
Eurographics Symposium on Parallel Graphics and Visualization (2011)
T. Kuhlen, R. Pajarola, and K. Zhou (Editors)

Real-Time Ray Tracer for Visualizing Massive Models on a

Cluster

Thiago Ize1, Carson Brownlee1,2, and Charles D. Hansen1,2

1SCI Institute, University of Utah
2School of Computing, University of Utah

Abstract

We present a state of the art read-only distributed shared memory (DSM) ray tracer capable of fully utilizing modern
cluster hardware to render massive out-of-core polygonal models at real-time frame rates. Achieving this required
adapting a state of the art packetized BVH acceleration structure for use with DSM and modifying the mesh and
BVH data layouts to minimize communication costs. Furthermore, several design decisions and optimizations were
made to take advantage of InfiniBand interconnects and multi-core machines.

1. Introduction

While the core ray tracing algorithm might be embarrassingly
parallel, scaling a ray tracer to render millions of pixels at
real-time frame rates on a cluster remains challenging; more
so if the individual nodes do not have enough memory to
contain all the data and associated acceleration structures. The
ability to render high-resolution images at interactive or real-
time rates is important when visualizing datasets that contain
information at the subpixel level. Since most commodity
monitors are now capable of displaying at least a 2M pixel HD
resolution of 1920×1080, and higher end models can do up
to twice as many pixels, it is important to make use of all those
pixels when visualizing a dataset. Current distributed ray
tracing systems are not able to achieve this regardless of how
many compute nodes are used. Either lower resolutions are
used to get real-time rates, or less fluid frame rates are used
in order to scale to larger image sizes. We show a distributed
ray tracing system that can scale on an InfiniBand cluster to
real-time rates of slightly over 100fps at full HD resolution,
or 50–60fps at 4M pixels with massive polygonal models.

We are also able to handle massive out-of-core models
that cannot reside inside the physical memory of any indi-
vidual compute node by using a read-only distributed shared
memory (DSM) ray tracer [CM93]. Using DSM allows us
to still use any desired ray tracing shading models, such as
shadows, transparent surfaces, ambient occlusion and even
full path tracing. More advanced shading models than simple
ray casting or rasterization allow for more productive and
useful visualizations [GP06].

2. Background

Wald et al. [WSB01] built a ray tracing cluster for out-of-core
scenes using a two level kd-tree where each client node has
a copy of the top level and the bottom levels are fetched as
required from a server and stored in a client-side cache. This
requires the server to have enough memory to hold the entire
model, or in their case to have a faster hard drive than the
clients, to make it advantageous over simply replicating the
data. Furthermore, this can quickly saturate the bandwidth to
the server.

Significant work on DSM interactive ray tracing was per-
formed by DeMarle et al. [DGBP05] and we expand on
several of their ideas. We use their object-based distributed
shared memory interface where each node contains parts of
the data in resident memory. Additional data is fetched from
the node that owns the data and stored in a direct mapped
cache for future use. Access to each block is guarded by a
block specific counting semaphore which permits multiple
threads to read from that cache block, but only allows modi-
fying the cache block when a single thread has sole access to
it. We do not use their page-based DSM method because it is
not thread-safe and using only a single thread to render when
we have 8 cores per node would result in an unacceptable per-
formance hit. We also improve their cache indexing scheme
to make better use of the cache. Their cluster consisted of 32
dual-core nodes connected with gigabit Ethernet. One core
was used for rendering and the other for communication. We,
on the other hand, need to scale to more nodes, each of which
have many cores, and all cores are used for rendering, with

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

each thread being able to communicate as needed. We also
have an InfiniBand interconnect which has much lower la-
tency, higher bandwidth, and allows for very efficient RDMA
reads and writes of remote memory without involving the
CPU. They used a single-ray traversal with a hierarchical
macro-cell based grid where small coherent blocks of cells
could be transmitted across the network. Because of their
acceleration structure, spatial triangle ordering method, and
high communication costs, they used block sizes of 32KB.
We on the other hand make use of a state-of-the-art packe-
tized reordered BVH acceleration structure [WBS07] and a
very efficient triangle ordering, which combined with lower
cost communication, allows us to use smaller block sizes
which results in a more efficient cache and faster transfers.

Yoon et al. [YM06] explored reordering BVHs for out-of-
core collision detection and ray tracing. Their approach used
a complicated cache oblivious reordering and assumed that
nodes had two child pointers. Since we choose the size of the
cache blocks, we do not need a cache oblivious reordering
and can achieve better performance with a reordering tailored
specifically for our cache block size and our nodes which only
use a single child pointer (the other child is found implicitly).

