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In the field of uncertainty quantification, uncertainty in the governing equations may
assume two forms: aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty
can be characterised by known probability distributions whilst epistemic uncertainty
arises from a lack of knowledge of probabilistic information. While extensive research
efforts have been devoted to the numerical treatment of aleatory uncertainty, little atten-
tion has been given to the quantification of epistemic uncertainty. In this paper, we pro-
pose a numerical framework for quantification of epistemic uncertainty. The proposed
methodology does not require any probabilistic information on uncertain input parame-
ters. The method only necessitates an estimate of the range of the uncertain variables that
encapsulates the true range of the input variables with overwhelming probability. To quan-
tify the epistemic uncertainty, we solve an encapsulation problem, which is a solution to the
original governing equations defined on the estimated range of the input variables. We dis-
cuss solution strategies for solving the encapsulation problem and the sufficient conditions
under which the numerical solution can serve as a good estimator for capturing the effects
of the epistemic uncertainty. In the case where probability distributions of the epistemic
variables become known a posteriori, we can use the information to post-process the solu-
tion and evaluate solution statistics. Convergence results are also established for such
cases, along with strategies for dealing with mixed aleatory and epistemic uncertainty.
Several numerical examples are presented to demonstrate the procedure and properties
of the proposed methodology.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical models are used to simulate a wide range of systems and processes in engineering, physics, biology, chem-
istry and environmental sciences. These systems are subject to a wide range of uncertainties. The effects of such uncertainty
should be traced through the system thoroughly enough to allow one to evaluate their effects on the intended use of the
model usually, but not always, related to prediction of model outputs.

There are two forms of model uncertainty: aleatory and epistemic. Aleatory uncertainty arises from the inherent variation
associated with the system under consideration and is irreducible. Epistemic uncertainty represents any lack of knowledge
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or information in any phase or activity of the modeling process [13] and is reducible through the introduction of additional
information.

The sources of aleatory uncertainty are typically represented using a probabilistic framework under which the aleatory
uncertainty can be represented by a finite number of random variables with some known distribution. The sources of ale-
atory uncertainty include both uncertainty in model coefficients (parametric uncertainty) and uncertainty in the sequence
of possible events (stochastic uncertainty). Stochastic uncertainty is entirely aleatory by nature. Parametric uncertainty can
also be completely aleatory if the complete distribution of all the model parameters are known a priori.

Frequently, strong statistical information such as probability distribution functions or high-order statistical moments is
not available. Experimental data needed to construct this information is often expensive and consequently no data, or only a
small collection of data points, may be obtainable. In these cases ‘‘expert opinion” is used in conjunction with the available
data to produce weak inferential estimates of parametric characteristics, often in the form of lower and upper bounds. Other
sources of epistemic uncertainty include limited understanding or misrepresentation of the modeled process, known com-
monly as ‘‘model form” uncertainty. Inclusion of ‘‘enough” additional information about either the model parameters or
structure can lead to a reduction in the predicted uncertainty of a model output. Consequently, we can consider epistemic
uncertainty as providing (conservative) bounds on an underlying aleatory uncertainty, where reduction and convergence to
the true aleatory uncertainty (or, in some cases, a constant value) can be obtained given sufficient additional information.

Until recently, most uncertainty analysis has focused on aleatory uncertainty. Numerous methods have been developed
that provide accurate and efficient estimates of this form of uncertainty. In particular, stochastic Galerkin (SG) [2,9,28] and
stochastic collocation (SC) [1,5,8,16,21,25,27] methods provide accurate representations of aleatory uncertainty and have the
ability to deal with steep non-linear dependence of the solution on random model data. For a detailed review on the meth-
ods, see [26].

In comparison to the quantification of aleatory uncertainty, the analysis of epistemic uncertainty has proved more chal-
lenging. Probabilistic representations of epistemic uncertainty are inappropriate, since the characterization of input episte-
mic uncertainty through well-defined probability distributions imposes a large amount of unjustified structure on the
influence of the inputs on the model predictions. This can result in stronger inferences than are justified by the available
data. Evidence theory [12], possibility theory [4] and interval analysis [11,19] have been proposed as more appropriate alter-
natives, where they are listed in descending order based on the amount of imposed input structure.

Of the aforementioned methods, evidence theory is the most closely related to probability theory. Evidence theory starts
from basic probability assignments on the inputs, propagates these descriptions through a model using standard sampling
techniques, and produces estimates of the lowest and highest probabilities of the model observables. These estimates define
cumulative belief and cumulative plausibility functions that represent the uncertainty in the output metrics, where belief
provides a measure of the amount of information that supports an event being true and plausibility measures the absence
of information that supports the event being false. The evidence theory representation of uncertainty approaches the prob-
abilistic representation as the amount of information about the input data increases [12].

Possibility theory is closely related to fuzzy set theory and, similar to evidence theory, utilizes two descriptions of like-
lihood, necessity and possibility. These two measures are based upon the properties of individual elements of the universal
set of events, unlike plausibility and belief which are derived from the properties of subsets of the universal set. For more
details, see [10].

Evidence and possibility theory require aggregation of data from multiple sources into a format consistent with the cho-
sen technique. In practice, this can be difficult and time consuming. Interval analysis [17], on the other hand, only requires
upper and lower bounds on the uncertain input data. Sampling and/or optimization [5,19] is then used to generate upper and
lower bounds (intervals) on the model outputs from predefined intervals on the input data.

The application of evidence theory, possibility theory and interval analysis to non-linear and complex problems often re-
quires a prohibitively large number of samples and typically underestimates the output extrema. Global surrogate models
have been used in an attempt to alleviate this problem [10]; however, the performance of these approaches is highly depen-
dent on the accuracy of the surrogate model and construction costs can be high when global accuracy is required and con-
vergence rates are not exponentially fast. In more recent work, surrogates with adaptive refinement strategies have been
combined with stochastic collocation methods [5,6,19,20] in order to segregate aleatory quantification with stochastic
expansions from epistemic quantification using optimization-based interval estimation.

The choice of the aforementioned methods depends on the amount of available information which can be utilized to char-
acterize the input uncertainty. Consequently this choice is highly problem dependent. Here we propose a new and more gen-
eral framework to numerically quantify epistemic uncertainty. This proposed method can deal with varying amounts of
information on the input data from simple bounds to full probabilistic descriptions, and thus can seamlessly handle the
problems with both epistemic and aleatory uncertainties. Furthermore the proposed approach utilizes the classical approx-
imation theory in multi-dimensional space and achieves high efficiency than the methods currently available.

