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Abstract

Dynamic contrast-enhanced magnetic resonance imaging (MRI) is a technique used to study and track contrast kinetics in an area of
interest in the body over time. Reconstruction of images with high contrast and sharp edges from undersampled data is a challenge. While
good results have been reported using a radial acquisition and a spatiotemporal constrained reconstruction (STCR) method, we propose
improvements from using spatially adaptive weighting and an additional edge-based constraint. The new method uses intensity gradients
from a sliding window reference image to improve the sharpness of edges in the reconstructed image. The method was tested on eight radial
cardiac perfusion data sets with 24 rays and compared to the STCR method. The reconstructions showed that the new method, termed edge-
enhanced spatiotemporal constrained reconstruction, was able to reconstruct images with sharper edges, and there were a 36%±13.7%
increase in contrast-to-noise ratio and a 24%±11% increase in contrast near the edges when compared to STCR. The novelty of this paper is
the combination of spatially adaptive weighting for spatial total variation (TV) constraint along with a gradient matching term to improve the
sharpness of edges. The edge map from a reference image allows the reconstruction to trade-off between TV and edge enhancement,
depending on the spatially varying weighting provided by the edge map.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

In dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI), a gadolinium (Gd)-based contrast agent is
injected into the patient, and the T1 shortening effect of Gd
makes regions that receive the contrast appear bright in the
acquired T1-weighted images. To follow the dynamics of the
contrast agent, high temporal and high spatial resolution is
required. The MRI scanner requires a relatively large amount
of time to acquire full data in k-space. Hence, simultaneous
achievement of both high spatial resolution and high
temporal resolution is challenging. When less data are
acquired in k-space, a linear reconstruction scheme causes
artifacts to appear in the image. The sampling pattern and its
point spread function [1] determine the type of artifacts seen.
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In the case of radial acquisition, these artifacts appear as
streaks across the image.

One major application of DCE-MRI is myocardial
perfusion imaging. DCE cardiac perfusion imaging is an
important clinical tool used to assess blood flow to the
myocardium in order to detect coronary artery disease.
Radial acquisition has been used in DCE cardiac perfusion
imaging in part because radial acquisitions are relatively
more robust to motion when compared to Cartesian
acquisition. The reconstruction algorithm used to reconstruct
the images from the undersampled k-space data must be able
to reconstruct images with good contrast and sharp edges and
must also be robust to some motion in the acquired data.

There have been many methods proposed to handle the
problem of incomplete k-space data. Techniques like
keyhole [2,3], reduced-encoding imaging with generalized-
series reconstruction (RIGR) [4,5] and sliding window [6]
have been used for reconstructing contrast-enhanced images
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and are relatively simple to implement. Most streaking
artifacts in the image can be removed by these techniques,
but images with high spatial and temporal resolution are
often not achievable for high undersampling factors. Smaller
structures and edges in the image often become blurred, and
in the presence of respiratory motion, techniques like sliding
window and keyhole perform poorly. This prevents their
widespread use in cardiac perfusion imaging.

Cardiac images have high spatiotemporal correlations.
Techniques like k-t Broad-use Linear Acquisition Speed-
up Technique (BLAST) and k-t SENSitivity Encoding
(SENSE) [7] exploit the spatiotemporal correlation by
using dynamic training data. This helps in achieving high
acceleration factors and also images with high resolution.
But if there are inconsistencies between the training data
and the reconstructed images, the method performs
poorly. This reportedly makes k-t SENSE less robust to
motion [8]. To overcome these limitations, the spatiotem-
poral domain-based unaliasing employing sensitivity
encoding and adaptive regularization [9] algorithm used
RIGR for its initial estimates. This reduces the problems
associated with using a temporal average that is used in k-
t BLAST and k-t SENSE and makes the method more
robust to motion.

The idea of compressed sensing (CS) [1] aims to
leverage sparsity constraints to reconstruct artifact-free
images from relatively few k-space samples. k-t FOCal
Underdetermined System Solver (FOCUSS) [10,11] and
k-t SPARSE [12] are CS-based schemes that use the
Fourier transform along the temporal domain as the
sparsifying transform. These methods have been shown to
be robust to motion [8]. CS-based methods can also be
combined with parallel imaging techniques [8,13,14] to
accelerate parallel imaging further.