DeMarle et al. [DGBP05] used a macro-cell grid approach
that allowed for fine grained control of the amount of data
transmitted across the network, but used a slow acceleration
structure which consumes large amounts of memory, does
not make use of SIMD, and does not perform as well as
BVHs [WBS07], kd-trees [RSH05], and multi-level recursive
grids [Ize09]. BVHs can be easily packetized and perform
well with incoherent ray packets and so are a popular acceler-
ation structure in high performance ray tracers [WMG∗09].
Furthermore, for massive scenes, BVHs have the nice prop-
erty of a guaranteed upper bound on storage for both the
number of nodes and number of primitive references which
allows us to predict how much storage will be required. kd-
trees have no upper bound and generally end up using about
an order of magnitude more tree nodes than a BVH and more
storage for triangles which can exist in multiple nodes. For
these reasons, we chose to use a BVH in our DSM ray tracer.

One common way of rendering on a distributed system
is with sort-last parallel rendering where each node has a
fraction of the scene data which is split up in data-space in a
view-independent manner. Each node renders an entire image
over the sub-scene, and then the images are depth-sorted to
create the final composited image [MCEF94]. Compositing
is commonly used for distributed ray casting of polygons
and volumes, yet even state-of-the-art systems have trouble
scaling to real-time frame rates on a cluster due either to load
imbalances if the camera is focused on a small section of
the scene or to the cost of each node transferring full size
images. Kendall et al. have a compositing system that maxi-
mally achieves 1fps for a zoomed-in 64 million pixel image
when using a cluster similar to ours [KPH∗10]. This roughly
translates to about 32fps at HD resolution. Only on the Jaguar

supercomputer, which has a much faster interconnect, can
they achieve the equivalent of around 120fps at HD resolution
using 32K cores. A severe limitation, which is inherent to all
compositing approaches, is that it is limited to ray casting and
cannot take advantage of the more advanced shading models
offered by ray tracing.

Howison et al. also use a compositing approach to render
a massive 46083 volume using raycasting on the Jaguar su-
percomputer, which has 12 cores per node [HBC10]. They
demonstrated that instead of running 12 MPI processes on
each node, it was beneficial to use a hybrid parallelism ap-
proach whereby only one MPI process per 6-core socket is
used for distributing work amongst the nodes and then each
MPI process uses 6 threads to work on the shared data on
the socket. This lowered the memory and communication
overhead and resulted in their compositing step, which is
the majority of their frame time, being twice as fast. Their
maximum frame rate when running on 216,000 cores for a 21
million pixel image was 2 frames per second; assuming this
scaled down to HD resolution, this would give approximately
20fps. Similar to their work, we use a hybrid approach with
one MPI process per node and one thread per core.

Budge et al. [BBS∗09] ray traced massive models using a
hybrid CPU/GPU algorithm on a cluster where they replicated
the scene on each node, and used the local hard drive to
hold the excess data that did not fit either on the CPU or
GPU memory. Since the nodes were severely constrained
with the amount of memory they had available, and each
node had 2 high-end GPUs, the addition of GPUs almost
doubled the available memory, in addition to providing more
compute power. They are able to use the GPUs for out-of-
core rendering by focusing on non-interactive scenes with
thousands of rays per pixel, which gives them a large pool of
rays to reorder from so that large batches of rays are traced
which use data already loaded to memory. When rendering
with only a few samples per pixel, as would be expected for
real-time frame rates, they experience a slowdown of a few
orders of magnitude. They are able to scale to 4 nodes at 75%
efficiency but claim that their technique would be unlikely to
scale further.

We chose not to use a GPU in this paper for a few reasons.
Firstly, we found when comparing the ray tracing perfor-
mance of NVIDIA’s Optix GPU ray tracer [PBD∗10] when
running on 2 GPUs of an NVIDIA Tesla S1070 to be roughly
comparable to the performance of our 8 core node for in-core
scenes, with the GPU performing worse when it did not have
a large enough number of rays to trace in order to effectively
hide memory latencies. Unfortunately, since each GPU only
renders a small fraction of the image at a time, potentially
only a few thousand rays if load balancing is used, then the
performance of a GPU would be lower than that of our 8
CPU cores. Moreover, since system memory is significantly
cheaper than GPU memory, most nodes will often have sig-
nificantly more system memory which allows a CPU ray

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

tracer to ray trace much larger scenes in-core and this will
clearly make the CPU ray tracer faster. Moving data into one
of the GPUs also carries a significant cost of about 1ms per
6.4MB of data, making communication to the GPU almost
as expensive as communication across the network. Finally,
on the CPU we can communicate across the network at any
point during ray tracing, while on the GPU we would have to
wait for the kernel launch to terminate before being able to
communicate and ask for more data. This limitation would
require that we make repeated kernel launches until all the
rays have finished tracing or rely on level-of-detail approx-
imations which we are not considering for this paper. For
these reasons a CPU-only approach is faster than a GPU-only
approach for out-of-core rendering. A hybrid renderer could
offer a performance improvement and would be interesting
future work.

3. Ray tracing replicated data

We build our distributed ray tracer upon the Manta Interactive
Ray Tracer, a state of the art ray tracer capable of scaling
at real-time frame rates to hundreds of cores on a shared
memory machine [BSP06]. If we are able to replicate data
across the nodes, then we can directly use any of Manta’s
large selection of acceleration structures for ray tracing sur-
face primitives or volumes using anything from ray casting
to path tracing. The only modifications we need to make to
Manta are assigning work (rays) to nodes, receiving pixels,
and broadcasting camera and other state updates to all nodes.
The challenge we face is in ensuring our distributed Manta
implementation is able to scale to many nodes while ensuring
real-time frame rates.