Unlike many existing numerical methods for quantifying epistemic uncertainty, the proposed method requires only an
approximation of the ranges of the input data that encapsulates the ‘‘true” bounds of the input data. We then propose solving
an ‘‘encapsulation problem” which generates a solution to the governing equations in a domain that encloses the true (and
unknown) probability space. Here a multi-dimensional polynomial expansion can be employed to approximate the solution
on the larger encapsulation space. We show that if such a representation converges in the encapsulation space then this
method will also converge in the true probability space. Furthermore, convergence is maintained even in the presence of



4650 J. Jakeman et al. / Journal of Computational Physics 229 (2010) 4648–4663
dependencies between input data. We also demonstrate numerically that if the distributions of the input data are found a
posteriori, the polynomial approximation of the solution statistics will converge.

In Section 2, we present the necessary mathematical framework for quantifying epistemic uncertainty and in Section 3 we
discuss the construction and solution of the encapsulation problem. In particular we focus on polynomial based Galerkin and
collocation methods and illustrate how these methods can be used to construct efficient and accurate approximations of the
solution to the encapsulation problem. We also extend the encapsulation approach to models with mixed epistemic and ale-
atory uncertainty and discuss how to extract and interpret important statistical information. Numerical examples are pre-
sented in Section 4 and we conclude the paper in Section 5.
2. Problem setup

Let D � R‘; ‘ ¼ 1;2;3, be a physical domain with coordinates x ¼ ðx1; . . . ; x‘Þ and let T > 0 be a real number. We consider
the following general stochastic partial differential equation
v tðx; t; ZÞ ¼ LðvÞ; D� ð0; T� � IZ ;

BðvÞ ¼ 0; @D� ½0; T� � IZ ;

v ¼ v0; D� ft ¼ 0g � IZ ;

8><
>: ð2:1Þ
where L is a (non-linear) differential operator, B is the boundary condition operator, v0 is the initial condition, and
Z ¼ ðZ1; . . . ; ZdÞ 2 IZ � Rd; d P 1, are a set of random variables characterizing the random inputs to the governing equation.
The solution is therefore a stochastic quantity,
vðx; t; ZÞ : �D� ½0; T� � IZ ! Rnv : ð2:2Þ
Without loss of generality, hereafter we assume (2.1) is a scalar system with nv ¼ 1. We also make a fundamental assump-
tion that the problem (2.1) is well-posed in IZ .

Most of the existing studies adopt a probabilistic formulation to quantify aleatory uncertainty. That is, it is typically as-
sumed that the distribution of the random variables Z is known, with the most widely adopted approach assuming the mar-
ginal distributions of Zi are known and all Zi are independent from each other. In this paper, however, we consider the case
where the uncertainty is epistemic. That is, the distribution functions of Zi are not known, primarily due to our lack of under-
standing and characterization of the physical system governed by the system of equations (2.1).

The focus is on the dependence of the solution on the uncertain inputs Z; therefore, we present solutions for fixed location
x and time t and omit these variables whenever possible.
3. Methodology

We now present a method for solving system (2.1) subject to epistemic uncertain inputs. The proposed methodology is a
three-step procedure which involves identifying the ranges of the uncertain inputs, generating an accurate polynomial
approximation of the solution to (2.1) within estimated ranges and post-processing the results. Note that no probability dis-
tribution information will be utilized in the solution procedure.

3.1. Range estimation

Unlike traditional aleatory uncertainty quantification, the proposed method only requires an estimate of the ranges of the
random input.

The goal is to identify a range, or bound, that is sufficiently large such that the ‘‘true”, and yet unknown, range of the input
uncertainty is mostly incorporated. We now illustrate the idea more precisely.

For each random variable Zi; i ¼ 1; . . . ; d, let
IZi
¼ ½ai;bi�; ai < bi; ð3:1Þ
be its (unknown) support. We consider the following two cases.

� Bounded: That is, IZi
is a bounded interval with
�1 < ai < bi <1:
� Unbounded: That is, either
ai ¼ �1 and=or bi ¼ 1:
This implies that the distribution of Zi has tail(s) near infinity.
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The goal of range estimation is to identify a bounded interval
IXi
¼ ½ai; bi�; �1 < ai < bi <1; ð3:2Þ
such that IXi
and IZi

overlap each other with sufficiently large probability. Let us consider the symmetric difference between
IXi

and IZi
, i.e.,
I�i ¼ IZi
4 IXi

¼ ðIZi
[ IXi
Þ n ðIZi

\ IXi
Þ: ð3:3Þ
We then require the range IXi
is defined in (3.2) such that, for a small real number di P 0,
PðZi 2 I�i Þ 6 di: ð3:4Þ
Intuitively speaking, this requires the tail probability of Zi, if there is any, outside the bounded interval IXi
to be sufficiently

small. It can always be achieved by choosing the IXi
sufficiently wide. If IZi

is bounded then we can always choose IXi
to over-

lap IZi
completely. In such a case, IZi

# IXi
and PðZi 2 I�i Þ ¼ 0.

Note the proposed method removes the need for accurate estimates of the input ranges. The estimate of the range must
ensure that the range be sufficiently wide such that it encapsulates the ‘‘true” input range either completely if the ‘‘true”
range is bounded, or with overwhelming probability if the ‘‘true” range is unbounded. The specific techniques for range esti-
mation is not the focus of this paper and will be left for another time.

In addition to ensuring the encapsulation condition (3.4) is satisfied one must also ensure that the governing equations
(2.1) are well-posed in the region of IXi

. That is, the ‘‘over-estimation” part of the IXi
; IXi
\ I�i , does not pose any problem

for the solution of (2.1). Consequently the properties of the system (2.1) must be used to guide the range estimation
procedure.

