by incorporating the geometry dependence into the charge distribution

During the parameterization of the PFG model, it was observed that the anisotropy in the
input electronic polarizability tensor @ has a large influence on the calculated properties.
For example, when o, was varied from 55 % to 75 % of the experimental value while the
trace of a’ and other parameters are kept constant, the average molecular dipole moment
increased by 0.18 D and the potential energy per molecule decreased by 1.6 kcal/mol, leading
to stronger interactions. There was also a large impact on the dielectric constant and
diffusion constant: 25 % increase in €y and 36 % decrease in D were observed in going from
65 % of experimental a2, to 75 %. If 2, is fixed and agy is increased, the interaction gets
stronger due to higher induced dipole moment but the diffusion constant gets larger and
the O-O RDF exhibits softer peaks, indicating the weaking of hydrogen bonding structure.
The larger transverse component agy weakens the structure and enhances the dynamics
significantly. This indicates that the out-of-plane polarizability, ignored in this study due
to the limitation of the 3-site model, would also have a large effect in the same direction.
Since the PFG model exhibits a slightly stronger interaction and overestimates the dielectric
constant, it is possible that the inclusion of out-of-plane polarizability component could lead
to a further improvement of the model. This issue will be investigated in future work.

We have implemented the ext-L algorithm for the integration of the polarization degrees
of freedom. This algorithm exhibited very good efficiency and the calculated static and

dynamic properties are essentially identical to the iteration results. This demonstrates that
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the ext-L algorithm can be a viable alternative to the iteration for the system studied here.
Another way to check the accuracy of the ext-I. method is via the deviation of the ext-L

solution from the MS-EVB Schrédinger equation (Eq. (2.10)) given by
A=1—h; h= Nl lhiglvi)l , (6.1)

where 1% is the electronic ground-state wavefunction obtained from the ext-L method,
Ny, = [ | (hig)thiglvip)]~/2 is the normalization constant, k is the average of h over the

i

molecules, and A

¢ in these expressions should be constructed from the charge distribution
of the ext-L simulation. The quantity A is 0 if ¢’ is the exact solution to the MS-EVB
Schriodinger equation and greater than 0 otherwise. From Fig. 6, we see an initial jump in
A from 0 due to the jump in wavefunction velocity from 0. Following this, the PRG curve
remains constant but the PFG curve shows a gradual increase in A. This shows that the
ext-L method works better with the PRG model than with the PFG, which can also be
inferred from the length of trajectory that can be generated without interruption (400 ps
vs. 200 ps, Section IV). However, the magnitude of error is very small even for the PFG
model and the wavefunction from the ext-L. method remains a very good approximation
to the exact solution after 100 ps. This result is important because the ext-I. approach is
considerably more efficient than the iteration method for these models.

Future research will focus on generalizations of the present model to treat more elaborate

charge distributions, more accurate intramolecular potentials, and a correct description of

the effects of molecular vibrations on the permanent and induced dipoles.
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APPENDIX A: LONG-RANGE ELECTROSTATIC INTERACTIONS IN THE
GCD MODEL

In this study, the long-range electrostatic interaction is treated by the Ewald sum method.

As is shown in Section ITI, optimal values of the GCD width &, are less than 1 A. Since the
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width of the Gaussian screening charge &; employed in the Ewald sum for the point charge
distribution is usually > 2 A, we can apply the same standard Ewald sum technique with
the Gaussian screening charge distribution to the GCD case. In this case, the standard
Ewald expression for point charge distribution should be modified based on Eq. (2.13). The
Coulombic interaction operator ﬁc(ml in Eq. (2.8) should then be replaced by HEwald

Coul »
HEad = HCoul + HCoul + Hée(}fﬂ ; (A1)
A Giad 1 1
Hggul = 5 ZZ Z Z = J; [erf KapBTia, J,B) 2erf(’€as7'ia,jﬂ) - ierf(ﬁ’ﬂsria,jﬂ)] )
a 'La
(J;éz

2 szq k? k?
Hiow = I3 ZZZZ Jﬂ cos(k - Tia;p) [exp (_4’%5) + exp (—4K2 ,

*a]lﬂk;éo Bs

N 1 A Giad
Heo = —ﬁzzw@aqﬂ— ZZ S L ferf(sastiois) + erf(kpaTins)]
=1 «

zlaﬂ;&)mzﬁ

where ko5 and ko, are defined by

1 1
Fop = sy s = o (42)
2(82 +£3) 2(€5 + &)
Tia,j3 = Tia — Tjg, L is the length of the cubic simulation box, and k = (27/L)(n,, ny,n,)

with ng, ny, n, integers. In Eq. (Al), the three terms that constitute H(Ejgvlﬁld are the real
space screened interaction, the reciprocal space screening charge interaction, and the ionic
and intramolecular self-energy corrections, respectively. For convenience in the following
development, they are written in a symmetrized form over (icr) and (55). It is also convenient

to express HEY4 as follows

Hgglaild = Z Z Z Z GialipGia,ip (Tia, rJ/J’)

