
Journal of Computational and Applied Mathematics 235 (2011) 4283–4301

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Numerical solution of linear Volterra integral equations of the second
kind with sharp gradients
Samuel A. Isaacson a,∗, Robert M. Kirby b

a Department of Mathematics and Statistics, Boston University, 111 Cummington St., Boston, MA 02215, USA
b School of Computing, University of Utah, 72 S. Central Campus Drive, 3750 Warnock Engineering Building, Salt Lake City, UT 84112, USA

a r t i c l e i n f o

Article history:
Received 2 November 2009
Received in revised form 24 March 2011

Keywords:
Linear Volterra integral equation
Collocation
Partitioned quadrature
Qualocation

a b s t r a c t

Collocation methods are a well-developed approach for the numerical solution of smooth
and weakly singular Volterra integral equations. In this paper, we extend these methods
through the use of partitioned quadrature based on the qualocation framework, to
allow the efficient numerical solution of linear, scalar Volterra integral equations of the
second kind with smooth kernels containing sharp gradients. In this case, the standard
collocation methods may lose computational efficiency despite the smoothness of the
kernel.We illustrate how the qualocation framework can allow one to focus computational
effort where necessary through improved quadrature approximations, while keeping the
solution approximation fixed. The computational performance improvement introduced
by our new method is examined through several test examples. The final example we
consider is the original problem that motivated this work: the problem of calculating the
probability density associated with a continuous-time random walk in three dimensions
that may be killed at a fixed lattice site. To demonstrate how separating the solution
approximation from quadrature approximationmay improve computational performance,
we also compare our new method to several existing Gregory, Sinc, and global spectral
methods, where quadrature approximation and solution approximation are coupled.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let I = [0, T ], with T < ∞. In this paper, we consider the numerical solution of the linear Volterra integral equation of
the second kind for y(t),

y(t)+

∫ t

0
K(t, s) y(s) ds = g(t), t ∈ [0, T ] . (1)

Let D = {(t, s)|0 ≤ s ≤ t ≤ T }. We restrict our attention to problems where K(t, s) ∈ C∞(D) and g(t) ∈ C∞(I). With these
assumptions, the solution y(t) to (1) exists, is unique, and y(t) ∈ C∞(I) [1, Theorems 2.1.2 and 2.1.3].

The numerical solution of (1) is a well-studied problem, and a large variety of numerical methods have been developed
for rapidly and accurately obtaining approximations to y(t). Overviews and references to the literature for many existing
methods are available in [2,1,3]. Collocation methods [1,4–6], Sinc methods [7], global spectral methods [8], methods for
convolution equations [9], Newton–Gregory methods [3], Runge–Kutta methods [10,11], qualocationmethods [12–16], and
Galerkin methods [17–20] are several of the many approaches that have previously been considered.
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One type of stochastic reaction–diffusion model that is used to model cellular processes, such as gene expression [21],
involves the continuous-time random walk of molecules on a lattice. Molecules occupying the same lattice site may then
react with fixed probabilities per unit time. We recently studied the behavior of one such model, involving a molecule that
can undergo a continuous-time random walk with binding possible at one specific binding site, as the lattice spacing is
varied [22,23]. This model could be reformulated as a linear, convolution Volterra equation where the kernel, K(t, s) =

K(t − s), was smooth but contained sharp gradients [22]. In particular, the kernel could be considered a regularization of
the non-integrable (in the Lebesgue sense) kernel

K(t, s) =
1

(t − s)3/2
. (2)

The large gradients that appear as the regularization approaches the non-integrable kernel (2) led to poor performance of
several existing methods developed for smooth kernels.

To overcome this difficultly we developed an extension to the standard collocation method [1]. In the standard
formulation the numerical approximation of the solution to (1) is coupled with the choice of quadrature rule used in
evaluating the integral. We develop a qualocationmethod [12–16] by using partitioned quadrature to decouple the solution
and quadrature approximations, allowing for more accurate evaluation of the integral in (1) when necessary. We show in
Section 4.2 that for smooth kernelswith sharp gradients partitioned quadrature can significantly increase the computational
performance of the collocation method.

As commonly applied, the abstract qualocation method [12–16] begins with the Galerkin formulation of (1) and uses
quadrature to approximate the resulting inner products within the weak formulation. Our qualocation method starts from
the standard collocation approximation of (1) and then directly applies partitioned quadrature to the integral operator.
Note, the standard collocation method can be obtained as a special case of the qualocation approximation of the Galerkin
formulation of (1) (see, for example, [14]). As such, our method may be interpreted as applying the qualocation method
twice; once to obtain the collocation equations, and then a second time to approximate the integrals within them.

To further illustrate the benefit of separating solution and quadrature approximation we also compare the performance
of the newmethod to several methods, where the two are coupled. In particular, the Sinc method of [7], the global Lagrange
interpolating polynomial spectral method of [8], the standard sixth-order Gregory method [3], and an FFT-based, optimized
sixth-order Gregorymethod for convolution equations are all examined.We stress that our comparison ismeant to illustrate
the benefit of separating solution and quadrature approximation, and is not meant to provide a comprehensive comparison
of current state of the art methods for solving Volterra integral equations.

In Section 2we give an overview of the standard collocation approach, and then present our qualocation-based extension
of the method to support partitioned quadrature. For the reader unfamiliar with the standard collocation method, we
first derive the method from the method of weighted residuals in Sections 2 and 2.1. It should be noted that there are
many techniques for obtaining the collocation equations (10), including by applying the qualocation method as previously
mentioned [14]. Moreover, the equivalence between Galerkin and collocation methods has been proven [24]. We conclude
our introduction to the collocation method by presenting the standard quadrature approach used in approximating the
integral operators in (1) within the collocation method in Section 2.1.1 (see, for example, [1]). For this method, [0, T ] is
divided into a collection of disjoint ‘‘elements’’, and a set of collocation points are chosen on each element. The quadrature
points used to evaluate the portion of the integral in (1) within a given element are chosen to coincide with the collocation
points for that element. The approximation to the true solution to (1) is then given by the collection of Lagrange interpolating
polynomials, each defined with support on one element and abscissas given by the collocation points. In Section 2.1.2 we
introduce our qualocation-based generalization of this method, allowing for a complete separation between the choice
of quadrature rule used in evaluating the integral in (1) and the piecewise polynomial approximation to the solution,
y(t). The notion of partitioned quadrature as used in qualocation [12–16] is introduced to allow for increased accuracy
in the evaluation of the integral term in (1) for smooth kernels with sharp gradients. Note, similar approaches have also
been used in the context of spectral element methods for the solution of partial differential equations [25]. Finally, in
Section 2.2wegive a brief summary of theGregory, Sinc, and global Lagrange interpolating polynomial spectralmethods. Our
implementations of these three methods follow directly from the presentations of [22,26] for the Gregory method, of [7] for
the Sincmethod, and [8] for the spectralmethod.We refer the interested reader to those references for full descriptions of the
algorithms.

Each of the methods was implemented as a MATLAB m-file (available at [27]). The details of our particular
implementations are presented in Section 3. We do not claim that our implementations are optimal, but an effort was made
to incorporate natural optimizations for each method.