Another way of exploiting the temporal correlations in
DCE cardiac perfusion images in a CS framework is the use
of temporal gradients as sparsifying constraints. Temporally
constrained reconstruction [15,16] and, subsequently, a
spatiotemporal constrained reconstruction (STCR) [17]
have been shown to give good quality reconstructions of
undersampled cardiac perfusion images with some respira-
tory motion using radial data with 24 rays. Here we propose
to extend STCR in two ways. The first is to make the weight
on the spatial constraint spatially varying. Such a spatially
varying constraint was presented in Refs. [18–20]. In Ref.
[18], a local noise measure was used to determine the spatial
total variation (TV) constraint weight, with greater noise
using higher weights. In Refs. [19,20], the scale of the
objects in the image and the noise in the image were used to
determine the weights of spatial TV constraint. In our
method, the spatially varying weight is determined by edge
strength. The second extension proposed here is to improve
the sharpness of edges by adding an edge matching function
based on a reference image. The new method is thus termed
edge-enhanced spatiotemporal constrained reconstruction
(EESTCR) [21].
2. Theory and method

2.1. Shortcomings of TV constraints

In Refs. [19,22], it was shown that TV denoising could
lead to loss of contrast. In order to overcome the problem of
loss of contrast due to TV, a spatially varying weight for TV
was proposed by Strong and Chan in Ref. [20]. It was shown
that a spatially varying weight for TV performs better at
preserving contrast and also smaller features in the image.
Two methods to make the weight spatially varying, namely,
by using information about the size of different objects in
the image, or by using information about noise in the
image, were also developed. When reconstructing cardiac
images, weight for TV should be large at uniform regions in
the image to remove streaking artifacts and noise, while the
weight should be small at edges to avoid smoothing and
loss of contrast. Our method is motivated with this
realization and proposes an automatic way to handle
spatially varying weights by making use of information
from a reference image.

2.2. EESTCR formulation

Aliasing artifacts occur in the image when Cartesian
k-space is undersampled. When radial sampling is used,
these artifacts appear as streaks in the image. However, any
prior knowledge about the fully sampled image can be
incorporated as constraints in a regularization framework to
reduce or remove these artifacts. In EESTCR, the images are
reconstructed by minimizing

C = kEm − dk22 + a1
XN
i=1

kjtmik1

+ a2
XT
j=1

k 1−xj

� �
jmjk1

+ a3
XT
j=1

kx1 = 2
j jmj − jI rj

� �
k22;

ð1Þ

Where m represents the estimated complex image data and E
is a matrix that models the physical imaging process. For
MRI, E includes the k-space trajectory and also the Fourier
transform operator. The fidelity term is given by ||Em−d||22,
where ||.||2 represents the L2 norm and d is the acquired
sparse k-space data. The temporal regularization term is a TV

in time penalty given by
PN
i=1

kjtmik1, where ▿t is the

temporal gradient operator, N is the total number of pixels in
each time frame and mi represents the time curve of pixel i.
The spatial regularization term is a spatial TV [23,24]

penalty given by
PT
j=1

kjmjk1, where ||.||1 represents the L1

norm, T is the total number of time frames and ▿ represents
the spatial gradient operator. The spatial TV constraint was
implemented as shown in Ref. [16]. To improve the
sharpness of the edges, we propose to add an edge constraint
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Fig. 1. An L-curve for one of the data sets used is shown. The elbow point in
the log–log plot of the fidelity norm versus the temporal norm is α1=0.05
shown by a dark point. Though the L-curve for only one slice is shown here
the elbow point for all of the slices was in a similar position. The α1 values
were continuously varied between 10−6 and 5.
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given by
PT
j=1

jjx1 = 2
j jmj − jI rj

� �
jj22, where I r is the

reference image and ω is a spatially varying weight defined
as ω=1−exp(−|(▿Ir)2|/λ2), in which λ is a constant. α1, α2
and α3 are weights that control the amount of spatial TV
regularization, temporal regularization and the gradient
matching term, respectively. The reference image for each
time frame is formed by combining three previous frames
with the current time frame in a sliding window fashion. This
allows each time frame to have its own reference image that
follows the dynamics and motion of the acquired data.

The function ω(x,y,t) is used to form a spatially varying
edge map of the strength of the edges in the reference image.
It is assumed that the reference image does not suffer from
artifacts due to incomplete k-space acquisition. The term
(1−ω) is used to control the influence of the TV
minimization at areas where the gradient of the reference
image is large. At such points, the value of ω is close to 1,
and hence, (1−ω) is almost zero. These low values of (1−ω)
prevent the influence of TV minimization at sharp edges
where only the edge matching function takes effect. This
adaptive weighting leads to improvement of the sharpness of
the edges by the edge constraint, and at the same time, the
streaking and noise are removed by the spatial and temporal
regularization terms.