=1 a j=1
1

Gias(Tias Tjp) = 5(1 = 0ij) ,
ia,j

m cos(K - Tin ;5) k? k?
toX o | ) e Tag
k#0 s
1

1
~83;(1 — 64
4 J( ﬂ)ria,iﬂ

1 1
[erf(/{aﬂrm,j,g) — §el‘f(lf,a57’m’j5) - §erf(/$gsria,j5)]

0ij0apkas — lerf(KasTiaig) + erf(kpsTia,ig)] (A3)

1
NZS
The effective molecular Hamiltonian operator hi o and the system total energy F can be

obtained in a straightforward way by substituting Eq. (A3) for the Coulombic terms in
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Egs. (2.10) and (2.11) and then replacing the charge operators with the corresponding ex-

pectation values as the original expressions indicate. For example, hl; is given as

ho + 2 Z Z Z QJ/J’qza ia,j B r’LCw r]ﬂ) (A4)

a j=1

where gio = (V*|Gia|0?). We also introduce the effective electric potential ®;,(r;,) at the

atomic site « of molecule 7,

(I)ia (rza = =2 Z Z q],BGza,jﬂ Tia, r]ﬂ) (A5)

a%a

The system Coulombic energy Fcoy is related to ®;,(r;,) by the familiar relation
1N
ECoul = <\I’|Hgmld > = 5 Z ZQia(I)ia(ria) . (A6)

APPENDIX B: DETAILS OF THE EXTENDED LAGRANGIAN ALGORITHM
FOR THE MS-EVB MOLECULAR DYNAMICS

In the velocity Verlet algorithm, the EVB coefficients at time ¢ + ¢ and the coefficient
velocities at time ¢+ (1/2)dt are first determined from the values at time ¢ based on Eq. (2.18)

without the normalization constraints
E(t+dt) = c(t)+tél (¢ ——Zc V(R mn
Cn(t + iét) = Cn(t) - E Zcm(t)( eff)mn . (B]')

Then, we apply the constraint force to obtain a formal expression for the corrected coeffi-
cients at time t + §t
) ) 0t )
o (t+6t) =& (t + dt) + EAic;(t) : (B2)

Imposing the normalization condition to ¢! (¢ + dt), we obtain the equation for A;

ot [Z\ i (1)[2 A2+2— [Z”(Hét

n
The multiplier A; is given as the larger of the two possible solutions to this quadratic

A+Z\ (t+ot)2=1. (B3)

equation. This A; is then used in Eq. (B2) to complete the specification of ¢, (¢ + 6¢). The
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same A; is also used to update the coefficient velocities

L1 3 1 ot i ~
Ea(t+6t) = &(t + 561) - Eczmjcm(t+5t)( it mn ( + 01)

— A (1), B4
A (B4

where (Big)mn(t +6t) = (m|hig(t+ 6t)|n) determined with ¢t (¢ + 6t)’s in Eq. (B2). The final

coefficient velocities at time ¢ + ¢ are written as
é(t+6t) = & (t+ 6t) + Tyc (t+ 6t) (B5)

where the last term involving ['; is the correction to satisfy the following relation obtained

by taking time derivative of the coefficient normalization condition at time ¢ + 6t
D E(t+6t)c(t+0t) =0, (B6)
Using Egs. (B5) and (B6), I'; is getermined as
Dy=— Y & (t+8t)c (t+0t) . (BT)
This T'; is then used in Eq. (B5) to co;plete the coefficient velocities at ¢ + dt.

The algorithm described above can be inserted in the standard velocity Verlet integration

scheme in the following order:

1. Given the positions {r;,(t)} and velocities {r;,(¢)}, the first stage of the standard
velocity Verlet algorithm is carried out, yielding {r;,(t + 6t)} and {f;,(t + (1/2)d%)}.

2. Given {c ()} and {¢(t)}, {c’(t + ot)} and {¢ (¢t + (1/2)6t)} are obtained from
Egs. (B1), (B2), and (B3).

3. Forces for nuclear degrees freedom are calculated at time ¢ + ¢ based on {r;, (¢ + 6t)}

and the updated charge distribution from {c’ (¢ + §t)}.