Our real-time distributed ray tracer uses a master-slave
configuration where a single process, the display, receives
pixel results from render processes running on the other nodes.
Another process, the load balancer, handles assigning tasks
to the individual render nodes.

MPI does not guarantee fairness amongst threads in a pro-
cess and our MPI library currently enforces all threads to go
through the same critical section, because of this we run the
display and load balancer as separate processes. Since they
do not communicate with each other nor share any significant
state, this partitioning can be done without penalty or code
complexity. Furthermore, since the load balancer has mini-
mal communication, instead of running on a dedicated node,
it can run alongside the display process without noticeably
impacting overall performance.

3.1. Load balancing

Manta already uses a dynamic load balancing work queue
where each thread is statically given a predetermined large
tile of work to consume and then when it needs more work
it progressively requests smaller tiles until there is no more
work left. We extend this to have a master dynamic load

balancer with a work queue comprised of large tiles which
are given to each node (the first assignment is done statically
and is always the same) and then each node has its own work
queue where it distributes sub-tiles to each render thread.
Inside each node the standard Manta load balancer is used
for distributing work amongst the threads. Each thread starts
with a few statically assigned ray packets to render and then
takes more ray packets from the node’s shared work queue
until no more work is available, at which point that thread
requests another tile of work from the master load balancer
for the entire node to consume. This effectively gives us a
two-level load balancer that ensures that work is balanced
both at the node level and at the thread level. Since the top
level load balancer only needs to keep the work queues of the
nodes full instead of the queues for each individual thread,
communication is kept low on the top level load balancer
which allows us to scale to many nodes and cores.

3.2. Display process

We have one process, the display, dedicated to receiving
pixels from the render nodes and placing those pixels into the
final image. The display process shares a dedicated node with
the load balancer process, which only uses a single thread and
has infrequent communication. The display has one thread
which just receives the pixels from the render nodes into a
buffer. The other threads in the display then take those pixels
and copy them into the relevant parts of the final image. At
first we used only a single thread to do both the receiving and
copying to the final image, but we found that our maximum
frame rates were significantly lower than what our InfiniBand
network should be capable of. Surprisingly, it turned out
that merely copying data in local memory was introducing a
bottleneck, and for this reason we employ several cores to do
the copying.

Since InfiniBand packets are normally 2KB, any messages
smaller than this will still consume 2KB of network band-
width. We therefore need to send a full packet of pixels if we
want to maximize our frame rate. If, for instance, we sent only
a 7B pixel at a time, this would actually require sending an
effective 2048B∗1920∗1080= 3.96GB of data which would
take about 2s over our high speed network, which is clearly
too slow. Since our ray packets contain 64 pixels, we found
that combining 13 ray packets into a single message offered
the best performance since it uses close to 3 full InfiniBand
packets.

4. DSM ray tracing

As mentioned in Section 2, our distributed shared memory
infrastructure is similar to that of DeMarle et al. [DGBP05].

Data is spread out to nodes in an interleaved pattern and
a templated direct mapped cache is used for data that does
not exist locally. We access data at a block granularity of
almost 8KB, with a little bit of space left for packet/MPI

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

overhead, which results in each block containing 254 32-
byte BVH nodes or 226 36-byte triangles. Since multiple
threads can share the cache, each cache line is controlled
by a mutex so that multiple threads can simultaneously read
from a cache line. In order to replace the data in a cache
line, a thread must have exclusive access to that cache line
so that when it replaces the cache element it does not modify
data that is being used by other threads. Remote reads are
performed using a passive MPI_Get operation which should
in turn use an InfiniBand RDMA read to efficiently read the
memory from the target node without any involvement of the
target CPU. This allows for very fast remote reads that do not
impact performance on the target node and that scale to many
threads and MPI processes [JLJ∗04].

DeMarle et al. assign block k to node number k mod
numNodes so that blocks are interleaved across memory.
If a node owns block k, it will then place it in location
k/numNodes of its resident memory array [DeM04]; we
follow this convention. However, if a node does not own
block k, DeMarle et al. have the node place the block in its
k mod cacheSize cache line. We found this to be an ineffi-
cient mapping since it does not make full utilization of the
cache as it does not factor in that some of that data might
already reside in the node’s resident memory. For instance,
if we have 2 nodes and the cache size is also 2, then node
0 would never be able to make use of cache line 0. When
k mod 2 = 0, then the owner of the data is k/2 = 0 which
means that node 0 already has that data in its resident mem-
ory. Our more efficient mapping which avoids the double
counting is

�
k−

�
k+(numNodes−myRank)

numNodes

��
mod cachSize

Raycasting the RM dataset described later in Section 5 with
60 nodes and our more efficient mapping gives speedups of
1.16×, 1.31×, 1.48×, 1.46×, and 1.31× over the mapping
of DeMarle et al. when using the respective cache sizes of
1/32, 1/8, 1/4, 1/2, and 1/1 of total memory. Note that the
1/1 total memory should by definition be large enough to
hold the entire dataset, and yet unlike with our mapping, their
mapping prevents them from caching the entire dataset.