3.2. Encapsulation problem

Let IZ be the range of the random variables Z 2 Rd. Naturally,
IZ #�d
i¼1IZi

: ð3:5Þ
We also define an encapsulation set
IX ¼ �d
i¼1IXi

¼ �d
i¼1½ai; bi�: ð3:6Þ
which is the Cartesian product of (3.2). Now let
Iþ ¼ IZ [ IX ; Io ¼ IZ \ IX ; ð3:7Þ
and
I� ¼ IZ 4 IX ¼ Iþ n Io; ð3:8Þ
be the symmetric difference of IZ and IX . By following the construction of the range estimate in (3.3) and (3.4), it is easy to see
that
PðZ 2 I�Þ 6 d; d ¼ dd
i : ð3:9Þ
Therefore, the encapsulation set IX encapsulates IZ , the ‘‘true” and unknown support of Z, with probability at least 1� d,
where d P 0 can be made small by enlarging the size of IX . The parameter d can be zero, i.e., IX encapsulates IZ with prob-
ability one, when IZ is a bounded domain.

We now define the following encapsulation problem
utðx; t;XÞ ¼ LðuÞ; D� ð0; T� � IX ;

BðuÞ ¼ 0; @D� ½0; T� � IX ;

u ¼ u0; D� ft ¼ 0g � IX ;

8><
>: ð3:10Þ
where IX is the bounded hypercube defined in (3.6). This is effectively the same problem (2.1) defined now on the encapsu-
lation set IX that covers the original random parameter set IZ with probability at least 1� d. The new problem is well defined
in IX because we have assumed the estimated range of each IXi

stays in the range of well-posedness allowed by the governing
equation. Since problem (2.1) and (3.10) are exactly the same in the common domain Io, we have the following trivial result,
uð�; nÞ ¼ vð�; nÞ; 8n 2 Io: ð3:11Þ
We remark that for the encapsulation problem (3.10) we do not assign any probability information to variables X.

3.3. Solution for the encapsulation problem

For solution of the encapsulation problem (3.10), we again focus only on the dependence on the variables X, which now
resides in the hypercube IX # Rd.
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For any fixed location x and time t,
uðXÞ : IX ! R: ð3:12Þ
A critical requirement for the proposed methodology is the need for the numerical approximation of (3.10) to converge
point-wise. Let unðXÞ be a numerical solution, where the index n is associated with discretization parameters used in the
approximation. We then require
�n,ku� unkL1ðIX Þ ! 0; n!1; ð3:13Þ
where k � k1 is the standard L1 norm defined as
kukL1ðIX Þ ¼ sup
X2IX

juðXÞj:
When u is sufficiently smooth, such kind of point-wise convergent approximation can be obtained, at least in principle.
While there are choices for solving the encapsulation problem (3.10), here we will focus on polynomial approximation un,

where the index n is typically associated with the highest degree of polynomials used in the approximation. This kind of
methods are direct extension of polynomial approximation theory and the generalized polynomial chaos (gPC) methods used
primarily for aleatory uncertainty analysis. Again we emphasize that the key of choosing a particular method is that, despite
its computational efficiency, it should provide an accurate approximation in the L1 norm of (3.13).

Without loss of generality and merely for notational convenience, hereafter we assume the encapsulation set IX is a
hypercube
IX ¼ ½�1;1�d; d P 1: ð3:14Þ
Note this can always be accomplished by properly translating and scaling of the variables X in (3.10).

3.3.1. Collocation approach
The solution uðXÞ to the encapsulation problem (3.10) is decoupled in the parameter space IX . Subsequently we can solve

(3.10) at a set of discrete nodes and then construct a polynomial approximation of u that interpolates the solution at each
node. This so called collocation approach has been used extensively to quantify aleatory uncertainty [1,25,27]

Let Hn ¼ fXjgm
j¼1 � IX be a set of (prescribed) nodes, where m P 1 is the number of nodes. By adopting the collocation

methodology, we enforce (3.10) at the node Xj; j ¼ 1; . . . ;m, and solve
utðx; t;XjÞ ¼ LðuÞ; D� ð0; T�;
BðuÞ ¼ 0; @D� ½0; T�;
u ¼ u0; D� ft ¼ 0g:

8><
>: ð3:15Þ
It is easy to see that for each j, (3.15) is a deterministic problem with fixed values of X. Therefore, solving the system poses no
difficulty provided one has a well-established deterministic algorithm.

Let uj ¼ uð�;XjÞ; j ¼ 1; . . . ;m, be the solution of the above problem and fujgm
j¼1 be the ensemble of solutions obtained by

solving (3.15). Through use of the solution ensemble, we then seek to construct unðXÞ 2 PðXÞ, where PðXÞ is a proper poly-
nomial space, so that the convergence property (3.13) can be achieved.

While the general strategy is straightforward, the options for practical implementation are limited. Multivariate approx-
imation is a challenging area with many open issues. Here, we describe a more established method based on sparse grid
interpolation [3], which has been used extensively in quantifying aleatory uncertainty following the work of [27].

Sparse grid interpolation, is based upon a combination of one-dimensional interpolation formula. Let Hi
1 ¼ fX

1
i ; . . . ;Xmi

i g
be a set of distinct nodes in the direction Xi and fuðXj

ig
mi
j¼1 the numerical solution at these nodes. We can approximate the

one-dimensional component of the solution u over the range of Xi using the following interpolation formula
U i½u� ¼
Xmi

j¼1

uðXj
iÞ �W

j
iðXiÞ; ð3:16Þ
where mi is the number of collocation nodes and Wj
i is the interpolating basis which satisfies the discrete orthogonality prop-

erty Wj
iðX

k
i Þ ¼ djk, The Lagrange polynomials and the piecewise linear basis are two commonly used bases.

In the multivariate case d > 1 we can approximate u by the Nth-level Smolyak formula ([18])
UN ¼
X

N�dþ16jij6N

ð�1ÞN�jij �
d� 1
N � jij

� �
� ðU i1 � � � � � U id Þ; ð3:17Þ
where i ¼ ði1; . . . ; idÞ and jij ¼ i1 þ � � � þ id. See [24] for detailed derivation of the formula. To compute the interpolating
solution
uNðXÞ ¼ UN ½u�;
one only needs to evaluate the function u on the sparse grid,
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HN;d ¼
[

N�dþ16jij6N

ðHi1
1 � � � � �Hid

1 Þ: ð3:18Þ
To achieve better efficiency, the nodal sets should be nested so that Hi � Hiþ1 and HN;d � HNþ1;d. This means that to increase
the level of interpolation from N to N þ 1 we need only solve (3.10) on the new set of points HNþ1;d n HN;d.