Section 4 presents a number of examples with smooth, well-behaved kernels and with smooth kernels containing
sharp gradients. The smooth, well-behaved kernel examples are studied to gain a baseline understanding of the relative
performance of the variousmethods. For eachnumericalmethod and example, a search of themethod’s numerical parameter
space is performed to determine the ‘‘first’’ set of parameters where a specified absolute error tolerance is satisfied. This
procedure is repeated for a collection of tolerances, and the median running times of each method are then calculated as
a function of tolerance. We find that for the smooth, well-behaved examples of Section 4.1 all the methods perform quite
well, with our implementations of the standard collocation method and the Gregory methods having the smallest median
running times. The examples with smooth kernels containing sharp gradients in Section 4.2 prove more difficult to resolve.
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These examples require increased resolution in representing the solution, y(t), in specific regions, increased resolution in
evaluating the integral within (1), or a combination of both. In each of the global spectral method, the Sinc method, and
the Gregory method the resolution of the solution representation and the accuracy of evaluating the integral term in (1)
are linked. These methods all depend on one parameter: the number of basis functions in the Sinc and global spectral
methods, and the number of time points in the Gregory method. This parameter must be increased to improve either the
solution or integral evaluation accuracy. As such, these methods become less efficient when higher accuracy or resolution
is needed in only one of the two components. In contrast, the separation of solution and integral approximations in the
partitioned quadrature qualocation method we present in Section 2.1.2 leads to significant computational improvements
over the standard collocationmethod.We also find that the speed of the FFT-based convolution optimization of the Gregory
method allows for good performance with very large numbers of time-steps on each example (though not as good as the
partitioned quadrature qualocation method).

We conclude by examining the Volterra equation containing a smooth kernel with sharp gradients that motivated this
work, first studied in [22]. This equation arises in studying stochastic reaction–diffusion models of gene expression and
regulation [21]. Only the Gregory method with the FFT-based optimization and the partitioned quadrature qualocation
method with non-uniform element spacings are able to successfully resolve this example. The latter performs particularly
well, requiring only a slight increase in the number of quadrature partitions, and no increase in the number of elements or
number of collocation points per element as the regularization of the kernel is decreased.Moreover, we find that themethod
is limited solely by the increased time required to evaluate the kernel as the regularization is decreased. (In contrast, the
Gregorymethod requires a significant increase in the number of time-steps, and spends a larger fraction of its computational
time in determining the solution versus evaluating the kernel.)

2. Methods studied

We begin by formulating the standard collocation method as a special case of the method of weighted residuals. As
pointed out in the introduction, there are many ways to derive the collocation method. The material that follows, and in
Sections 2.1 and 2.1.1, is meant as background for the reader unfamiliar with collocation methods and as an introduction
to our notation. In Section 2.1.2 we introduce our partitioned quadrature qualocation-based approach.

The weak form of (1) is given by
y(t)+

∫ t

0
K(t, s)y(s) ds, v(t)


= (g(t), v(t)) , ∀v(t) ∈ V , (3)

where V is a vector space of functions, and the inner product of two functions is given by

(y(t), v(t)) =

∫ T

0
y(t)v(t) dt. (4)

For now we leave the space V arbitrary. We denote by yh(t) our approximation to y(t) and assume yh(t)may be written as
a linear combination of some finite dimensional basis,Φ = {φ1(t), . . . , φN(t)},

yh(t) =

N−
n=1

Ynφn(t). (5)

Denote by R[yh](t) the residual of the original integral equation (1) when y(t) is replaced by yh(t),

R[yh](t) = yh(t)+

∫ t

0
K(t, s)yh(s) ds − g(t).

For the actual solution, y(t), R[y](t) = 0. In the method of weighted residuals approach we choose a collection of test
functions v1(t), . . . , vN(t), and in the space given by their span try to minimize the residual, R[yh](t), under the inner
product (4). That is, we impose


R[yh](t), vj(t)


= 0 for each j = 1, . . . ,N . Rearranging this equation we find

N−
n=1

Yn


φn(t)+

∫ t

0
K(t, s)φn(s) ds, vj(t)


=

g(t), vj(t)


, j = 1 . . .N. (6)

Let Vh = span{v1(t), . . . , vN(t)}. By linearity, these equations are equivalent to the approximate weak formulation,

N−
n=1

Yn


φn(t)+

∫ t

0
K(t, s)φn(s) ds, v(t)


= (g(t), v(t)) , ∀v(t) ∈ Vh. (7)

We have therefore replaced the exact weak formulation (3) of (1) by the approximate weak formulation (7). Specific choices
for Vh,Φ , and quadrature approximations to the integral within the inner product then give the standard collocationmethod
and our qualocation method.
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2.1. Standard collocation method

The standard collocation method we consider is the same as that given in [1]. We look for a C0(I) piecewise polynomial
approximation [28,25], yh(t), to the true solution to (1), y(t). Denote by

Ih = {tm|0 = t0 < t1 < · · · < tM = T }

a partition of [0, T ], and let

hm = tm+1 − tm, with h = max
m=0,...,(M−1)

hm.

Wewill subsequently refer to the interval, [tm, tm+1], as themth element. For any arbitrary interval, Ĩ , we denote by Pl(Ĩ) the
space of polynomials of degree l on Ĩ . We assume that the restriction, y(m)h (t), of yh(t) to themth element is a polynomial of
degree pm. (i.e. y

(m)
h (t) ∈ Ppm([tm, tm+1]).) To ensure yh(t) is continuous,we require y(m−1)

h (tm) = y(m)h (tm),m = 1, . . . ,M−1.
We will represent y(m)h (t) as a Lagrange interpolating polynomial through the abscissas,

tm = tm,0 < tm,1 < · · · < tm,pm = tm+1. (8)

Let Lm,j(t) denote the corresponding jth local Lagrange basis function through those abscissas,

Lm,j(t) =

pm∏
i=0,
i≠j

t − tm,i
tm,j − tm,i

, t ∈ [tm, tm+1] ,

and define

Ym,j = y(m)h (tm,j) = yh(tm,j).

We then have the representation

y(m)h (t) =

pm−
j=0

Ym,jLm,j(t).

Denote by 1Ĩ(t) the indicator function on the set Ĩ . In analogy to (5), we may expand yh(t) in the basis functions φm,j(t),

φm,j(t) =


Lm,j(t)1[t0,t1](t), m = 0,
Lm,j(t)1(tm,tm+1](t), m = 1, . . . ,M − 1,

so that

yh(t) =

M−1−
m=0

pm−
j=0

Ym,jφm,j(t). (9)

Choosing the collocation space, Vh = {δ(t − tm,j)}m,j, the weak approximations (6) reduce to the collocation equations

Ym,j +

m−
m′=0

pm′−
j′=0

Ym′,j′

∫ tm,j

0
K(tm,j, s)φm′,j′(s) ds = g(tm,j), j = 0, . . . , pm, m = 0, . . . ,M − 1. (10)

The points, {tm,j}, at which yh(t) satisfies (6) in the collocation space are subsequently referred to as the collocation points.
Note that (10) will generate a block lower-triangular system of linear equations. To convert to this form, we define the

column vectors, Y (m) =

Ym,0, . . . , Ym,pm

T, G(m) =

g(tm,0), . . . , g(tm,pm)

T, and the pm by pm′ matrices Bm,m′ , with entries
given by

Bm,m′


j,j′ =

∫ tm,j

0
K(tm,j, s)φm′,j′(s) ds. (11)

We may then rewrite (10) as

Y (m) +
m−

m′=0

Bm,m′Y (m
′)

= G(m), m = 0, . . . ,M − 1. (12)

Alternatively, let Y denote the vector

Y =

 Y (0)

· · ·

Y (M−1)

 ,
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define G similarly, and let B denote the block lower-triangular matrix

B =


B0,0 0 . . . . . . . . . . . . . .
B1,0 B1,1 0 . . . . . . . . . .
B2,0 B2,1 B2,2 0 . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . .

BM−1,0 BM−1,1 . . . . . . BM−1,M−1

 . (13)

Noting that the total number of collocation points, N , is given by

N = 1 +

M−1−
m=0

pm,

we find the N by N linear system

Y + BY = G. (14)

One strong benefit of the qualocation approach is the separation between quadrature choices for evaluating the
integrals (11) and the choice of piecewise polynomial interpolant. While in the ‘‘standard’’ collocation approach, presented
in the next section, quadrature nodes are chosen to correspond to interpolation abscissas, we shall see that the freedom
to decouple quadrature and approximation can allow for significant computational improvements. In particular, in
Section 2.1.2we discuss hownon-uniform spacings of the elementsmay be used to improve the approximation of y(t), while
non-uniformly spaced composite Gaussian quadrature rules may improve the evaluation of the integrals (11) for smooth
kernels with sharp gradients. These ideas can also be applied in the context of hp methods for the numerical solution of
PDEs, see [25] for more details.

2.1.1. Standard element spacings and quadrature rules
In this sectionwe shall summarize the typical element spacings, polynomial basis functions, and quadrature choices used

in the standard collocation approach. We refer the interested reader to [1] for a more detailed description of the relevant
convergence theory in this case.

We beginwith the choice of polynomial interpolants and quadrature rules. The basis functions,φm,j(t), are chosen to have
the same polynomial order (i.e. for some integer, p, we take pm = p,m = 0, . . . ,M−1). In practice, the integrals (11) cannot
be evaluated analytically and must therefore be approximated through the use of numerical quadrature. We subsequently
refer to the system obtained from (14) by replacing the integrals (11) with quadrature approximations as the discretized
collocation equations. The quadrature formulas used in the numerical evaluation of the integrals (11) are chosen to be
order-preserving. That is, the quadrature formulas are chosen to ensure that the rate of convergence of the solution of the
discretized collocation equations to the true solution y(t) is the same as the rate of convergence of the solution to the original
collocation system (14), see [1].

The quadrature formulas can be made order-preserving by choosing the collocation points, tm,j, and the quadrature
abscissas to coincide [1]. In particular, we assume that for themth element the collocation points are given by

tm,j = tm + αjhm, j = 0, . . . , p.

Note, the definition of the tm,j (8) imply thatα0 = 0 andαp = 1. Since the functions Lm,j(t) are only needed for t ∈ [tm, tm+1],
we then have the simplification, for s = (t − tm)/hm, that

Lm,j(t) = Lj(s) =

p∏
i=0,
i≠j

s − αi

αj − αi
, t ∈ [tm, tm+1] .

The specific quadrature approximations to the integrals within (11) we choose make use of quadrature abscissas with
relative spacing related to the αj. In particular, the general quadrature rule for an arbitrary function, g(s), for s ∈ [−1, 1] is∫ 1

−1
g(s) ds ≈

p−
k=0

g (zk) ωk, (15)

where the quadrature weights, ωk, are given by

ωk =

∫ 1

−1
Lk(s) ds.

The αk are related to the chosen quadrature abscissas, zk, by

αk =
zk + 1

2
.
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One common choice for the quadrature rule is to use Gaussian quadrature. The results presented in Section 4 use
Gauss–Lobatto quadrature rules and abscissas [29,25] for (15).

Two classes of integrals are containedwithin thematrices Bm,m′ . For thosematriceswherem′ < m, that ismatrices below
the diagonal in (13), we have the simplification

Bm,m′


j,j′ =

∫ tm′+1

tm′

K

tm,j, s


φm′,j′(s) ds,

=
hm

2

∫ 1

−1
K

tm,j, tm′ +

1 + s
2

hm


φm′,j′


tm′ +

1 + s
2

hm


ds, (16)

since φm′,j′(t) is zero outside of them′th element. The application of (15) to (16) implies
Bm,m′


j,j′ ≈

hm

2

p−
k=0

K

tm,j, tm′,k


φm′,j′


tm′,k


ωk,

=
hm

2
K

tm,j, tm′,j′


ωj′ , (17)

as φm′,j′(tm′,k) = δj′,k. Here ωj′ refers to the j′th quadrature weight.
The second class of integrals in (13) occurs for matrices on the diagonal (i.e. whenm′

= m). For the integrals within these
matrices, the domain of integration contains a portion of an elementwhen simplified. As the support ofφm,j′(t) ⊆ [tm, tm+1],
Eq. (11) reduces to

Bm,m

j,j′ =

∫ tm,j

tm
K

tm,j, s


φm,j′(s) ds,

=
αjhm

2

∫ 1

−1
K

tm,j, tm +

1 + s
2

αjhm


φm,j′


tm +

1 + s
2

αjhm


ds. (18)

The application of (15) to (18) then gives the quadrature approximation


Bm,m


j,j′ ≈

αjhm

2

p−
k=0

K

tm,j, tm + αkαjhm


φm,j′


tm + αkαjhm


ωk. (19)

Replacing the matrix (13) in (14) and the matrices, Bm,m′ , in (12) by the corresponding matrices with entries given by (16)
and (18), we obtain the discrete collocation approximation to the original Volterra integral equation (1).

Denote by ŷh(t) the solution to the discretized collocation problem. That is, ŷh(t) satisfies (9) with the coefficients Ym,j
replaced by those obtained from solving (14) with the quadrature approximations to thematrices, Bm,m′ . With these choices,
one can show the following error estimate [1, Theorems 2.2.3 and 2.2.11].

Theorem 2.1. Let f (t) ∈ Ck (I), K(t, s) ∈ Ck(D), and assume p = k. If the quadrature formula (15) is based on corresponding
interpolatory p + 1 point polynomials with abscissas given by {αj} then

‖y(t)− ŷh(t)‖ = sup
t∈[0,T ]

y(t)− ŷh(t)
 = O(hp).

We refer the interested reader to [1] for more detailed convergence results.
Please note, while this theorem shows convergence as h is decreased and p kept fixed, in many situations increasing p

before changing h can give significant gains in accuracy and computational performance. This is the general strategy we use
on the examples of Section 4, where the partitioned quadrature qualocation extension of the standard collocation method
proves quite successful.

For smooth problems the most common, and simplest, choice for the elements is uniform spacing. In this case we
take tm = mh with h = T/M , for m = 0, . . . ,M . We shall subsequently refer to the standard collocation method with
uniform polynomial interpolants of order p on each element, uniformly spaced elements, and Gauss–Lobatto interpolation
abscissa and quadrature rules as the HpStd method. Alternatively, one can use Chebyshev interpolation abscissa and
Clenshaw–Curtis quadrature. For integrating smooth functions, Clenshaw–Curtis quadrature rules will often exhibit
comparable accuracy to Gaussian quadrature [30]. We expect to see comparable accuracy when using Chebyshev
interpolation and Clenshaw–Curtis quadrature instead of Gauss–Lobatto interpolation and Gaussian quadrature.

2.1.2. Element spacings and quadrature approximations for kernels with sharp gradients
The freedom to independently choose element spacing, polynomial interpolant order per element, and quadrature

approximations to the basis function integrals (11) is a major strength of the partitioned quadrature qualocation approach
we now adopt. In this section we will describe alternative choices for the element spacing and the quadrature rules used
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to evaluate the integrals (11) which can significantly improve computational efficiency and accuracy for kernels with sharp
gradients. Examples demonstrating these improvements are given in Section 4.2.