4.1. DSM BVH

Since our DSM manager groups BVH nodes into blocks,
we reorder the memory locations of the BVH nodes so that
the nodes in a block are spatially coherent in memory. Note
that we are not reordering the actual BVH tree topology. We
accomplish this for a block size of B BVH nodes by writing
the nodes to memory according to a breadth first traversal of
the first B nodes, thus creating a subtree that is coherent in
memory. We then stop the breadth first traversal and instead
recursively repeat that process for each of the B leaves of
the newly formed subtree. If the subtree being created ends
up with less than B leaves, we continue to the next subtree

without introducing any gaps in the memory layout. It is
therefore possible for a block to contain multiple subtrees.
However, since the blocks are written according to a blocked
depth-first traversal, the subsequent subtree will still often be
spatially near the previous subtree.

In order to minimize memory usage, Manta’s BVH nodes
only contain a single child pointer, with the other child’s
memory location being adjacent to the first child. Because
of this, we modify the above algorithm so that instead of
recursing on each of the B leaves, we recurse on each pair of
child leaves so that the two children stay adjacent in memory.

These blocks thus contain mostly complete subtrees of B
nodes so that when we fetch a block we can usually expect to
make logB traversals before we must fetch a new block from
the DSM manager. For 254 node blocks this is about 8 traver-
sal steps for which our DSM-BVH traversal performance
should be roughly on par with the regular BVH traversal. We
ensure this by keeping track of the current block we are in
and not releasing that block (or re-fetching it) until we either
leave the block or enter a new block. When we traverse down
into a new block we must release the previously held block
in order to prevent a deadlock condition where one of the
following blocks requires the same cache line as the currently
held block. Note that multiple threads can all safely share
access to a block and that thread stalling while waiting for
a block to be released will only occur if one thread needs to
use the cache line for a different block than is currently being
held.

Since the root of the tree will be traversed by every thread
in all nodes, rather than risk this data being evicted and then
having to stall while the data becomes available again, we
replicate the top of the tree across all nodes. This requires
only an extra 8KB of data per node and ensures that those
first 8 traversal steps are always fast because they only need
to access resident memory.

4.2. DSM primitives

While sharing vertices using a mesh will often halve the
memory requirements, this does not adapt well to DSM since
it requires fetching a block from the DSM manager to find the
triangle and then once the vertex indices are known, one to
three more fetches for the vertices. Thus, if a miss occurs this
results in between a 2–4× slowdown for misses. Doubling
the storage requirements is comparable in cost to halving the
cache size, and halving the cache size often introduces less
than a 2× performance penalty. There is thus no incentive
to use a mesh, even though this is what DeMarle et al. do.
While it might appear that we could create a sub-mesh within
each block so that less memory is used and only a single
block need be fetched, this will not benefit us since block
sizes are fixed and we would end up with wasted empty space
inside each block. Attempting to place variable numbers of
triangles in each block so that empty space is reduced would

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

Figure 1: On 60 nodes, we can raycast (left image) a 316M triangle isosurface of timestep 273 of the Richtmyer-Meshkov
instability using HD resolution at 101fps if we can store all 21,326MB of triangle and acceleration structure data on each node
and at 16fps if we use DSM to store only a total of 2,666MB per node. Using one shadow ray and 36 ambient occlusion rays per
pixel (right image) we can achieve 4.76fps and 1.90fps respectively.

also not work since then we would not be able to compute
which block key corresponds to a triangle.

We reorder our triangles into blocks by performing an
in-order traversal of the BVH and outputting triangles into
an array as they are encountered. This results in spatially
coherent blocks that also match the traversal pattern of the
BVH so that if two leaf nodes share a recent ancestor they are
also spatially coherent and will likely have their primitives
residing in the same block.

5. Results

We used a 64 node cluster where each node contains two
4-core Xeon X5550s running at 2.67GHz with 24GB of
memory and a 4× DDR InfiniBand interconnect between
the nodes. We render all scenes at an HD resolution of
1920×1080 pixels. Our datasets consist of a 316M triangle
isosurface of timestep 273 of the Richtmyer-Meshkov (RM)
instability dataset from Larence Livermore National Labo-
ratory (Figure 1) and the 259M triangle Boeing 777 CAD
model (Figure 2). While the RM dataset could be rendered
using volume raycasting, we use this polygonal representa-
tion as an example of a massive polygonal model where large
parts of the model can be seen from one view. The Boeing
dataset consists of an almost complete CAD model for the
entire plane and unless it were made transparent, has signifi-
cant occlusion so that regardless of the view, only a fraction
of the scene can be viewed at any given time.