Unlike a full tensor product construction, which suffers from the curse of dimensionality in that the number of nodes grows
exponentially with the dimension d, the number of nodes required by the Smolyak formula only grows logarithmically with
d.

Different sparse grid interpolations can be constructed based on the choice of one-dimensional interpolation (3.16). One
popular choice is Clenshaw–Curtis interpolation, which utilizes the Lagrange polynomial basis defined on the extrema of the
Chebyshev polynomials. For any choice of mi; 1 6 i 6 d, these nodes are given by
Xj
i ¼ � cos

pðj� 1Þ
mi � 1

; j ¼ 1; . . . ;mi; ð3:19Þ
To ensure the nodal sets are nested, we choose
m1 ¼ 1 and mi ¼ 2i�1 þ 1; for i > 1
There have been extensive studies on the approximation properties of sparse grids, particularly those based on Clenshaw–
Curtis abscissas. Here, we cite one of the early results from [3]. For functions in space
F‘d ¼ ff : ½�1;1�d ! Rj@jijf continuous; ij 6 ‘;8jg;
with norm
kfk ¼ maxfkDafk1;a 2 Nd
0;ai 6 ‘g;
the interpolation error follows
kI � UNk 6 Cd;‘m�‘ðlog mÞð‘þ2Þðd�1Þþ1
; ð3:20Þ
where m is the total number of nodes required by the sparse grid interpolation HN;d. (Note there is in general no explicit for-
mula for m.)

When quantifying aleatory uncertainty the Clenshaw–Curtis sparse grids are only appropriate when the underlying ran-
dom variables possess uniform distributions. However when quantifying epistemic uncertainty this requirement can be re-
moved. The Clenshaw–Curtis grid may not be optimal for the ‘‘true” unknown distribution, however, the resulting
approximation will still exhibit the required point-wise convergence, albeit at a slower rate. Subsequently Clenshaw–Curtis
sparse grid interpolation, or sparse grid interpolation for that matter, is certainly not the only choice for the collocation ap-
proach. In practice, any valid interpolation approach can be employed, so long as one can establish its convergence in the
point-wise sense of (3.13).

3.3.2. Galerkin approach
We briefly remark that (3.10) can also be solved by the Galerkin approach. In the Galerkin approach, we seek a numerical

solution unðXÞ in a polynomial space such that the residual of (3.10) is orthogonal to the polynomial space. While most of the
convergence of the Galerkin solution is in the weighted Lp norm on IX , it is possible to have the solution converge point-wise
uniformly, which is what we require. This usually imposes stronger smoothness conditions on the true solution u. For exam-
ple, for stochastic diffusion equation with linear form random diffusivity, it was shown that the solution is analytic in term of
the random inputs [1], and numerical solution converging in point-wise sense can be used for sampling non-Gaussian pro-
cess [23]. Since it is not possible to discuss the convergence of the Galerkin approach without specifying the form of (3.10),
we will not engage in more discussions on this.

We also remark that there exists a pseudo-spectral collocation method [25], also known as non-intrusive gPC method.
Though this method is of collocation type, its convergence is usually in Lp norm, similar to Galerkin. Therefore it is not pos-
sible to discuss its L1 error without specifying the underlying governing equations and we will not focus on this method as
well.

3.3.3. Piecewise smooth case
In the discussions above we have required the solution to converge in1-norm in the entire domain IX . This requires suf-

ficient global smoothness of u, which is rather strong in many practical problems. In fact, the discussions can be generalized to
piecewise smooth function of u. That is, there exists a finite decomposition of Ik

X ; k ¼ 1; . . . ;m, such that
[m
k¼1

Ik
X ¼ IX ; Ii

X

\
Ij
X ¼ ;; i – j;
and in each subdomain Ik
X ; k ¼ 1; . . . ;m;uðXÞ is smooth.
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In this case, a suitable numerical approach in the global sense (e.g. the sparse grid interpolation) can be applied to each
subdomain separately and obtain a convergent solution (in the1-norm) uk

nðXÞ in each subdomain Ik
X . A globally convergent

solution can then be constructed by ‘‘patching” the subdomain solutions together.
unðXÞ ¼
Xm

k¼1

uk
nðXÞIIk

X
ðXÞ; ð3:21Þ
where IAðsÞ ¼ 1 if s 2 A; IAðsÞ ¼ 0 otherwise, is the indicator function. It is easy to see that this solution will converge to u in
the entire domain of IX in the1-norm. Note that due to the nature of the problem (3.10), there is no continuity requirement
of the solution across the subdomain interfaces. Therefore, at least on the conceptual level solving the subdomain problem is
straightforward. From the practical point of view, the multi-element, or piecewise, approximation techniques developed for
aleatory uncertainty can be borrowed. These include the work of [2,7,14,15,22]. Hereafter we will restrict ourselves to glob-
ally smooth problems to emphasize the new conceptual ideas related to epistemic uncertainty quantification.

3.4. Epistemic uncertainty analysis

When unðXÞ, the polynomial approximation of the true solution uðXÞ, is obtained for (3.10) and converges in the1-norm
(3.13), it can serve as an accurate and point-wise model. We can then apply various operations on un instead of u. Note the
operations on un do not require us to solve the governing equations anymore—they can be treated as post-processing steps.

Assuming information about the distribution of the random inputs Z is known a posteriori, then we can evaluate the solu-
tion statistics by using the un. This can be achieved by evaluating the statistics of un using the probability of Z in the domain Io

defined in (3.7). Let qZðsÞ ¼ dFZðsÞ; s 2 IZ , be the probability density function of the epistemic uncertain input Z, which was
not known prior to the computations but is now known after the computations. Then, for example, the mean of the true solu-
tion vðZÞ,
l , E½ðvÞðZÞ� ¼
Z