An iterative gradient descent scheme with finite forward
differences [25] was used to minimize the cost function. The
dynamic series of images was updated at every iteration
according to the following equation:

mn + 1 = mn − gC
0
mnð Þ; n = 1; 2; ::: ð2Þ

Here n is the iteration number, η is the step size and C′ is the
Euler–Lagrange derivative of the cost functional with
respect to m. The Euler–Lagrange derivative of the edge
matching function is given by α3ω(▿

2m−▿2Ir).

2.3. Data acquisition

The radial perfusion data were obtained using a Siemens
Trio 3-T scanner with a phased array cardiac coil. A
saturation recovery turbo flash sequence with repetition
time/echo time ∼2.5/1.4 ms, 12° flip angle and 8-mm slice
thickness was used. The radial data had 24 rays in each time
frame. A different start angle offset equal to an integer
multiple of (180/96)° was used, and this was repeated every
four frames so that a combination of four frames gave 96
unique equiangular rays. The method was tested on eight
radial data sets acquired from six patients (four males and
two females). Six data sets were acquired at rest, and two
were acquired at stress. The contrast agent Gd-BOPTA,
0.03–0.04 mmol/kg, 5 cc/s, was used for rest and adenosine
stress perfusion. The data were acquired with shallow
breathing. The data were obtained using 9 to 15 receive coils
of which 3–5 combined “coils” were reconstructed sepa-
rately and 5 to 10 slices were acquired per study.
2.4. Reconstruction

First, the k-space data for each study were scaled to have
the same range of intensities. The radial k-space samples
were then interpolated onto a Cartesian grid for faster
iterations as discussed in Ref. [16]. A reference frame for
each reconstructed time frame was then created by
combining the inverse Fourier transform (IFT) of the current
time frame with the IFT of three frames before it in a sliding
window fashion.

In order to determine the reconstruction parameters for
EESTCR, a training data set was used. One of the eight
patient data sets was chosen as the training data set, and it
consisted of 8 slices and 53 time frames. To calculate the
weight α1, the L-curve technique was used. The weights α2
and α3 were set to zero. The elbow point in the L-curve
corresponds to the best balance between the fidelity norm
and temporal norm. We found that this elbow point was close
to α1=0.05 for each of the eight slices. An example is shown
in Fig. (1). The weights α2 and α3 were then chosen
empirically for the test data set. The regularization weights
were chosen as α1=0.05, α2=0.005 and α3=0.1. To choose
the step size and the number of iterations for the
reconstruction, the cost function was plotted against the
number of iterations, and a combination of step size and
number of iterations that led to a stable minimum was
determined for the test data set. The step size for the gradient
descent minimization was fixed at 0.05, and 150 iterations
were performed to minimize the cost function C in Eq. (1).
For the edge function ω, the value of λ was chosen as
λ=0.045. The λ value that appeared to give the sharpest
edges in the edge map ω was used.
,
,



613S. Kamesh Iyer et al. / Magnetic Resonance Imaging 30 (2012) 610–619
Reconstructions were performed on data from each coil
independently, and the images were combined using square
root of sum of squares. The coils used to create the final
images were chosen by visual inspection. This was done to
avoid coils that produced heavy streaking artifacts.
2.5. Robustness of the method to small changes in
the weights

To test the robustness of the method to small changes in
the weights, the weights α1, α2 and α3 were changed by
±20%, ±20% and ±50%, respectively, in different combina-
tions of the three weights. Comparisons were made with
images reconstructed using α1=0.05, α2=0.005 and α3=0.1.
2.6. Comparison metrics

To compare the images reconstructed using EESTCR and
STCR, we used a difference image. Plots of values in a line
across the myocardium were also used to study the
differences. The same line was plotted over time for both
the methods, and a percentage difference between the two
reconstruction methods was calculated. To study the
robustness of EESTCR to motion, the method was applied
to another set of three more patient data sets with large
respiratory motion. The reconstructed images were com-
pared with those of STCR for artifacts and false edges.