Consider the choice of element spacing. For integral equations (1) where the solution requires higher resolution in the
neighborhood of certain points graded element meshes are often used [1,5,31,6]. For example, a graded mesh that provides
higher resolution as one approaches the origin would be given by the choice

tm =

m
M

r
T , m = 0, . . . ,M, (20)

for r > 1. These types of meshes are often used in the solution of weakly singular Volterra integral equations of the second
kind where the kernel, K(t, s), has an integrable singularity of the form log(t − s) or (t − s)−β with 0 < β < 1 [1,5,31,6].
The corresponding solutions, y(t), are generally continuous, but not differentiable, as t → 0 [1]. While uniform element
spacingswill only provide lower orders of convergence for these types of kernels, gradedmeshes can be employed to recover
higher orders [1,5,31,6]. For equations with smooth solutions that contain sharp gradients, uniform element spacings may
in practice require a large number of elements before providing a good approximation to the underlying solution. In such
situations a graded mesh may provide similar accuracy with a smaller number of elements.

Graded meshes can also be used to improve the accuracy of the quadrature approximations (11) when using the
quadrature choices of the previous section. For example, consider the kernel

K(t, s) =
t + ϵ

s + ϵ
,

for small ϵ. This kernel is smooth for all ϵ > 0, but contains sharp gradients near s = 0 when ϵ is small and t ≫ ϵ. By
concentrating elements near the origin, s = 0, the graded mesh (20) will provide better accuracy than a uniform mesh in
evaluating the integrals (11) for this example.

One potential drawback to using graded meshes is the (possible) introduction of round-off error, which can decrease
the accuracy of the solution approximation. When using graded meshes to study solutions to weakly singular Volterra
integro-differential equations this problem has been observed [31,6]. (Note, both references also discuss how to choose
the grading exponent for such equations, with the later proposing modifications to help avoid round-off errors.) For the
examples considered in Section 4 we did not observe this problem. We leave a more thorough investigation of how to best
choose the number of elements and grading exponents so as to maximize accuracy to future work.

The choice of quadrature rules can also be used to significantly improve computational accuracy and performance.When
evaluating the integrals (11) in regionswhere the kernel has sharp gradients, itmay be beneficial to significantly increase the
local accuracy (or resolution) in certain regions of (t, s) space. For example, consider (1) with the choice y(t) = t exp(−t)
and

K(t, s) =
1

(t − s + ϵ)2
,

with ϵ > 0, and f (t) defined by (1). For small ϵ, the integrals (11) will require higher resolution when s ≈ t . The approach
we introduce is to use partitioned quadrature qualocation, replacing the Gauss–Lobatto quadrature rules (15) used in the
HpStd method with composite Gauss–Lobatto rules. That is, we partition the interval, [−1, 1], as

−1 = s0 < s1 ≤ · · · ≤ sL = 1,
and replace the quadrature rule (15) we apply to each integral (11) with∫ 1

−1
g(s) ds =

L−1−
l=0

∫ sl+1

sl
g(s) ds ≈

L−1−
l=0

sl+1 − sl
2

p′−
k=0

g

(sl+1 − sl)

1 + z ′

k

2
+ sl


ω′

k. (21)

Note, we subsequently refer to L as the ‘‘number of partitions’’, so that ‘‘one partition’’ refers to the case where the interval
[−1, 1] has not been subdivided. We again use Gauss–Lobatto quadrature rules for the quadrature nodes, z ′

k, and weights,
ω′

k, and, for simplicity, use the same Gauss–Lobatto rule on each partition. We do not, however, require that the choice of
quadrature nodes correspond to the collocation points as in the HpStd method or that the number of quadrature nodes per
partition, p′

+1, agree with the number of collocation points. In Section 4.2.1 we show how the use of gradedmesh spacings
for the partitions, {s0, . . . , sL}, concentrated around the sharp gradients in a kernel can lead to significant computational
improvements for a regularization of a kernel that is not Lebesgue integrable.

While the partitioned quadrature approach can significantly improve the accuracy in evaluating the integrals (11), the
simplified formula (18) for off-diagonal matrices will no longer hold. As such, for certain kernels with sharp gradients it may
not in practice prove more computationally efficient to use partitioned quadrature instead of using the HpStd method with
a large number of elements.

2.2. Other methods

There are many other numerical methods for the solution of Volterra integral equations of the second kind which have
been proposed. In our study of the performance of the partitioned quadrature collocationmethods for solving equationswith
smooth, ‘‘nice’’, kernels, and smooth kernels with sharp gradients in Section 4, we also consider several methods where the
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solution and quadrature approximations are coupled. We specifically consider a sixth-order Gregory method [22], denoted
by Greg6, a global spectral method [8], denoted by GLI, and a double-exponential transform-based Sinc method [7],
denoted by Sinc.

The Greg6 method was previously described in the Appendix to [22] and is a standard Gregory-type method [3]. A
fixed number of time-steps, N , are chosen, and the solution to (1) is sought at the discrete time points tn = nh, where
n = 0, . . . ,N and h = T/N . For the general equation (1), the work required to solve for the numerical solution at all N
time points is O(N2). As described in [22], we make use of the FFT-based optimization originally proposed in [26] for use
with Runge–Kutta methods to rapidly solve equations with convolution kernels, K(t, s) = K(t − s). In this special case,
the asymptotic work to solve (1) by the Greg6 method is O(N log2(N)). If Yn denotes the numerical approximation to y(tn),
the Greg6 method requires the first ten values Y0, . . . , Y9 as starting initial data. To obtain Y1, . . . , Y9 we use a sixth-order
explicit Runge–Kutta method [3] (see [32] for its tableaux).

TheGLImethod of [8] corresponds to theHpStdmethodwith only one element,M = 1. In [8] it is shown that for smooth
kernels the GLI method should have spectral convergence. In particular, the error bound derived in [8] depends on L2(0, T )
norms of the higher derivatives in the second argument of the kernel. Increasing the smoothness of y(t) and K(t, s) allows
higher-order derivatives in the error bound, and also increases the convergence rate. Note, however, that if the L2(0, T ) norm
of the kernel’s derivatives increases when higher derivatives are taken this may negate the faster convergence rate (for any
computationally tractable number of collocation points). We indeed see this problem for each of the smooth kernels with
sharp gradients used in Section 4.2.

The Sinc method was developed for kernels, K(t, s), smooth on the domain D = {(t, s) | 0 < t < T , 0 < s < T } with
singularities only allowed for s = 0 or s = T . In particular, letΩd denote the strip in the complex plane,

Ωd = {z ∈ C | |Im z| < d},

and

Ωd(ε) = {z ∈ C | |Re z| < 1/ε, |Im z| < d(1 − ε)}.

We shall subsequently denote the boundary ofΩd(ε) by ∂Ωd(ε). Exponential convergence of the Sinc method is expected,
based on the results of [7], when

1. There is a known double-exponential transformation function [7], φ(s) : R → (0, T ), such that the transform, ψ(t, s),
of the kernel, K(t, s), in the s coordinate grows at most double exponentially, i.e.