IZ

vðsÞqZðsÞds; ð3:22Þ
can be approximated by
ln ,

Z
Io

unðsÞqZðsÞds: ð3:23Þ
The following result can be established

Theorem 3.1. Assume the solution of (2.1), vðZÞ, is bounded and let Cv ¼ kvkL1ðIZÞ. Let unðXÞ be an approximation to the solution
uðXÞ of (3.10) and converge in the form of (3.13) and denote
�n ¼ kunðXÞ � uðXÞkL1ðIX Þ: ð3:24Þ
Then the mean of v in (3.22) and the mean of un in (3.23) satisfy
jl� lnj 6 �n þ Cvd: ð3:25Þ
Proof. We first extend the domain of definition of v, q, and un to Iþ, following the definitions of the domains in (3.7), and
define
qþðsÞ ¼ IIZ ðsÞqZðsÞ; vþðsÞ ¼ IIZ ðsÞvðsÞ; s 2 Iþ;
and
uþn ðsÞ ¼ IIX ðsÞunðsÞ; s 2 Iþ:
Naturally, qþ is a probability density function on Iþ. Then (3.22) can be expressed as
l ¼
Z

IZ

vðsÞqZðsÞds ¼
Z

Iþ
vþðsÞqþðsÞds;
which can be split into two parts
l ¼
Z

Io
vþðsÞqþðsÞdsþ

Z
I�

vþðsÞqþðsÞds ¼
Z

Io
vðsÞqZðsÞdsþ

Z
I�

vþðsÞqþðsÞds: ð3:26Þ
By using (3.23), we have
l� ln ¼
Z

Io
ðvðsÞ � unðsÞÞqZðsÞdsþ

Z
I�

vðsÞqþðsÞds ¼
Z

Io
ðuðsÞ � unðsÞÞqZðsÞdsþ

Z
I�\IZ

vðsÞqZðsÞds; ð3:27Þ
where the property (3.11) has been used. Utilizing the condition (3.9), the main result (3.25) is established. h
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The second term in (3.27), Cvd, is a result of truncating the ‘‘tails” of the true probability distribution of Z by using a
bounded hypercube IX to encapsulate a possibly unbounded domain IZ . For unbounded domains, for which I� \ IZ – ;, the
term Cvd can be made arbitrarily small by choosing a sufficiently big hypercube for IX . If Z is in a bounded domain and
the domain IX can completely encapsulate IZ then the term Cvd disappears. In this case, the error in the mean would converge
to zero as long as un converges in the form of (3.13).

We remark that the encapsulation problem can also be used to obtain upper and lower bounds on the model observables.
Consequently solving the encapsulation problem can be used as an alternative to techniques such as interval analysis [17].
The accuracy of these estimates is beyond the scope of this paper and is left for future work.

3.5. Mixed aleatory and epistemic uncertainty analysis

In practice, situations may arise for which the distributions of some of the random variables characterizing the input are
known and some are not. The encapsulation methodology proposed here can easily be extended to such cases possessing
mixed aleatory and epistemic uncertainty. Let us consider stochastic differential equations with the following form
v tðx; t;Y; ZÞ ¼ LðvÞ; D� ð0; T� � IY � IZ ;

BðvÞ ¼ 0; @D� ½0; T� � IY � IZ ;

v ¼ v0; D� ft ¼ 0g � IY � IZ ;

8><
>: ð3:28Þ
where Y is a set of random variables with known probability distribution FY ðyÞ ¼ PðY 6 yÞ; y 2 IY # Rr ; r P 1, and Z 2 Rs are
a set of random variables with unknown distribution.

As in the purely epistemic case we first begin by defining and solving an encapsulation problem. With this aim we again
define the encapsulation set IX according to (3.6) which encapsulates IZ , the ‘‘true” and unknown support of Z, with proba-
bility at least 1� d. The encapsulation problem is then
utðx; t; Y;XÞ ¼ LðuÞ; D� ð0; T� � IY � IX ;

BðuÞ ¼ 0; @D� ½0; T� � IY � IX ;

u ¼ u0; D� ft ¼ 0g � IY � IX :

8><
>: ð3:29Þ
Unlike in the purely epistemic case, the encapsulation problem is now defined in terms of the epistemic and aleatory vari-
ables. This encapsulation problem can be solved in two ways depending on whether one wants to solve the epistemic and
aleatory problems separately or simultaneously:

� Separate construction: Different methods can be employed to quantify the epistemic uð�;XÞ and aleatory uncertainty
uð�;YÞ. Let ûmðXÞ be an approximation to uð�;XÞ after fixing all variables other than X and eukðYÞ be an approximation to
uð�;YÞ, where the indices m and k denoting the level of approximations. Then uðX;YÞ can be approximated by a tensor
product of ûmðXÞ and eukðYÞ. That is,
unðX;YÞ ¼ ûmðXÞ � eukðYÞ;

where the index n depends on m and k. (In the case of polynomial approximation, n can be either the highest polynomial
order in ûm and euk or the total order of the mixed polynomials of ûm and euk.) The construction allows us to use different
methods for X and Y. For example, we can mix an accurate collocation solution ûmðXÞ converging in L1 norm in the epi-
stemic variable X with an accurate stochastic Galerkin solution eukðYÞ converging in L2

qY
norm in the aleatory variable Y.

� Simultaneous construction: Instead of treating the epistemic and aleatory variables separately, we can consider the alea-
tory variables as epistemic and solve the epistemic encapsulation problem (3.10), with IX defined in such a way that it
encapsulates both IZ and IY . For r aleatory variables Y and s epistemic variables Z, we define
IX ¼ �r
i¼1IYi

� �
� �s

i¼1IXi

� �
; ð3:30Þ

where IXi
are bounded intervals that encapsulate IZi

with overwhelming probability. The same methods for the epistemic
encapsulation problem can be used to generate an approximation in IX . The probabilistic information associated with the
aleatory variables Y can be introduced in post-processing. Additional probabilistic information for Z can be processed a
posteriori when known. We remark that this approach requires point-wise accuracy in the entire space (3.30). This may
be too strong because in general accuracy in mean square sense in the aleatory variables Y is sufficient. Point-wise accu-
racy is particularly hard to achieve when the aleatory variables are unbounded. In this case we may need to truncate the
domain of the aleatory variables and this leads to additional ‘‘truncation” error. Therefore, the simultaneous approach is
more appropriate when all the variables are bounded.