We rendered both datasets using 2–60 nodes, where one
node is used for display and load balancing and the remain-
ing ones for rendering. We used simple ray casting for both
models and ambient occlusion with 36 samples per shading
point for the Boeing and similar ambient occlusion but with
an additional hard shadow for the RM dataset.

Figure 3 shows how we scale with increasing numbers
of nodes when ray casting both scenes using replicated data

across each node so that the standard BVH acceleration struc-
ture is used without any DSM overhead, and then with a cache
plus resident set size 1/N of the total memory used by the
dataset and acceleration structure. Assuming the nodes have
enough memory, data replication allows us to achieve near
linear scaling to real-time rates and then begins to plateau as
it approaches 100fps. Since 1/1 has a cache large enough to
contain all the data, no cache misses ever occur and this indi-
cates the overhead of our system compared to replicated data.
As the cache is decreased in size, the Boeing scene shows
little penalty indicating that our system is able to keep the
working set fully in cache. The RM dataset on the other hand
has a larger working set since more of it can be viewed and
this causes cache misses to occur which noticeably affects
performance for reasons which we will shortly describe.

The total amount of memory required in order to keep
everything in-core is dependent on the cache size and the
resident set size. On a single render node all the data must
reside on it so the resident set is 21GB and the cache is
0GB. Figure 4 shows that with more render nodes the size of
the resident set gets progressively smaller so that cache size
quickly becomes the limiting factor as to how much data our
system can handle. Since the resident set decreases as more
nodes are added, cache size could similarly be increased so
that the node’s capabilities are used to the fullest.

5.1. Maximum frame rate

Frame rate is fundamentally limited by the cost of transfer-
ring pixels across the network to the display process. Our
4×DDR InfiniBand interconnect has a measured bandwidth
of 1868MB/s when transferring multiples of 2KB of data
according to the system supplied ib_read_bw tool. Each pixel
sent across consists of a 3B RGB color and a 4B pixel lo-
cation. The 4 Bytes for the location is required in order to
support rendering modes where pixels in a ray packet could
be randomly distributed about the image, for instance, with
frameless rendering. The 4B location could be removed if

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

Figure 2: On 60 nodes, we can raycast (left image) the 259M triangle Boeing using HD resolution at 96fps if we can store all
15,637MB of triangle and acceleration structure data on each node and at 77fps if we use DSM to store only 1,955MB of data
and cache per node. Using 36 ambient occlusion rays per pixel (right image) we can achieve 2.33fps and 1.46fps respectively.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

FP
S

nodes

RM ray casting

1/32 Memory
1/8 Memory
1/4 Memory
1/2 Memory
1/1 Memory

replicated Memory

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

FP
S

nodes

Boeing 777 ray casting

1/32 Memory
1/8 Memory
1/4 Memory
1/2 Memory
1/1 Memory

replicated Memory

Figure 3: Frame rate when varying cache size and number of
nodes in the ray casted RM and Boeing data sets. Replicated
data sees almost perfect scaling until it begins to become
network bound. The Boeing with DSM scales very well, even
with a small cache, because the working set is a fraction of
the overall model. The RM with DSM scales well until about
20–25fps is reached.

we knew that rays in a ray packet form a rectangular tile, in
which case we would only need to store the coordinates of
the rendered rectangle over the entire ray packet instead of
4B per ray. Further improvements might be obtained by com-
pressing the pixels so that still less data need be transmitted.
The time required by the display process to receive all the
pixels from the other nodes is at best 1920∗1080∗7B

1868MB/s = 7.41ms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60

G
B

pe
r n

od
e

render nodes

1/32 Memory 1/8 Memory 1/4 Memory 1/2 Memory 1/1 Memory

Figure 4: Total memory used per node for the RM dataset.

for a full HD image, which gives 135fps. Since we send
13 ∗ 64 = 832 pixels at a time, which occupies 95% of the
InfiniBand packet, we would expect our implementation to
achieve at best 127fps.

To see how close we can get to the maximum frame rate,
we rendered an HD image of a small model with the camera
pointing away from the model so that a blank screen is ren-
dered and only a minimal amount of ray tracing performed
(testing the rays against the bounding box), thus ensuring
that any bottleneck in performance would not be due to ray
tracing performance. To verify that the load balancer is not
significantly competing for resources, we test with the load
balancer on its own dedicated node and then with the load
balancer sharing the node with the display process. The ren-
der nodes thus have a limited amount of work to perform and
the display process quickly becomes the bottleneck. Figure 5
shows that when using one thread to receive the pixels and
another to copy the pixels from the receive buffer to the im-
age, the frame rate is capped at 55fps no matter how many
render threads and nodes are used. Using two threads to copy
the pixels to the image results in up to a 1.6× speedup and
three copy threads improves performance by up to 2.3×, but
more copy threads offer no additional benefit, showing that
copying was the bottleneck until 3 copy threads were used,

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

after which point the bottleneck shifted to the receive thread
which is not able to receive the pixels fast enough to keep
the copy threads busy. When around 18 threads are used, be
they on a few nodes or many nodes, we reach a frame rate
of 127fps. This is exactly our expected maximum of 127fps
given by the amount of time it takes to transmit all the pixel
data across the InfiniBand interconnect. More render threads
result in lower performance due to the MPI implementation
not being able to keep up with the large volume of communi-
cation. In order to achieve these results required that we tune
our MPI implementation to use more RDMA buffers and turn
off shared receive queues (SRQ), otherwise, we could still
achieve the same maximum frame rate of around 127fps with
17 render cores, but after that point adding more cores caused
performance to more quickly drop off, with 384 render cores
(48 render nodes) being 2× slower. However, this is a moot
point since faster frame rates would offer no tangible benefit.