ψ(t, s) = |K (t, φ(s)) φ′(s)| ≤ Ce−α e|s| , ∀s ∈ R,

for some real α > 0.
2. ψ(t, z) is analytic for z ∈ Ωd.
3.

lim
ε→0

∫
∂Ωd(ε)

|ψ(t, z)| |dz| < ∞,

with these conditions holding uniformly for all t ∈ (0, T ), see [7]. In addition, y(φ(z)), where y(t) is the solution to (1), must
be analytic and bounded for z ∈ Ωd.

In [7] it is demonstrated that even when these conditions are not satisfied the Sinc method may still exhibit spectral
convergence.We do not attempt to verify which of the examples of Sections 4.1 and 4.2 satisfy the preceding conditions. For
all the examples of Section 4.1, and the first sharp gradient example of Section 4.2, the Sinc method performs quite well.
In contrast, for the latter two examples of Section 4.2 the method is not effective.

Note, there are many other numerical methods for the solution of (1) with smooth kernels that we do not consider.
Omitted methods include many fast and highly optimized methods. We refer readers interested in these methods to the
many references given in the introduction.

3. Numerical implementations and optimizations

We have developed MATLAB m-file based implementations of each of the standard collocation method of Section 2.1.1,
HpStd, variations of our partitioned quadrature qualocation method from Section 2.1.2 (with and without graded element
meshes), HpPar, the sixth-order Gregory method described in [22], Greg6, the double-exponential Sinc method of [7],
Sinc, and the global Gauss–Lobatto spectral method of [8], GLI.

We wish to emphasize that we make no claim to having optimal implementations of each method. A number of
computational speedups, described below, have been exploited where possible, but we have no doubt that further
improvements could be made. Instead, we hope that our results give a representation of what performance to expect for a
typical implementation of the basic algorithms with some thought given to optimization.

We developed two implementations of the Greg6 method, one for convolution kernels and one for non-convolution
kernels. Both follow the formulations described in Section 2.2 and [22], with the convolution kernel algorithm taking
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advantage of the FFT-based optimization to give improved running times. One drawback of our particular implementation
of this optimization is that it currently cannot handle a non-power of two number of time-steps (though it certainly could be
modified to do so). In particular, if given a non-power of two number of time-steps as input our implementation currently
uses the optimized FFT-based algorithm up to the nearest power of two preceding the desired number of time-steps, and
then uses the non-FFT version of the algorithm for the remainder of the time-steps. As such, when studying performance
of the method in Section 4 for various error tolerances the number of time-steps were always taken in powers of two. For
convolution kernels, we also pre-evaluated the kernel, K(t − s), at each discrete time point in the beginning of the routine,
and then used the cached values of the kernel in the subsequent calculations. This optimization relies on the discrete values
of t − s that are used in the course of a simulation corresponding to time points at which the solution is to be solved for.
None of the other solution methods have this property, and so could not take advantage of this optimization. Finally, in
evaluating the discrete convolution terms in the FFT-based method we found that MATLAB’s built-in discrete convolution
routine, conv, and the MATLAB Signaling Toolbox FFT-based discrete convolution routine, fftfilt, performed poorly for
sufficiently large vectors. We insteadmade use of the convfft routine [33], which we found to perform significantly faster
for large vectors.

A number of implementation optimizations have been exploited for both the HpStd and HpPar methods. We assumed
that the polynomial order was constant on each element. This optimization allows the Gauss–Lobatto nodes to only be
evaluated once in the HpStd method and twice in the HpPar method (once for the collocation points and once for
the quadrature abscissas). Our particular implementation of the HpPar method was not optimal, instead evaluating the
Gauss–Lobatto nodes three times. For the smooth, well-behaved kernels of Section 4.1 this optimization gave a significant
improvement in the performance of the HpStd method. (Our initial implementation of the HpStd method evaluated the
Gauss–Lobatto nodes once per element, which led to the worst performance of any of the methods we examined for well-
behaved kernels.) Note, to evaluate the Gauss–Lobatto nodes and weights we made use of the lglnodes routine [34].

We also optimized both the HpStd and HpPar implementations through the use of barycentric Lagrange interpolation
for evaluating the interpolating polynomials within the integrals (Bm,m)j,j′ . The barycentric weights only needed to be
calculated once for a given simulation. The ease of evaluating the barycentric polynomials led to a significant speedup versus
repeated construction and evaluation of the Lagrange form of the interpolating polynomial. Pre-calculating and caching the
values of the Lagrange interpolation polynomials at all the quadrature points in (21) also gave a noticeable speedup for the
HpPar method. Since we assumed that the number of quadrature partitions was the same for each element, and number
of quadrature points was the same for each partition, these values could be reused in evaluating the integrals (Bm,m′)j,j′ for
m < m′ by the quadrature rule (21).

Our initial implementation of the HpStd method did not take advantage of the optimization given by Eq. (17) to simplify
the determination of the entries of the Bm,m′ sub-matrices when m′ < m. The addition of this specific formula dramatically
improved the performance of this method.

Finally, we would like to point out one optimization we elected not to exploit. Instead of solving (10) by forward block
substitution through the use of (12), we fully formed and then solved the linear system (14) (using the backslash operator
in MATLAB).

Both the Sinc and GLI methods were implemented as described in [7] and [8] respectively. For the GLI method, we
evaluated the Lagrange interpolation polynomials through the use of Legendre functions as suggested by the authors [8].
The sine integral,

Si(x) =

∫ x

0

sin(x′)

x′
dx′,

in the Sinc method was evaluated through the use of a double-exponential transform as also suggested by the authors [7].
The evaluation of this integral took as much as half of the median running time for the nice, smooth examples of Section 4.
Through the use of tabulation we believe we could have significantly reduced the time to evaluate this function, but did not
take advantage of this potential optimization.

4. Examples

In this sectionwe compare the computational performance for fixed absolute error tolerances of the standard collocation
formulation of Section 2.1.1, HpStd, variations of the partitioned quadrature qualocation method with graded element
meshes from Section 2.1.2, HpPar, the sixth-order Gregorymethod described in Section 2.2, Greg6, the double-exponential
Sinc method of [7], Sinc, and the global Gauss–Lobatto spectral method of [8], GLI.

For each example problem a collection of absolute error tolerances were specified. A systematic numerical parameter
search was then performed for each method to determine a resolution where the method ‘‘first’’ satisfied a given tolerance.
The specific search methodology used for each method is described in more detail in Sections 4.1 and 4.2.1. Once a set
of numerical parameters were found where a method satisfied a given error tolerance, the MATLAB routine timeit [35]
was used to estimate the method’s running time. timeit has the benefit of ‘‘warming up’’ the method to avoid m-file
initialization overhead (such as the initial loading of the program tomemory and compiling of them-file storing the routine).
It also estimates and runs the program aminimum number of times to ensure at least one second of computing time is used.
The timing estimate it provides is then given by the median time among each of these runs.
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All examples given in this section were run within MATLAB 7.5 on a Sun Fire X4600 M2 x64 server running Red Hat
Linux version 4.1.2-42, with kernel version 2.6.18-92.1.10.el5. The server was configured with four AMD Opteron Model
8220 processors (2.8 GHz dual-core) and 16 GB of RAM.

4.1. Smooth, well-behaved examples

In this sectionwe study the relative performance of theHpStd,Greg6,Sinc, andGLImethods for several ‘‘nice’’ smooth
examples. As we will see, the basic HpStd method is sufficiently fast for these examples that we saw no need to consider
other element spacings or ourmore general partitioned quadrature qualocationmethod. The results of this section provide a
baseline to distinguish how the relative performance of the methods changes when we subsequently consider kernels with
sharp gradients in Section 4.2.