After taking into account the probability distribution of the aleatory random variables Y, the solution becomes a function
of the epistemic variable Z. For example, the mean solution is
lðsÞ ¼ EY ½vðY; ZÞ� ¼
Z

vðy; sÞdFY ðyÞ; s 2 IZ :
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This can be approximated by
Fig. 4.1
posterio
polynom
lnðsÞ ¼ EY ½unðY;XÞ� ¼
Z

unðy; sÞdFYðyÞ; s 2 IX :
Note that no probability information is assigned to the variables X and Z prior to any computations.
4. Numerical examples

In this section, we provide several numerical tests to illustrate the implementation and convergence of the proposed
methodology. In all examples, we first seek polynomial approximation to the solutions in terms of the epistemic variables.
We then, in post-processing steps, assume certain probability distribution information is known a posteriori and then eval-
uate the solution statistics of the true solution and the numerical approximations and examine the accuracy of the methods.
In all examples, we utilize global polynomial approximations.
4.1. Ordinary differential equation

Consider
dv
dt
ðtÞ ¼ �Z1v; vð0Þ ¼ Z2; ð4:1Þ
where the parameters Z1 and Z2 are random variables representing the input uncertainty. The exact solution is
vðt; ZÞ ¼ Z2 expð�Z1tÞ: ð4:2Þ
Let us assume that the distributions (and dependence) of Z1 and Z2 are unknown, except that the bounds of the parameters
can be estimated with a range that is sufficiently wide.

The encapsulation problem is
utðt;XÞ ¼ �X1u; uð0Þ ¼ X2; ð4:3Þ
where X ¼ ðX1;X2Þ 2 ½�1;1�2 after scaling.
Here, we use the Galerkin method based on Legendre polynomials to solve (4.3). This implies the numerical solution will

converge in the L2 norm. However, since the solution is analytic, point-wise convergence can also be achieved. For compar-
ison, we also present results using a sparse grid approximation of u based upon the tensor product of Lagrange polynomials
defined at the Clenshaw–Curtis abscissas. Both methods provide fast converging polynomial approximations of the solution.
We illustrate the convergence of the mean and variance of these approximations when the marginal and joint probability
distributions are found a posteriori below.
. Convergence of the relative error in the mean and variance for the linear ODE with two dimensional (d ¼ 2) independent input with varying a
ri distributions, Z1; Z2 2 betað0;1;1;1Þ (solid lines), Z1 2 betað0;1;2;5Þ and Z2 2 betað0;1;1;1Þ (dashed lines). (a) Convergence with Galerkin

ial order. (b) Convergence with collocation sparse grid level.
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4.1.1. Independent case
Let us assume the ‘‘true” (and yet unknown) distribution of Z is Z1 2 betað0;1;a1; b1Þ; Z2 2 betað0;1;a2; b2Þ, where Z1 and

Z2 are independent and betaða; b;a; bÞ is the beta distribution on the interval [a,b] with distribution parameters a and b. Ana-
lytical expressions for the moments of v exist and can be used to test convergence of our numerical solutions of the encap-
sulation problem in X. Note in this case IZ ¼ ½0;1� � ½0;1� and is completely encapsulated by IX ¼ ½�1;1�2.

The moments of the numerical approximations were obtained by using multi-dimensional tensor product Gauss–Jacobi
quadrature. Specifically an appropriate high-order one-dimensional quadrature rule, determined by the now known distri-
bution of Z, was chosen for each independent variable and then a tensor product of these rules was used to construct a set of
multi-dimensional quadrature nodes and associated weights. The order of the quadrature rule was chosen to match the or-
der of the approximating polynomial. Sampling the polynomial expansion at the quadrature nodes is a post-processing pro-
cess and only requires the evaluation of algebraic expressions and is thus inexpensive compared to the cost of evaluating the
true model.

In Fig. 4.1 the relative error in the first two moments are shown for varying values of ai and bi. Here and through out the
remainder of this paper relative error is defined to be the absolute difference between the approximate and true value nor-
malized by the true value. As the order of the Legendre–Galerkin polynomial expansion and the approximation level of the
collocation sparse grid increases, the errors converge exponentially fast before reaching saturation levels.
4.1.2. Dependent case
Let us assume the ‘‘true” (and yet unknown) distribution of Z is Z1 2 betað0;1;a1; b1Þ; Z2 is dependent on Z1. Specifically

let us assume that Z2 ¼ Z1. This implies that IZ ¼ ½0;1� and can be entirely encapsulated by IX ¼ ½�1;1�2. Again analytical
expressions for the moments of v exist and can be used to test convergence of our numerical approximations, whose mo-
ments were obtained by selecting an appropriate high-order one-dimensional quadrature rule, determined by the now
known distribution of Z, for the variables Z1. This one-dimensional quadrature rule was then use to evaluate the moments
of the approximations along the line Z1 ¼ Z2.

Fig. 4.2 plots the error in the first two moments for varying values of ai and bi. As the approximation level of the collo-
cation sparse grid increases the errors converge exponentially fast before reaching saturation levels.
4.1.3. Choice of polynomial basis
In Sections 4.1.1 and 4.1.2, multi-dimensional Lagrange and Legendre polynomials were used to produce an approxima-

tion to the solution of the encapsulation problem. However any type of polynomial that satisfies (3.13) can be used.
It was shown in [28] that, in the context of aleatory uncertainty quantification, if the polynomial basis used to approx-

imate a stochastic solution is chosen according to the distribution of the underlying random variables, better approximation
accuracy can be achieved. If the optimal basis is not chosen, the rate of convergence will deteriorate. Here, we investigate the
effect of the choice of the approximating polynomial on the convergence of the mean and variance of solutions subject to
epistemic uncertainty.

Let us assume the ‘‘true” (and yet unknown) distributions of Zi are independent. Fig. 4.3 shows the rate of convergence in
the estimates of variance for various types of polynomial approximations of the encapsulation problem (4.3). When the opti-
mal polynomial basis is used, estimates of the variance are obtained directly from the basis coefficients. The variance of the
Fig. 4.2. Convergence of the relative error in the mean and variance for the linear ODE with two dimensional ðd ¼ 2Þ independent input with varying a
posteriori distributions, Z1;2 betað0;1;1;1Þ (solid lines), Z1 2 betað0;1;2;5Þ (dashed lines). In all cases Z2 ¼ Z1. (a) Convergence with Galerkin polynomial
order. (b) Convergence with collocation sparse grid level.
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(non-optimal) Legendre approximation was calculated using a high-order two-dimensional tensor product Gauss–Jacobi
quadrature rule.