For 4M pixel images, which are currently the largest a
single graphics card can render at 60Hz, our maximum frame
rate would halve to about 60fps. Higher resolutions are usu-
ally achieved with a display wall consisting of a cluster of
nodes driving multiple screens, so in this case the maximum
frame rate would be given not by the time to transmit an en-
tire image, but by the time it takes for a single display node to
receive its share of the image. Assuming each node rendered
4M pixels, and the load balancing and rendering continue to
scale, the frame rate would thus stay at 60fps regardless of
the resolution of the display wall.

Since three copy threads are able to keep up with the re-
ceiving thread, and we have the load balancer process also
running on the same node, this leaves us with three unused
cores. If we are replicating data across the nodes then we can
use these three cores for a render process. This render process
would also benefit from being able to use the higher speed
shared memory for its MPI communication with the display
and load balancer instead of the slower InfiniBand. However,
if DSM is required then we cannot run any render processes
on the same node since those render processes would be com-
peting with the display and load balancer for scarce network
bandwidth and this would much more quickly saturate the
network port and result in much lower maximum frame rates.

5.2. Remote read

We use MVAPICH2 as our MPI-2 implementation since
it supports multi-threading, and makes use of InfiniBand
RDMA read and writes [LJW∗04]. Unfortunately, while this
is the most advanced MPI-2 implementation we could find, as
of the latest version, 1.6-rc2, it still does not support several
important features. The first issue is that it uses a global mutex
to guard all MPI calls, even when a finer grained synchro-
nization could be used; this leads to excessive thread stalling.
For instance, we have found replacing an MPI process with 8
threads by 8 separate single threaded MPI processes can re-
sult in a 4× speedup for a simple benchmark that repeatedly

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 50 100 150 200 250 300 350 400

FP
S

render cores

1C 2C 3C 4C 5C 6C 7C 6C+LB

Figure 5: Display process scaling: Frame rate using varying
numbers of render cores to render a trivial scene when using
1 copy thread (1C) to 7 copy threads (7C), and when using
6 copy threads with the load balancer process on the same
node (6C+LB).

executes MPI_Get to read memory off another node. Sec-
ondly, MVAPICH2 researchers demonstrated true one-sided
passive MPI_Get using InfiniBand RDMA, and showed that
it allows for very fast remote reads without any processing on
the remote CPU and scales very well with increasing numbers
of processes and threads [JLJ∗04]. Unfortunately, this has
not yet been made public and so the current implementation
requires that the remote process check to see if there are any
pending requests for data. This check is performed by the
MPI library each time an MPI call is made. Effectively, this
means that if node 1 calls MPI_Get to read data off of node
2, it will only receive the data after node 2 performs an MPI
call, such as an MPI_Get for data off of another arbitrary
node (it need not be from node 1), or communication with the
load balancer or display process. This all results in MPI_Get
calls taking potentially several orders of magnitude extra time
to return data, either because too many calls are being per-
formed so that threads end up stalled at a mutex or because
not enough calls are made and progress is not made by the
MPI engine.

Bypassing MPI and directly using the low-level Infini-
Band API would likely result in substantial performance
improvements, but at significant programmer effort and code
complexity. The next release of MVAPICH2, version 1.7, is
expected to support true one-sided passive communication
and so should solve many of these issues and should offer a
significant performance improvement [Pot11]. MPI-3 is also
expected to address these well-known shortcomings and offer
a low-latency MPI_Get [TGR∗09] that closer matches the
expected performance of directly performing an RDMA read.

To get our DSM ray tracer to scale using the currently
available MPI implementations, we found that tasking one
render thread with periodically making a no-op MPI call
(MPI_Iprob) in order to force the MPI progress engine to run
helped to partially ameliorate this problem. Table 1 shows
that the frame rate without these extraneous calls can be up to

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60

µ
s

nodes

1/32 RM 1/8 RM 1/4 RM 1/2 RM 1/32 Boeing

Figure 6: Average time to perform a single MPI_Get call.

2.4× worse and that the extra calls never significantly worsen
performance.

We measured the time it takes to perform an MPI_Get to
read an 8KB block of data from another node and found that
occasionally we can perform the read in 12µs, which is fairly
close to the measured average RDMA read latency of 9µs
on our cluster. However, Table 1 shows that the average time
is much larger, usually between 40-170µs with occasional
MPI_Get calls taking tens of milliseconds to complete.