The error metric we used was simply the discrete maximum norm error at the ‘‘natural’’ solution points returned by a
given method. For each individual method, the specific absolute error metrics and numerical parameter search strategies
used are as follows. Let [0, T ] denote the interval we wish to solve (1) on. For the HpStd method there are two numerical
parameters that may be varied: the polynomial order, p, and the number of elements, MHpStd. (Recall we assumed the
elements are uniformly spaced with uniform polynomial order in the HpStd method.) The element boundary points are
given by tm = mh, for h = T/MHpStd, so that the collocation points within themth element are the Gauss–Lobatto points on
the interval [tm, tm+1], tm,j = mh + αjh (see Section 2.1.1). The error metric, eHpStd, is given by

eHpStd

MHpStd, pHpStd


= max

m=0,...,MHpStd−1
j=0,...,pHpStd

y(tm,j)− ŷh(tm,j)
 .

To determineMHpStd and pHpStd such that eHpStd

MHpStd, pHpStd


satisfied a given error tolerancewe employed the following

search strategy. Starting with one element, pHpStd was increased from two to a maximum of ten. If the tolerance was not
satisfied at this point, one additional element was added and pHpStd was reset to two. The procedure was then repeated until
the error tolerance was satisfied or the number of elements reached a maximum of 500.

We denote by tn, n = 0, . . . ,NGreg6, the solution points for the Greg6 method. Here NGreg6 denotes the number of
time-steps. The absolute error metric for the Gregory method, eGreg6, is given by

eGreg6

NGreg6


= max

n=0,...,NGreg6
|y(tn)− Yn| ,

where Yn denotes the Gregory method solution at time tn. We refined NGreg6 by doubling until eGreg6

NGreg6


was below a

given tolerance. The first such value of NGreg6 found was then used for determining running time of the Greg6 method for
that tolerance. We chose this strategy since our FFT-based implementation of the Greg6 method for convolution kernels
was only optimized to handle values of NGreg6 that were powers of two, see Section 3. Note, however, this was done for
simplicity in implementation; it is possible to apply the algorithm of [26] for non-power of two values of NGreg6.

For the Sinc method only one numerical parameter, the number of terms of the Sinc expansion, was varied. Let NSinc be
defined such that the total number of terms used is 2NSinc + 1. Denote by tj, j = −NSinc, . . . ,NSinc, the Sinc points and by
Yj the numerical approximation to y(tj), see [7] for details. The absolute error metric for the Sinc method, eSinc, is given by

eSinc (NSinc) = max
j=−NSinc,...,NSinc

y(tj)− Yj
 .

For a particular error tolerance, NSinc was initially set to two, and then incremented by two until eSinc (NSinc) was below
that tolerance.

Finally, for the global Gauss–Lobatto spectral method, GLI, the one numerical parameter varied was the number of
Gauss–Lobatto points. Let t0, . . . , tNGLI denote the NGLI + 1 Gauss–Lobatto points on the interval [0, T ]. We denote by
Yj ≈ y(tj) the numerical solution at the jth Gauss–Lobatto point. The error metric for the spectral method, eGLI, is given
by

eGLI (NGLI) = max
j=0,...,NGLI

y(tj)− Yj
 .

For a specified tolerance, NGLI was incremented by two, beginning at two, until eGLI (NGLI)was smaller than that tolerance.
The first example we examined was a convolution equation, where

y(t) = e−t , K(t, s) = et−s, g(t) =
e−t

+ et−2

2
,

with t ∈ [1, 10]. Note, since the kernel has a convolution form we were able to use the faster FFT-based version of the
Greg6 method. Fig. 1 and Table 1 show the computational performance results we found. All four methods perform quite
well, taking at most on the order of one second to satisfy absolute error tolerances as small as 1e−12.

The second example we examined was again a convolution kernel with,

y(t) =
2
√
3

3
sin

√
3t
2


e−t/2, K(t, s) = cos(t − s), g(t) = sin(t),
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Fig. 1. Median running times found for each method listed in the inset at given absolute error tolerances. y(t) = exp(−t), K(t, s) = exp(t − s), and
g(t) = 0.5(exp(−t)+ exp(t − 2)). The corresponding numerical parameters found for each method to satisfy a given tolerance are listed in Table 1.

Fig. 2. Median running times found for each method listed in the inset at given absolute error tolerances. y(t) = 2
√
3 sin(

√
3t/2) exp(−t/2)/3,

K(t, s) = cos(t − s), and g(t) = sin(t). The corresponding numerical parameters found for each method to satisfy a given tolerance are listed in Table 2.

Table 1
Numerical parameters associated with Fig. 1. N gives the numerical size parameter used in the simulation
(i.e. number of time points or basis functions, see the text for details). For the HpStd method the polynomial
degree, denoted by pHpStd , for each simulation is also listed.

Tolerances
1e−04 1e−06 1e−08 1e−10 1e−12

NGLI 10 12 14 16 20
NSinc 30 40 46 58 70
NGreg6 128 128 256 512 4096
MHpStd , pHpStd 1, 10 2, 8 2, 10 3, 10 5, 10

Table 2
Numerical parameters associated with Fig. 2. N gives the numerical size parameter used in the simulation
(i.e. number of time points or basis functions, see the text for details). For the HpStd method the polynomial
degree, denoted by pHpStd , for each simulation is also listed.

Tolerances
1e−04 1e−06 1e−08 1e−10 1e−12

NGLI 12 16 18 20 22
NSinc 40 54 66 78 90
NGreg6 128 128 256 512 1024
MHpStd , pHpStd 2, 8 2, 10 3, 10 5, 10 7, 10

and t ∈ [0, 4π ]. Fig. 2 and Table 2 show the computational performance results for this example. As in the first example, all
four methods performed quite well, taking at most on the order of a few seconds. Note the performance of the Greg6 and
HpStd methods are very close.
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Fig. 3. Median running times found for each method listed in the inset at given absolute error tolerances. y(t) = exp(4t), K(t, s) = exp(ts), and g(t) is
given in the text. The corresponding numerical parameters found for each method to satisfy a given tolerance are listed in Table 3.

Table 3
Numerical parameters associated with Fig. 3. N gives the numerical size parameter used in the simulation
(i.e. number of time points or basis functions, see the text for details). For the HpStd method the polynomial
degree, denoted by pHpStd , for each simulation is also listed.

Tolerances
1e−04 1e−06 1e−08 1e−10 1e−12

NGLI 10 12 14 16 18
NSinc 18 26 36 42 52
NGreg6 64 128 256 512 1024
MHpStd , pHpStd 1, 10 2, 9 3, 10 4, 10 6, 10

The final example we examined was a non-convolution equation, with

y(t) = e4t , K(t, s) = ets, g(t) = e4t +
et(t+4)

+ e−(t+4)

t + 4
,

and t ∈ [−1, 1]. Fig. 3 and Table 3 show the computational performance results for this example. As in the previous
examples, the methods all perform quite well, with running times of at most the order of one second.

For our implementations, the HpStd method appeared to provide the best performance, though the Greg6 method is
quite close formost tolerances. Note, theGreg6methodmay in fact be able to obtain similar, or faster, performance than the
HpStd method if we had allowed non-power of two values of NGreg6. All four methods perform quite well, with sufficiently
fast running times that any would be appropriate for general use with similar kernels.