When the type of polynomial expansion is chosen to match the distribution of the input variables, a faster of convergence
is obtained than if another type was chosen. The nature of epistemic uncertainty means that an optimal basis cannot be cho-
sen a priori and some accuracy penalty may have to be paid due to the lack of full probabilistic information at the time of
expansion computation. If, by coincidence, the basis chosen to approximate the encapsulation problem matches the weight-
ing functions of the underlying random variables, then the optimal convergence rate will be achieved. In most cases, how-
ever, we must select a basis that provides a reasonable compromise given the information available; e.g. if only bounds are
provided and there is no justification to weight errors unequally within these bounds, then a Legendre basis is the natural
choice.
4.2. Random oscillator

This section investigates the performance of stochastic collocation to quantify epistemic uncertainty in a damped linear
oscillator subject to external forcing with six unknown parameters. That is,
d2x

dt2 ðt; ZÞ þ c
dx
dt
þ kx ¼ f cosðxtÞ; ð4:4Þ
subject to the initial conditions
xð0Þ ¼ x0; _xð0Þ ¼ x1; ð4:5Þ
where we assume the damping coefficient c, spring constant k, forcing amplitude f and frequency x, and the initial condi-
tions x0 and x1 are all uncertain, and let
Z ¼ ðc; k; f ;x; x0; x1Þ 2 R6
be the epistemic variables.
The encapsulation problem is then
d2x

dt2 ðt;XÞ þ X1
dx
dt
þ X2x ¼ X3 cosðX4tÞ; ð4:6Þ

xð0Þ ¼ X5; _xð0Þ ¼ X6; ð4:7Þ
where X ¼ ðX1; . . . ;X6Þ 2 ½�1;1�6 (upon scaling) are the encapsulation variables. We employ sparse grid Lagrange interpola-
tion at the Clenshaw–Curtis abscissas to solve the encapsulation problem.
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4.2.1. Epistemic uncertainty with dependent inputs
To again illustrate the convergence of moments, let us assume the ‘‘true” (and yet unknown) distribution of Z is

Zi 2 betaðai; bi;ai; biÞ; i ¼ 1;3;5 and Z2 is dependent on Z1; Z4 is dependent on Z3 and Z6 is dependent on Z5. For example,
let us assume Z1 2 betað0:08;0:12;3;2Þ and Z2 ¼ Z2

1
4 þ 0:01; Z3 2 betað0:08;0:12;1;1Þ and Z4 ¼ 10Z3, and

Z5 2 uniformð0:45;0:55Þ and Z6 ¼ ðZ5 � 0:5Þ.
Moments can be evaluated by collapsing the expansion in X by substitution based upon the known functional dependence

and then applying a lower-dimensional quadrature rule. Here, we employed a three-dimensional quadrature rule based
upon the tensor product of one-dimensional rules for Z1; Z3 and Z5. Values for the remaining variables were selected based
upon the functional dependence specified above.

Fig. 4.4 plots the error in the first two moments at t ¼ 20. As the order of the approximation level of the sparse grid in-
creases the errors converge exponentially fast before reaching saturation levels.
4.2.2. Epistemic uncertainty with known covariance
In practice one may often encounter uncertainty arising from a set of random variables with normally distributed mar-

ginal distributions and known covariance. Consider X ¼ ðX1; . . . ;X6Þ 	 Nð0;CÞ where the covariance matrix is a tri-diagonal
matrix with non-zero entries r11 ¼ 0:03; r22 ¼ 0:0009; r33 ¼ 0:0003; r44 ¼ 0:01; r55 ¼ 0:001; r66 ¼ 0:0025; r12 ¼
0:05r11; r21 ¼ r22; r34 ¼ 0:02r44; r43 ¼ 0:2r44, and r56 ¼ r65 ¼ 0:1r55.

Unlike the previous examples the epistemic variables are now unbounded. Consequently we must construct an approx-
imation to the encapsulation problem which captures the true input range with overwhelming probability. Here, we inves-
tigate the choice of size of the bounding hyper-region on the accuracy of the of solution moments. Fig. 4.5 plots the error in
the first two moments at t ¼ 20. As the approximation level of the collocation sparse grid increases the errors converge expo-
nentially fast before reaching saturation levels. However, the accuracy at which saturation occurs is dependent on how
‘‘well” the input space is encapsulated. As the encapsulation probability increases, that is d decreases, the best possible accu-
racy that can be obtained by solving the encapsulation problem increases. It must be noted that the convergence rate slows
with decreasing d, because it increases the size of the encapsulation domain. In general interpolation of a larger domain re-
quires more evaluations of the governing equations to achieve a comparable accuracy.

The exact moments of the solution were obtained by applying high order six-dimensional Gauss–Hermite sparse grid
quadrature to the governing equations. Moments of the SC approximation were obtained by applying the same quadrature
rule to the numerical solution of the encapsulation problem. The Gauss–Hermite sparse grid quadrature assumes indepen-
dent Gaussian variables. A Cholesky decomposition of the covariance matrix was used to generate a set of dependent real-
izations of Z.
4.2.3. Mixed aleatory-epistemic uncertainty
Now let us consider the uncertainty of the solution to (4.4) where the distributions of some of the variables are known

and the distributions of other variables are unknown.
A simple two step iterative procedure can be used to generate such an ensemble of statistics. In this case we wish to gen-

erate an ensemble of CDFs of the solution to the governing equations at time t ¼ 20. In the first step of each iteration a par-
ticular value of each epistemic variable is chosen from within their assumed ranges. Fixing these values we then randomly
Fig. 4.4. Convergence of the relative error in the mean and variance for the damped harmonic oscillator with six dependent inputs. Convergence is shown
with respect to the approximation level of the SC sparse grid.



Fig. 4.6. An ensemble of 25 CDFs of the solution to the damped harmonic oscillator subject to mixed aleatory and epistemic uncertainty. Each CDF
corresponds to one particular set of epistemic variables values.
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Fig. 4.5. Convergence of the relative error in the mean and variance for the damped harmonic oscillator with six dependent inputs with known covariance.
Convergence is with respect to the order of the collocation sparse grid and the truncation probability d.
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sample from the aleatory variables in a standard probabilistic manner. These samples are then used to evaluate the polyno-
mial approximation of the encapsulation problem. Following this heuristic, each set of epistemic variables generates a full
distributional description and corresponding statistical metrics, such as moments, for the output quantities.