Contrast-to-noise ratio (CNR) and contrast were also

calculated. Here CNR is given by the ratio
MIBlood − MIMyoð Þ

rBkg
,

where MIBlood is the mean intensity of a small region in the
left ventricle (LV) blood pool, MIMyo is the mean intensity of
a small region in the myocardium and σBkg is the standard
deviation of a region in the background. Contrast is

computed as
MIBlood − MIMyoð Þ
MIBlood + MIMyoð Þ. CNR and contrast were

calculated from a single time frame when the mean intensity
in the LV blood pool was maximum and the regions were
chosen close to the edge of the septal wall Fig. 2(A).
Fig. 2. Comparison of CNR and contrast for two choices of ROI. The regions
are chosen (A) close to the edge in the myocardium and LV blood pool and
(B) away from the edge. For the ROI shown in (A), CNR=88.12 and
contrast=0.25 for EESTCR, and CNR=58.50 and contrast=0.18 for STCR.
There are a 50.6% increase in CNR and a 39% increase in contrast. For the
ROI shown in (B), no significant change in CNR and contrast was seen.
CNR=250.2 and contrast=0.54 using EESTCR, and CNR=252 and
contrast=0.53 using STCR.
3. Results

In general, the series of images reconstructed using
EESTCR have better contrast and sharper edges than
STCR results. The images in Figs. 3 and 4 show the
improvement of edges in the LV and in the right ventricle
(RV). The difference image shows that, in EESTCR,
smoothing of edges is avoided and sharper edges are
reconstructed. Also, the difference between the myocardi-
um and blood pool is clearer in the EESTCR images when
compared to STCR.

When trying to detect regions in the myocardium that
have a perfusion defect, good contrast improves the ease
with which such regions can be detected. This change in
contrast in the region with less flow can be subtle in the
reconstructed images. The images in Fig. 3 show that in the
ischemic region in the myocardium [shown by the white
arrow in Fig. 3(B) and (C)], the decrease in contrast in the
myocardium is more visible in the image reconstructed using
EESTCR. In the plot of the line in myocardium over time in
Fig. 3(F), the difference is greatest at the edges of the LV
myocardium. The spatial location of the line is shown in Fig.
3(A). The change in the line intensities across the
myocardium plotted in Fig. 3(E) also shows that the valleys
are lower and peaks are higher.

Sharper edges with EESTCR are shown for two time
frames in Fig. 4. The difference between the myocardium
and blood pool is more visible in images reconstructed using
EESTCR. Also, finer structures like papillary muscles and
the myocardium are better visualized in EESTCR. In STCR,
finer structures can be mistaken for noise in the image, and
these structures in the reconstructed image can be smoothed
or removed. In EESTCR, by using a reference image to
reduce the spatial TV weight at locations in the reconstructed
image which are likely to have edges, this smoothing effect
of TV is avoided.

The direction in which the intensities in the images
reconstructed using EESTCR changed when compared to
STCR is in a direction such as to increase the contrast in
the image as opposed to STCR which will be in a direction
such as to decrease the contrast in the image. In Fig. 5, we
see that when gadolinium is present in the LV or RV, a
25% difference in the intensity between STCR and
EESTCR was seen in the myocardium and the edges in
LV and RV. The presence of gadolinium allowed improved
detection of edges, and the edge map could be used by the
gradient matching term to make the edges sharper. This
difference was seen in a series of 10–15 time frames as
shown in Fig. 5(D).

3.1. Robustness of the reconstruction to small changes
in weights

We found that the method was robust to small changes
in weights. A mean squared difference-based comparison
of images reconstructed using the new set of weights that
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had small perturbations and the standard set of weights
showed that the differences were very small, usually in the
order of 10−5 to 10−6. An example is shown in Fig. 6. The
maximum mean squared error seen in this data set was
7.6×10−6.

3.2. Robustness to motion

There was respiratory motion present in the images
shown in Figs. 3 and 4. Even in the presence of some
motion, EESTCR was able to reconstruct images with
sharper edges, showing that the method is robust to some
motion. We found that, in some data sets, a good edge map
could not be extracted because of a poor reference image.
In such data sets, only slight or no improvement was seen
in the sharpness of edges. However, a poor reference frame
did not degrade the image quality, and the reconstructed
image quality was very similar to STCR. The images in
Fig. 7 show examples of a good edge map [Fig. 7(A)] and a
poor edge map [Fig. 7(D)].