With the exception of the Greg6 method, for all three examples the methods required very few degrees of freedom
to achieve high accuracy. For the finest tolerance of 1e−12, the HpStd method required at most seven elements with
degree ten polynomials (71 collocation points), the Sinc method required 181 Sinc points, and the GLI method required 23
Gauss–Lobatto collocation points. Both the GLI and Sinc methods roughly double their number of degrees of freedom as
the tolerance is increased from 1e−4 to 1e−12, while the Greg6 and HpStd methods require substantially larger increases.
This faster growth in numbers of degrees of freedom for the latter twomethods appears to be compensated for by the relative
efficiency of their implementations.

4.2. Examples with sharp gradients

In this sectionwe examine the performance of theHpStd,HpPar,Greg6,GLI, and theSincmethods for smooth kernels
containing sharp gradients. Note, HpPar is our partitioned quadrature qualocation method. The examples we study are
chosen to depend on a small parameter, and in the limit that the parameter approaches zero the kernels become singular.
That is, each example we consider is a regularization of a kernel with non-integrable singularities (in the Lebesgue sense).
In particular, in Section 4.2.1 we consider the example that motivated this work, where the kernel approaches the non-
integrable singularity,

1
(t − s)3/2

,

in the limit that the small parameter approaches to zero.
When studying the convergence of the six numerical methods for these kernels, we found that our implementation

of the global spectral method, GLI, was unable to solve any of the three test examples to the required tolerances in a
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computationally reasonable amount of time. Our implementation of the Sinc-basedmethodwas only able to resolve the first
of the three examples of this section. This failure to resolve the other two examples is not unexpected as themethodwas not
designed to handle the types of sharp gradients present in these problems. For the latter two examples, the singularities that
appear lie on the line t = s, while the method assumes that any singularities occur only at s = T or s = 0 (see Section 4.2
for details on the assumed regularity properties of the kernel for the Sinc method). When the regularization parameter is
sufficiently small the Sinc method is therefore unable to efficiently solve the corresponding Volterra equations.

Our definitions of the error metrics remain the same as in the previous section. The strategies for determining the
numerical parameters of a givenmethod that ‘‘first’’ satisfy a specified absolute error tolerance also remain the samewithin
this section, however, as we do not have an exact solution for the problem of Section 4.2.1 we use a different error metric
there. (One that depends only on the numerical solution, see Section 4.2.1.)

We subsequently allow the elements in the HpStd method to be graded, with element endpoints given by (20). The local
resolution of the solution representation may then be increased in regions with less smoothness (or sharper gradients). To
indicate a specific grading exponent, r in (20), we will denote the method by HpStdr. For example, HpStd4 will denote a
grading exponent of r = 4. HpStd will continue to refer to the use of uniform element spacing, r = 1. Note, the particular
grading formula (20) we use will cluster elements near t = 0. One could, of course, use a different grading that clusters near
the other endpoint or a point inside the interval [0, T ] if necessary.

The partitioned quadrature qualocation-based HpPar method adds several additional numerical parameters from the
HpStd method: the number of quadrature partitions per element, the degree of the quadrature rule per partition, and the
choice of partition spacing. As for the HpStd method, we assume the polynomial degree is constant on each element. We
further assume that the number of partitions is the same for each element, and the number of quadrature points is the same
on each partition. For the first two examples of this section, the number of quadrature points per partition is taken to be the
same as the number of collocation points per element, p+1.With this choice, theHpParmethod should reduce to theHpStd
method when only one partition is used per element. In Section 4.2.1 we choose the number of quadrature points to be two
more than the number of collocation points per element, p + 3. We allow both the element spacing and the quadrature
partition spacing on each element to be graded. The element spacing is chosen as for the HpStd method, by (20). For the
second example of this section and the example of Section 4.2.1 we found that grading the quadrature partition endpoints
within each element could significantly improve computational performance. In both examples the kernels contain sharp
gradients as t → s. Recall that the integrals (11) simplify, as the support of φm′,j′ ⊆ [tm′ , tm′+1], to (16) when m′ < m and
to (18) whenm′

= m. Note that each of these integrals involves integration over only one complete, or partial, element. The
particular graded partition spacing we chose in (21) uses the partition points,

sl = 1 − 2

1 −

l
L

r ′

, l = 0, . . . , L,

where r ′ denotes the grading exponent. When applied to (16) and (18) this clusters points about the end of the integration
range. We therefore obtain higher resolution in the vicinity of points where s ≈ t , as appear in the integrals (18). One could
continue to resolve the integrals (16) with uniform partitions, and only use graded partitions for the integrals (18), however,
the results presented herein use the same graded quadrature partition spacing for all the integrals (16) and (18). We will
subsequently refer to the HpPar methodwith element grading exponent, r , and partition grading exponent, r ′, by the name
HpPar r-r′. For example, HpPar4-6 refers to using an element grading with r = 4 and a partition grading with r ′

= 6. The
choice of uniform element and uniform partition spacing will then be denoted by the label HpPar1-1.

Note, how to best choose the two grading exponents, r and r ′ is an interesting question that we did not investigate
herein. For problems using non-uniform element gradings we always chose r = 4, while for non-uniform partition spacing
we choose r ′

= 6.
Our error metric for the HpPar method, denoted by eHpPar, remains the same as for the HpStd method,

eHpPar

MHpPar, p


= max

m=0,...,MHpPar−1
j=0,...,pHpPar

y(tm,j)− ŷh(tm,j)
 .

Note, eHpPar will also depend on the element spacing, quadrature order, number of quadrature partitions per element, and
quadrature partition spacing. We will subsequently denote by QHpPar the number of partitions per element. In addition
to varying pHpPar and MHpPar when trying to reduce the error metric, eHpPar, below a given tolerance, we now also vary
QHpPar. When searching for the ‘‘first’’ set of (pHpPar,MHpPar,QHpPar) that satisfy a given tolerance, we initially set pHpPar = 2,
QHpPar = 1, andMHpPar = 1. pHpPar is then incremented by one until reaching a maximum value of ten. If the error tolerance
is not satisfied at this point then pHpPar is reset to two, and QHpPar is incremented by five. If pHpPar reaches the value of ten
and QHpPar the value of 100, and the error tolerance is still not satisfied, thenMHpPar is incremented by one, pHpPar is reset to
two, and QHpPar is reset to one. The process is then repeated.

The first example we consider is the Volterra integral equation (1) with

y(t) = et
[
1 + (t + ε) log


1 +

t
ε

]
, K(t, s) = −

t + ε

s + ε
, g(t) = et , (22)

with t ∈ [0, 1]. Note, as ε → 0 this kernel becomes singular in s at s = 0, with a non-integrable singularity (in the Lebesgue
sense). Moreover, the solution, y(t) blows up for all t > 0 as ε → 0.
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Fig. 4. First smooth kernel with sharp gradients example (22) with ε = 0.001. The median running times found for each method listed in the inset are
shown for the specified absolute error tolerances. The corresponding numerical parameters found for each method to satisfy a given error tolerance are
listed in Table 4.

Table 4
Numerical Parameters associated with Fig. 4 and Eq. (22). See text for definitions of the parameters. Note,
the quadrature order of the HpPar methods was chosen such that the quadrature points agreed with the
collocation points when only one partition was used per element.