4. The velocities {r;,(t 4 6t)} are calculated from the forces just obtained (second stage

of the standard velocity Verlet).
5. The time derivatives {¢¢ (¢ + dt)} are obtained from Egs. (B4), (B5), and (B7).

6. The above procedure is repeated for the next time step ¢ + 20t.

When a rigid potential is used, the standard RATTLE algorithm for the bond constraints*!

can be added to the first and fourth steps in the above procedure.
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APPENDIX C: EFFECT OF MOLECULAR DEFORMATION ON THE POLAR-
IZABILITY OF A PFG WATER MOLECULE

In Section IT A, we have developed the single-molecule electronic Hamiltonian in the EVB
basis, h%y, based on the equilibrium geometry of the molecule. While this is exact for the
rigid PRG model, it ignores the intramolecular deformation of the flexible PFG model.
Since we observed a significant geometry change for the PFG water in liquid [Section VB 1],
its electronic polarizability will be different from its gas-phase value. We can evaluate this
modified polarizability by (i) taking a single PFG molecule from the liquid with its geometry
fixed at its average liquid value and (ii) applying Eq. (2.6) for a. Here, we note that the
eigenvalues and eigenfunctions entering the expression for a are the same as in the molecule
with gas-phase equilibrium geometry since hl,y is the same. The only difference is in the
dipole operator fi due to the change in molecular geometry. Using the average liquid-phase
geometry of a PFG molecule from Table IV, we obtain a,, = 1.2819 A% and a,, = 1.1130
A3, This is a 1 % decrease from the gas-phase value for ayy and 17 % increase for a,.
Compared to the experimental polarizability, o, and ¢, for a liquid-phase molecule are 84
and 76 % of the corresponding experimental value. The electronic polarizability of a PFG
molecule becomes nearly isotropic in liquid as a result of the anisotropic change from the
gas-phase value.

In addition to this electronic effect, the deformation of a PFG molecule enhances the
molecular dipole moment through the change in geometry itself (atomic polarization, Ref.
67). It is less straightforward to calculate this atomic polarizability. However, we can esti-
mate its magnitude using a reaction field argument. We first recall the following expressions

involving the reaction field R of a polar polarizable dipoleS’

R = Lupea

- fa
Hind = @Ra (Cl)

where f is the reaction field factor given by f = 2(eo — 1)/[(2€0 + 1)a®] with a the radius of
the spherical cavity accommodating the dipole, @ = Tr /3 is the isotropic polarizability of
the dipole, pipe and ping are the permanent and induced part of the dipole, and we consider

only scalar quantities since all the vector quantities are in the same direction. The cavity

radius a will be similar for the PRG and PFG molecule since they have a similar geometry in
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the liquid. Therefore, we use a = 1.513 A obtained from the above expression using data for
the PRG model. With this value for a, & for the PFG molecule is found to be 1.01 A3. Since
the electronic contribution @& to this is (1.2819 + 1.1130)/3 = 0.80 A3 from the previous
paragraph, we find the atomic polarizability @,; to be 0.21 A3. The atomic polarization is

thus responsible for about 20 % of the total polarization of the PFG molecule in liquid.
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TABLE I: Parameters for the rigid (PRG) and the flexible (PFG) water models with MS-EVB
description of polarizability. In respective order, the parameters are defined as follows: ’I‘?)H and
(/ZHOH): Equilibrium OH bond length and HOH bond angle in the gas phase. u°, a2, agy and
a?,: Gas-phase dipole moment and polarizability components. Q2,, 2y and QY,: Quadrupole
moment derived from the geometry and dipole moment. (The molecule lies on the yz-plane with

the symmetry axis z.) £o and &y: Widths of Gaussian charge distribution for O and H atomic

sites. € and o: LJ parameters between O atomic sites.

Parameter PRG PFG Exp.
rdy (A) 1.0 1.0 0.95729
(£ZHOH)? (°) 107.47 112.0 104.52¢
p° (D) 1.855 1.855 1.855°
a2, (A®) 0 0 1.415¢
af, (A3) 1.528 1.2928 1.528¢
ad, (A?%) 1.468 0.9542 1.468¢
£o (A) 0.8 0.8 -
¢u (A) 0.8 0.8 -
e (kcal/mol) 0.15544 0.139896 -
o (A) 3.165 3.215 -
0. (DA)4 —1.445 —1.543 —2.5¢
9, (DA)d 1.613 1.877 2.63¢
0 (DA)¢ —0.168 —0.335 —0.13¢
“Ref. 46.
ORef. 43.
“Ref. 44.

4Quadrupole moments are not part of the model parameters and determined from the geometry and dipole

moment.