The performance of EESTCR on data sets with large
motion and data sets with minimal motion is shown in Fig.
7. The edge map shown in Fig. 7(D) is blurred due to
motion in the vertical direction. This causes the edges to
appear broader in the edge map. Because the edges are
blurred, the edge map detects edges at locations that may
not correspond to edges in the reconstructed image. These
blurred edges are usually less strong when compared to
sharp edges, and hence, the weight on the edge matching
function is no longer large. The method was used on three

image of Fig. 3
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data sets with large respiratory motion, and comparisons
with STCR showed that no edge artifacts were added due
to EESTCR. The images reconstructed using EESTCR
matched those using STCR in image quality.

We found that if coils that had heavy streaking
artifacts, such as from bright fat signal near the coil,
were used for reconstruction, these streaking artifacts were
added as false edges in the reconstructed image. This is
because the weight added due to the edge map is no
longer small and the presence of the artifacts in the
acquired data at such locations would make the gradient
matching term enhance the streaks. This problem can be
mitigated by not choosing coils that have heavy streaking
artifacts in them. The coils for the reconstructions were
chosen by visual inspection.

3.3. Effect of EESTCR on segmentation

Manual registration and segmentation are often per-
formed on the series of reconstructed images. This is done
to extract time curves and flow reserves from the dynamic
series of images. Contours have to be drawn around the
myocardium to aid in the process of registration and
segmentation. The presence of partial volume effect
hinders this process. Also, signal from the blood pool
should not be included with the myocardium during
segmentation. The partial volume effect near the myocar-
dium–blood pool interface is less in EESTCR when
compared with STCR. This made the process of drawing
contours easier. The contours with EESTCR images were
often more conservative when compared with STCR, and
the signal from the blood pool could be carefully avoided
in the myocardium.

An example of the manual contours is shown in Fig. 8.
The contours were first drawn on STCR [Fig. 8(A)] and
overlaid on EESTCR [Fig. 8(B)]. The contours do not match
the edges well, and signal from the blood pool in the LV and
RV gets included with the myocardium in EESTCR. These
regions are shown by the two black arrows in Fig. 8. A more
conservative or narrow contour would have been drawn on
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EESTCR image to avoid the blood pool signal from being
included with the myocardium.

3.4. CNR and contrast

To calculate the CNR and contrast of images recon-
structed using STCR and EESTCR, regions of interest were
selected close to the edge of the myocardium and the LV
blood pool, as shown in Fig. 2(A). There was on average a
36%±13.7% increase in the CNR and a 24%±11% increase
in the contrast in images reconstructed using EESTCR when
compared with STCR in five data sets. The standard
deviations of the background for EESTCR and STCR
reconstructed images were similar. When the standard
deviation of a small region in the center of the blood pool
was used instead of the standard deviation of the
background, a similar percentage increase in CNR was seen.

For the example shown in Fig. 2(A), the CNR and
contrast computed using EESTCR were CNR=88.12 and
contrast=0.25. For STCR, CNR=58.5 and contrast=0.18.
There were a 50.6% increase in CNR and a 39% increase in
CR in this example. If the regions of interest were chosen
well within the myocardium and blood pool, away from the
edges [as shown in Fig. 2(B)], no significant change in CNR
and contrast was seen. For the example shown in Fig. 2(B),
CNR=250.2 and contrast=0.54 for EESTCR, and CNR=252



Fig. 6. Robustness of the reconstruction technique to small changes in the
weights is shown. (A) Single coil image reconstructed using standard set of
weights chosen: α1=0.05, α2=0.005 and α3=0.1. (B) Image reconstructed
using α1=0.06, α2=0.004 and α3=0.05. The mean squared difference
between (A) and (B) is 7.6×10−6. This shows that the reconstruction
algorithm is robust to small changes in the weights.
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and contrast=0.53 for STCR. This shows that there is better
contrast in EESTCR reconstructed images near the edges
when compared to STCR. High contrast near the LV blood
pool–myocardium boundary can help in the accurate
detection of subendocardial ischemia.
4. Discussion