Let the variables Z1; Z2; Z3, and Z5 have known distributions with Z1 	 betað0;1;0;0Þ; Z2 ¼ Z2
1

4 þ 0:01; Z3 	 betað0;1;1;1Þ
and Z5 	 betað0;1;2;1Þ and let the two remaining input variables Z4 and Z6 be epistemic variables that lie within the follow-
ing ranges: Z4 2 ½0:8;1:2� and Z6 2 ½�0:05;0:05�. Now let us construct a sparse grid collocation approximation to the encap-
sulation problem using the simultaneous construction outlined in Section 3.5.

Fig. 4.6 plots an ensemble of CDFs of the numerical solution to (4.4) for 25 realizations of the two epistemic variables.
Each epistemic variable was assumed to take five discrete values Zk

i equally spaced throughout their corresponding ranges
½ai; bi�; i ¼ 4;6. Specifically we choose Zk

i ¼ ai þ kðbi � aiÞ=4; k ¼ 0; . . . ;4. For each of the 25 combinations of Zk
i , Monte-Carlo

sampling of the aleatory variables is used to generate a CDF from evaluation of the polynomial approximation. It is evident
that the two epistemic variables have a large influence on the distribution of the output. This could indicate that effort
should be focused on more accurately reducing the range of these variables.
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4.3. Homogeneous diffusion equation

In this section, we consider the homogeneous diffusion equation in one-spatial dimension subject to epistemic uncer-
tainty in the diffusivity coefficient. Attention is restricted to the one-dimensional physical space to avoid unnecessary com-
plexity. The procedure described here can easily be extended to higher physical dimensions. Consider the following problem
with d P 1 random dimensions:
d
dx

aðx; ZÞdu
dx
ðx; ZÞ

� �
¼ 0; ðx; ZÞ 2 ð0;1Þ � IZ ð4:8Þ
subject to the physical boundary conditions
uð0Þ ¼ 0; uð1Þ ¼ 0: ð4:9Þ
Furthermore assume that the random diffusivity satisfies
aðx; ZÞ ¼ 1þ r
Xd

k¼1

1

k2p2
cosð2pkxÞZk; ð4:10Þ
where Zk 2 ½�1;1�; k ¼ 1; . . . ; d are independent and uniformly distributed random variables. The form of (4.10) is similar to
that obtained from a Karhunen–Loève expansion and satisfies the auxiliary properties
E½aðx; ZÞ� ¼ 1 and 1� r
6
< aðx; ZÞ < 1þ r

6
: ð4:11Þ
This is the same test case used in [27].
Again we construct an appropriate encapsulation problem and solve it using the Legendre–Galerkin method. Specifically,

we employ the efficient spectral Galerkin iterative solver discussed in [29]. A high spatial resolution is used to ensure that
the associated errors can be neglected in the following analysis.

Whereas previous discussions have focused on singular parameter dependence, here we investigate the performance of
the proposed method for multi-parameter dependence. Let us assume the ‘‘true” (and yet unknown) distribution of Z is
Z1 2 betað0;1;3;2Þ, and Z3 2 betað�1;0;1;1Þ and Z5 2 betað�0:5;0:5;0;0Þ; Z2 ¼ Z1Z5; Z4 ¼ ðZ2

1 þ 1ÞZ3, and Z6 ¼ �Z5 and
r ¼ 4. The convergence of the mean and variance of the encapsulation problem at x ¼ 0:848925247397 are shown in
Fig. 4.7. Despite the non-linear dependence between the random variables the fast rate of convergence is still maintained.
No analytical solution is available so convergence is analyzed against a high order Legendre–Galerkin approximation of
the solution.
5. Conclusions

In this paper, we proposed a framework for quantifying epistemic uncertainty. The methodology presented is a general-
ization of traditional aleatory uncertainty quantification that allows one to seamlessly switch between epistemic, aleatory
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and mixed epistemic–aleatory uncertainty analysis. The validity and effectiveness of our approaches is illustrated through
several examples.

The approach is based on solution of an ‘‘encapsulation problem” which generates a solution to the governing equations
in a domain that encloses the true probability space with overwhelming probability. No distributional information about any
of the variables needs be assumed, only estimates of the ranges of the variables are needed. Once the bounds have been spec-
ified, a polynomial approximation can be constructed in the encapsulation domain. The polynomial approximation to the
encapsulation problem is chosen to converge point-wise throughout the input space, thus it is also accurate on a subset
of this space. As long as this point-wise convergence is obtained, the polynomial solution of the encapsulation problem
can be used as an effective model for the true solution on the true domain.

Once the polynomial approximation within the encapsulation domain has been computed, it can be employed within epi-
stemic analyses such as interval analysis or evidence theory, within sensitivity analysis studies to explore the importance of
epistemic parameters and allocate experimental resources, and ultimately within a posteriori aleatory analyses following col-
lection of additional experimental data. In this paper, we focus on the a posteriori evaluation of solution statistics and dem-
onstrate convergence of statistics following the introduction of additional information on functional dependence or
correlation, distributional form, or both.

The encapsulation approach can readily handle dependencies between input variables. If the functional dependence be-
comes known a posteriori, then the relationships can be used to collapse the dimensionality of the polynomial approximation
and quadrature methods can then be applied on this lower-dimensional space to obtain estimates of moments. We show
that exponential convergence can be obtained for correlated normals by utilizing a Cholesky decomposition to map a set
of independent variables (needed to construct the polynomial approximation) to a set of dependent variables. Although
not presented, such a procedure could be extended to correlated non-normals provided a variable transformation exists,
for example the Nataf transformation.

If the distributional form of the epistemic variables becomes known a posteriori, then solution statistics can be evaluated
as a post-processing step. While the polynomial basis selected a priori will not in general be optimal for this a posteriori post-
processing, this suboptimal weighting of polynomial approximation errors is an algorithmic cost that must be paid for hav-
ing imperfect characterization of uncertainties at the time of approximation construction. The modeler can minimize this
penalty by tailoring the basis to the available information to the extent possible, but in the case of a pure interval-based epi-
stemic uncertainty description, there is no justification to weight errors unequally within the interval and a Legendre basis is
the logical choice. It is demonstrated that exponentially-fast convergence rates can nonetheless be obtained for the a poste-
riori solution statistics despite the lack of complete information at expansion construction time.
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