Figure 6 shows that increasing the number of nodes or
decreasing the cache results in a longer time to complete a
remote read. Were the MPI_Get implementation to be truly
one-sided, then we would expect the read time to stay con-
stant regardless of cache size or number of nodes. Doubling
the number of nodes might result in twice as many MPI_Get
calls, but it also doubles the number of places to read memory
from, and since blocks of memory are interleaved across the
nodes, this should result in each node still receiving the same
number of read requests.

Since we interleave the blocks amongst the nodes’ resident
sets, for a large enough data set, each node has roughly an
equal chance that a requested block will be in the node’s
resident set regardless of where in the scene the ray is located.
The one significant exception is for the root block which
every ray is guaranteed to fetch; although since this is just
one block out of many read, this does not significantly change
the probabilities. This means the ratio of block requests that
go to resident memory and the ratio that check the cache
can be approximated by the ratio of the resident set and
cache sizes, which are respectively 1/N and (N −1)/N for
N render nodes. Experimental verification confirms this. The
decrease in size of the resident set as more render nodes
are used is what allows us to render massive out-of-core
models; however, this also means that there is an additional
cost for adding render nodes since accessing the cache, even
if a hit is made, has extra cost as a critical section must be
entered. Generally, the additional compute power will still
make this a worthwhile trade-off, and once there are enough
nodes to enable the distributed data to fully reside on the

cluster, additional render nodes allow us to use larger caches,
which will lower the number of cache misses and result in
substantial performance improvements.

What does vary and is harder to predict are the number of
cache misses that occur. For the Boeing scene, only a fraction
of the triangles and BVH nodes are visited for any one view,
so even a small cache can contain the entire working set.
The RM dataset, on the other hand, can have many more
visible triangles and so has a larger working set. Still, Table 1
shows the cache miss rate is usually less than 1%. Using
ambient occlusion, which we expected to stress our DSM
implementation, actually resulted in even better cache usage.

6. Future work

Clearly we would like to run our system with the next release
of MVAPICH2 to see how much of a benefit we can get from
an optimized MPI_Get implementation. We expect that since
remote reads are currently an order of magnitude slower than
they should be, that we could see a doubling or tripling in
performance over what we presented when significant cache
misses occur.

Adapting our system for use with a display wall in order
to achieve real-time frame rates at massive pixel resolutions
would be very interesting and useful for visualization.

Currently we build our acceleration structure offline using
a serial algorithm which can take a few hours for a massive
scene. Parallelizing this over all the cores in the cluster could
bring this down to a few minutes.

Since Manta supports volume ray casting, we can already
handle volumes using data replication; however, it would
be nice to extend our system to also use DSM for massive
volumetric datasets.

7. Conclusion

With modern hardware and software, we can ray trace mas-
sive models at real-time frame rates on a cluster and even
show interactive to real-time rates when rendering out-of-core
using a small cache. We are often one to two orders of magni-
tude faster than previous cluster ray tracing papers which used
both slower hardware and algorithms [DGBP05, WSB01], or
had equivalent hardware but could not scale to as many nodes
or to high frame rates [BBS∗09]. Compared to composit-
ing approaches, we can achieve about a 4× improvement in
the maximum frame rate for same size non-empty images
compared to the state-of-the-art [KPH∗10] and can handle
advanced shading effects for improved visualization.

8. Acknowledgements

This publication is based on work supported by Award No.
KUS-C1-016-04, made by King Abdullah University of Sci-
ence and Technology (KAUST), DOE VACET, NSF OCI-
0906379, NSF CNS-0615194.

c� The Eurographics Association 2011.

T. Ize, C. Brownlee, & C. Hansen / Real-Time Ray Tracer for Visualizing Massive Models on a Cluster

cache %cache blocks Without no-op MPI calls With no-op MPI calls
size miss read FPS avg µs min µs max µs FPS avg µs min µs max µs

Richtmyer–Meshkov, 60 nodes
1/32 1.88 6158K 10.7 186 12.1 23690 10.5 171 12.9 19807
1/8 0.52 6158K 14.3 198 12.9 26350 16.0 133 12.9 24657
1/4 0.19 6158K 15.5 220 12.9 21661 19.7 124 12.9 19693
1/2 0.07 6158K 14.7 249 12.9 21679 22.0 126 12.9 15166

Boeing 777, raycast, 60 nodes
1/32 0.08 4524K 51.4 200 11.9 12423 58.9 71.8 12.9 10647
1/8 4E-4 4524K 78.5 144 15.0 1408 77.1 70.2 15.0 2170

Richtmyer–Meshkov, ambient occlusion, 60 nodes
1/32 0.48 219M 1.06 175 11.9 30517 1.25 110 11.9 42119
1/8 0.21 219M 1.18 355 11.9 69432 1.90 100 11.9 50262
1/4 0.11 219M 1.10 692 11.9 107827 2.05 120 12.9 49744
1/2 0.02 219M 1.02 1421 11.9 153737 2.41 136 12.9 52346

Boeing 777, ambient occlusion, 60 nodes
1/32 0.06 351M 0.62 626.7 11.9 309025 1.02 66.0 11.9 111139
1/8 7E-6 351M 1.47 14483 19.1 88821 1.46 35.9 15.9 87.9

Table 1: As the cache grows, fewer cache misses occur and so the MPI no-op calls become more important. There is substantial
variance in the time for data to be fetched due to the suboptimal MPI_Get implementation. Since the working set for the Boeing
scene fits in 1/8 and larger size caches, only a few misses occur, so we do not show results for those caches sizes.