A new gradient matching term-based image reconstruc-
tion algorithm is presented. EESTCR is a data-driven
approach to make the weight on the TV regularization
spatially varying. Spatial gradients of a sliding window
Fig. 7. The effect of reference images with different image qualities and their corres
The images reconstructed using STCR and EESTCR, respectively. The image recon
comparison is further shown in Figs. 4 and 5. (D–F) The effect of using a poor ref
reconstructions using EESTCR (F) are comparable with STCR (E). No false edge
reference image that is generated from the undersampled data
are used for this purpose. Unlike uniformly weighted TV,
which can cause loss of contrast and smoothing of fine
features in the image, in EESTCR, the spatially varying edge
map makes the weight for TV spatially varying, and the
smoothing effect of TV is avoided. The gradient matching
term also enhances the edges in the reconstructed image by
using an L2 norm penalty with respect to the gradients of a
reference image. The result of this edge enhancement is seen
in the difference image and the cross sectional plots in Figs. 3
and 4. These show that EESTCR is better at handling trade-
offs between smoothness of uniform regions and sharpness of
edges. In data sets with large respiratory motion where only
poor reference images with blurred edge maps could be
extracted, the reconstructed image quality was comparable
with STCR, and no false edge artifacts were added to the
reconstructed image. This is because blurred edges usually
tend to be less strong when compared with sharper edges. The
presence of the temporal constraint at every pixel in the image
also helps avoid these artifacts.

The temporal constraint is used to exploit the correlations
in time of every pixel. As discussed in Ref. [16], the effect of
the temporal constraint on the reconstructed image is more
significant when compared to the spatial TV constraint. As a
part of future work, spatially varying weights for the
temporal constraint could be used so that different locations
in the curve would be weighted differently. Any other
information that can be extracted from the reference image,
like the distribution of intensities, could also be used as a
constraint in the reconstruction.
ponding effect on the reconstructed image. (A) A good edge map. (B and C)
structed using EESTCR (C) has sharper edges as compared to STCR (B). The
erence image, whose edges are blurred due to motion, as seen in 6(D). The
s or artifacts have been added due to the blurred reference image.

image of Fig. 6


Fig. 8. The effect of EESTCR reconstructions on image segmentation is shown. The contours were drawn manually on STCR and overlaid on EESTCR. (A)
Image reconstructed using STCR with its contour. (B) Image reconstructed using EESTCR with the contour from STCR overlaid on it. The contour from STCR
is larger relative to EESTCR, and signal from the blood pool from LV and RV gets included with the myocardium. The regions where a more conservative
contour would have been drawn in the EESTCR image are shown by the two arrows.
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4.1. Loss of contrast due to TV minimization

TV minimization assumes that images are piecewise
smooth or piecewise constant. This is often not true for
medical images. Exact solutions for the change in intensity
that is caused by TV were derived by Strong and Chan for
simple images that have step edges like circles and rectangles
and linearly varying edges [19,20,22]. It was shown that this
change can be an increase or decrease of the original
intensity and usually will be a direction that causes a
decrease in contrast in the region. On a step edge, TV will
cause the intensity of the lower edge to increase and the
intensity of the higher edge to decrease, causing a decrease in
contrast. With EESTCR, these increases of intensity at the
lower edge and decrease of intensity at the higher edge have
been avoided. In the difference image, the myocardial
regions show negative intensity values, and the edges
towards the LV and RV show positive values as shown in
Figs. 3(D) and 4(D). The direction in which EESTCR causes
a change in intensity at the edges matches the theoretical
results predicted in Refs. [19,20,22].

4.2. Reference image and computational complexity

The reference images required for the spatially varying
edge maps are extracted from the undersampled k-space data
by combining multiple time frames in a sliding window
fashion. As separate training data are not required to form the
reference image, there is no additional acquisition time.
Also, the formation of the reference image and the extraction
of an edge map are computationally inexpensive. This edge
map is similar to the one defined by Perona and Malik in Ref.
[26] for denoising using anisotropic diffusion. But in
anisotropic diffusion, a reference image-based method was
not used for denoising the images.

The coils were reconstructed independently and then
combined using the square root of sum of squares method.
This helped reduce the reconstruction time by using the
parallel processing toolbox in MATLAB to reconstruct the
coils in parallel. On a Linuxmachinewith 8 GBRAMand four
processors, reconstruction of one slice with 66 time frames
took 413 s and 457 s with STCR and EESTCR, respectively.
5. Conclusion

EESTCR is a promising technique to reconstruct DCE
cardiac perfusion images from undersampled k-space data.
The resulting images have sharper edges and higher contrast
when compared to STCR. The method is robust to some
motion. The method is also applicable to other DCE imaging
techniques such as DCE tumor imaging of the brain or breast,
where motion-related problems are less than with cardiac
imaging. Small features like edges in the myocardium were
better reconstructed in EESTCR, and there was improvement
in contrast. Improvement in CNR and contrast was seen in the
LV blood pool–myocardium region. The mean improvement
was 36% for CNR and 24% for contrast compared to a similar
method without use of the edge information.
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