¢Ref. 80.
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TABLE II: Intramolecular potential constants and vibrational frequencies for an isolated water

molecule. The entries w,s, wg and wp are frequencies for asymmetric stretch, symmetric stretch

and bending modes, respectively.

PFG Exp.

a (kcal/(mol-A?)) 1342¢ -

b (kcal/(mol-A?)) 328.6¢ -

¢ (kcal/(mol-A?)) —211.4° -

d (kcal/(mol-A2)) 111.7¢ -
Was (cm™1) 3978 3756°
ws (cm™1) 3842 3657°
wp (cm~1) 1602 1595°

"Ref. 37.

bRef. 46.
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TABLE III: Properties of the water dimer. [roo: the oxygen-oxygen distance. D.: Equilibrium
dissociation energy. 6, and 6,: Angle between the O-O axis and the symmetry axis of the hydrogen-
bond donor and acceptor molecule, respectively.] Experimental uncertainties from the original

literature are indicated in parentheses.

PRG PFG Exp.
roo (A) 2.76 2.80 2.98(0,-0.03)®
D, (kcal/mol) 5.1 5.0 5.4(0.7)°
04 (°) 51 53 51(10)°
0a (°) 15 16 57(10)¢
TRef. 81.
SRef. 82.
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TABLE IV: Liquid properties of the MS-EVB water models at T = 300 K and p = 0.997 g/cm?3.

For comparison, results for the nonpolarizable, flexible SPC/F model (Ref. 37) are also given.

If the entry has two values, the first is from the iteration method and the second from the ext-

L. Otherwise, the results from the two methods are identical.

standard deviation from the average or the experimental uncertainty.

Numbers in parentheses are the

SPC/F PRG PFG Exp.
Fou (A) 1.02 1.00 1.02  0.970(0.005)°
/HOH (°) 105.74 107.47 107.39 106(2)°
i (D) 2.42 2.590 2.604 2.9(0.6)°
Vintra (kcal/mol) 1.51 - 1.79 -
Vinter (kcal/mol) —11.36 —10.02 —10.56 -
V() — V(g) (kcal/mol)  —10.78 —10.02 —9.70 —9.92¢
Cy (cal/(mol-K)) 25.2 16.9, 17.0 27.2, 27.7 18¢
D (10=%m?/s) 3.0 2.44(0.04), 2.40(0.03) 2.29(0.07), 2.28(0.04) 2.4/
Eoo 1 1.41 1.32 1.799
€0 91(10) 101(4), 98(9) 97(3), 101(11) 789
7 (ps) 5.0" 5.0(0.2), 5.2(0.1) 5.1(0.2), 5.2(0.2) -
& (ps) 11.6(0.4)  11.3(1.2), 11.8(0.4)  11.4(1.3), 11.7(1.3) 7.9
"Ref. 53.
bCalculated from intramolecular distances of Ref. 53.
“Ref. 83.
dRef. 50.
¢Ref. 84.

fInterpolation from the data of Ref. 85.

9Ref. 86.

hReported in Ref. 87 with a variant of SPC/F employing an anharmonic intramolecular potential.
‘Interpolation from the data of Ref. 88.
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TABLE V: Peak positions of liquid water IR spectra and shifts from gas phase frequencies (in
cm™!). wr, is the peak frequency of the librational band. Other frequencies have the same meaning

as in Table II. Aw = w(liquid) — w(gas).

SPC/F® PRG® PFGe Exp.
wr, 640 750 750 620°
wh 1815 - 1785 1645¢
Wy 3836 - 3802 3280°¢
Was 3943 - 3916 3490¢

Awy, 158 - 183 50
Awg -5 - —40 -377
Aw,s —-30 - —62 —266

%Peak positions of the function n(w)a(w) (Eq. 5.6).
bPeak position of the librational band from the experimental n(w)a(w) from Ref. 75. This can be different

by a few tens of cm™! from peak positions determined from the absorption coefficient a(w) only.
‘Ref. 89.
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FIG. 1: EVB basis states for a water molecule. Numbers indicate charges associated with each

atomic site.
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FIG. 2: O-0 radial distribution function. Experimental curve is from Ref. 61.
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FIG. 3: O-H radial distribution function. Experimental curve is from Ref. 62.
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FIG. 4: H-H radial distribution function. Experimental curve is from Ref. 62.
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FIG. 5: Far infrared abrorption spectra of liquid water. Experimental spectrum is from Ref. 75.
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FIG. 6: Estimated errors in the extended-Lagrangian wavefunction as a function of time. The

quantity A is defined in Eq. (6.1) and measures the magnitude of the error.
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