References

[BBS∗09] BUDGE B., BERNARDIN T., STUART J. A., SEN-
GUPTA S., JOY K. I., OWENS J. D.: Out-of-core data man-
agement for path tracing on hybrid resources. Computer Graphics
Forum 28, 2 (2009), 385–396. 2, 8

[BSP06] BIGLER J., STEPHENS A., PARKER S. G.: Design for
Parallel Interactive Ray Tracing Systems. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing (2006). 3

[CM93] CORRIE B., MACKERRAS P.: Parallel volume rendering
and data coherence. In Proceedings of the 1993 symposium on
Parallel rendering (1993), PRS ’93, pp. 23–26. 1

[DeM04] DEMARLE D. E.: Ice network library. http://www.
cs.utah.edu/~demarle/software/, 2004. 4

[DGBP05] DEMARLE D. E., GRIBBLE C., BOULOS S., PARKER
S.: Memory sharing for interactive ray tracing on clusters. Parallel
Computing 31 (2005), 221–242. 1, 2, 3, 8

[GP06] GRIBBLE C. P., PARKER S. G.: Enhancing interactive
particle visualization with advanced shading models. In Proceed-
ings of the 3rd symposium on Applied perception in graphics and
visualization (2006), pp. 111–118. 1

[HBC10] HOWISON M., BETHEL E. W., CHILDS H.: MPI-hybrid
parallelism for volume rendering on large, multi-core systems. In
Eurographics Symposium on Parallel Graphics and Visualization
(2010). 2

[Ize09] IZE T.: Efficient Acceleration Structures for Ray Tracing
Static And Dynamic Scenes. PhD thesis, University of Utah, 2009.
2

[JLJ∗04] JIANG W., LIU J., JIN H., PANDA D., BUNTINAS D.,
THAKUR R., GROPP W.: Efficient implementation of MPI-2
passive one-sided communication on InfiniBand clusters. Re-
cent Advances in Parallel Virtual Machine and Message Passing
Interface (2004), 450–457. 4, 7

[KPH∗10] KENDALL W., PETERKA T., HUANG J., SHEN H.,
ROSS R.: Accelerating and benchmarking radix-k image com-
positing at large scale. In Proceedings Eurographics Symposium
on Parallel Graphics and Visualization (2010), pp. 101–110. 2, 8

[LJW∗04] LIU J., JIANG W., WYCKOFF P., PANDA D. K., ASH-
TON D., BUNTINAS D., GROPP W., TOONEN B.: Design and
implementation of MPICH2 over InfiniBand with RDMA support.
Parallel and Distributed Processing Symposium, International 1
(2004), 16b. 7

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14 (July 1994), 23–32. 2

[PBD∗10] PARKER S., BIGLER J., DIETRICH A., FRIEDRICH
H., HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE
M., MORLEY K., ROBISON A., STICH M.: OptiX: a general
purpose ray tracing engine. In ACM SIGGRAPH (2010). 2

[Pot11] POTLURI S.:. Personal communication, 2011. MVA-
PICH2 developer. 7

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-level
ray tracing algorithm. ACM Transaction on Graphics 24, 3 (2005),
1176–1185. (Proceedings of ACM SIGGRAPH 2005). 2

[TGR∗09] TIPPARAJU V., GROPP W., RITZDORF H., THAKUR
R., TRÄFF J.: Investigating high performance RMA interfaces for
the MPI-3 standard. In 2009 International Conference on Parallel
Processing (2009), IEEE, pp. 293–300. 7

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (2007), 1–18. 2

[WMG∗09] WALD I., MARK W. R., GÜNTHER J., BOULOS S.,
IZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the art
in ray tracing animated scenes. Computer Graphics Forum 28, 6
(2009). 2

[WSB01] WALD I., SLUSALLEK P., BENTHIN C.: Interactive
distributed ray tracing of highly complex models. In Proceedings
of the 12th Eurographics Workshop on Rendering Techniques
(2001), pp. 274–285. 1, 8

[YM06] YOON S., MANOCHA D.: Cache-efficient layouts of
bounding volume hierarchies. Computer Graphics Forum (Euro-
graphics) (2006). 2

c� The Eurographics Association 2011.

http://www.cs.utah.edu/~demarle/software/
http://www.cs.utah.edu/~demarle/software/
Thiago Ize
raycast Boeing 1/32 with no-op mpi calls had incorrect timing information in published paper. It has been corrected here.