Tolerances:
1e−04 1e−06 1e−08 1e−10

NSinc 16 32 52 74
NGreg6 8192 16384 32768 65536
MHpStd , pHpStd 87, 10 168, 10 282, 10 433, 10
MHpStd4 , pHpStd4 5, 9 7, 9 8, 10 11, 10
MHpPar1−1 , pHpPar1−1 , QHpPar1−1 13, 10, 11 43, 10, 6 95, 10, 6 174, 10, 6
MHpPar4−1 , pHpPar4−1 , QHpPar4−1 2, 10, 11 3, 10, 6 6, 9, 6 7, 10, 6

Fig. 4 and Table 4 show the median running times and associated numerical parameters found for the various methods
as the absolute error tolerance is varied. The best performing methods for this example were the HpStd4 and HpPar4-1
methods. Since the solution, y(t), contains sharp gradients for ε small, it is not surprising that increasing the number of
elements near t = 0 would allow the use of fewer elements (and hence increase the performance of these two methods).
The number of elements required when a graded element spacing is used decreases by more than a factor of ten from the
non-graded case for most tolerances. The use of uniformly spaced partitions does not help improve performance for this
example. We might expect that using a quadrature partitioning that is graded towards the s = −1 end of the integrals (16)
and (18) might be beneficial; particularly for the case that m′

= 0. We did not, however, examine this case. Also, note
that the Sinc method was faster than both the uniformly spaced HpStd and HpPar methods, and was within one order
of magnitude of the performance of the graded HpStd and HpPar methods. Unlike the next two examples, the sharp
gradient in the kernel near s = 0 can be handled by the Sinc method. The double-exponential transform used in the
Sinc method changes the integration range in (1) so that s = 0 is moved off to negative infinity. Coupled with the
sharp decay in the Jacobian of the transformation at negative infinity, the Sinc method is then able to resolve the sharp
gradient.

The second example we consider is the Volterra integral equation (1) with

y(t) = te−t , K(t, s) =
1

(t − s + ε)2
, (23)

g(t) defined by the left-hand side of (1), and t ∈ [0, 10]. To evaluate g(t) a cubic spline interpolation table was built with an
absolute error tolerance of 1e−10. In building the table, the integral in (1) was evaluated through the use of MATLAB’s built-
in quadgk routine with an absolute error tolerance of one hundred times machine precision. Fig. 5 and Table 5 show the
median running times and associated numerical parameters found for the variousmethods as the absolute error tolerance is
varied. Note, the HpPar methods are slightly increasing in running time as the tolerance is increased, but this is only visible
on the expanded scale of the lower-left inset of Fig. 5.

The singularity of the kernel as ε → 0 now lies on the line t = s. As such, the Sinc method was no longer effective in
solving this particular example for small ε (see Section 2.2 for a discussion of the regime of validity of the Sinc method). For
the specified tolerances, the Sinc method did not converge in a computationally reasonable amount of time. In contrast,
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Fig. 5. Second kernel with sharp gradient example (23) with ε = 0.01. The median running times found for each method listed in the upper-right inset
are shown for the specified absolute error tolerances. The corresponding numerical parameters found for each method to satisfy a given error tolerance
are listed in Table 5. The lower-left inset shows an expanded view of the two HpPar methods, showing their slight increase in running time as the absolute
error tolerance is decreased.

Table 5
Numerical Parameters associated with Fig. 5 and Eq. (23). See text for definitions of the parameters. Note,
the quadrature order of the HpPar methods was chosen such that the quadrature points agreed with the
collocation points when only one partition was used per element.

Tolerances
1e−02 1e−03 1e−04 1e−05 1e−06

NGreg6 131072 131072 131072 131072 131072
MHpStd , pHpStd 30, 10 63, 10 106, 10 158, 10 220, 10
MHpPar1−1 , pHpPar1−1 , QHpPar1−1 1, 10, 6 1, 10, 16 1, 10, 26 2, 10, 46 3, 10, 51
MHpPar4−6 , pHpPar4−6 , QHpPar4−6 1, 6, 11 1, 10, 11 1, 9, 16 2, 10, 16 3, 10, 21

the use of the partitioned quadrature methods, HpPar1-1 and HpPar4-6, are quite effective for this example, giving a
large performance gain over the HpStd method. We found that grading the elements in either the HpStd method or the
HpPar method had little effect on the median running times. The computational challenge is not in approximating the
smooth solution, y(t), in (23), but instead in accurately evaluating the integrals (16) and (18). As shown in Table 5, only a
few elements are needed to accurately approximate the true solution, y(t), however, a large number of partitions (for the
HpPar1-1 method) or amoderate number ofwell-placed partitions (for the HpPar4-6 method) are necessary to accurately
evaluate those integrals. While the graded partitioned quadrature method, HpPar4-6, did not significantly improve the
computational running time, it did significantly reduce the total number of partitions required to satisfy a given tolerance.
This example demonstrates one of the main benefits of the qualocation approach; separating the approximation of the
integral in (1) from the numerical approximation of the solution to (1), y(t).

4.2.1. Application to a smooth kernel with sharp gradients
The final example we consider arises from a problem one of the authors has previously investigated [22,23], and

was the original motivation for this work. We were interested in studying the numerical convergence of the solution
to the discrete-space continuous-time diffusion equation with a sink term at the origin. This model arises as a special
case when studying stochastic reaction–diffusion models of gene expression based on the reaction–diffusion master
equation [21–23]. In particular, consider an infinite Cartesian lattice in three dimensions comprised of cubic voxels of width
h. We subsequently denote this space by Z3h = {x = hi | i ∈ Z3

}, where Z3 denotes the space of all integer valued vectors
with three components. Denote by 0 = (0, 0, 0) the zero vector. The problem we studied was that of a single molecule
undergoing a continuous-time random walk on the lattice, which in the 0 voxel could be removed from the lattice with
probability per unit time k/h3. (Here k should be interpreted as a bimolecular rate constant with units of volume/time.)
Physically, this model can be thought of as approximating binding to a fixed target located in the 0 voxel of the
lattice.

Define ed to be the unit vector along the dth coordinate axis of R3, and D to be the diffusion constant of the molecule
(with units of area per time). We let δh(x) represent the discrete Dirac delta function,

δh(x) =

 1
h3
, x = 0,

0, otherwise.
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Denote by ph(x, t), with x ∈ Z3h and t > 0, the solution to the discrete-space continuous-time diffusion equation with sink
term,

dph
dt
(x, t) =

D
h2

3−
d=1


ph(x + ed, t)+ ph(x − ed, t)− 2ph(x, t)


−

k
h3
δh(x)ph(0, t), (24)

with the initial condition,

ph(x, 0) = δh(x − x0).

Here x0 denotes the initial location of the molecule.
Let Gh(x, t) denote the Green’s function for the discrete-space continuous-time diffusion equation,

dGh

dt
(x, t) =

D
h2

3−
d=1


Gh(x + ed, t)+ Gh(x − ed, t)− 2Gh(x, t)


, x ∈ Z3h, t > 0,

with the initial condition,

Gh(x, 0) = δh(0).

Using Duhamel’s principle, we may rewrite (24) as the system of Volterra integral equations

ph(x, t) = Gh(x − x0, t)− k
∫ t

0
Gh(x, t − s)ph(0, s) ds, x ∈ Z3h, t ≥ 0. (25)

Notice, at x = 0 this leads to a single Volterra integral equation of the second kind for ph(0, t),

ph(0, t) = Gh(x0, t)− k
∫ t

0
Gh(0, t − s)ph(0, s) ds. (26)

Here we have made use of the property that Gh(−x0.t) = Gh(x0, t). Once the solution to (26) has been obtained, ph(x, t)
may be evaluated at any point in space through (25).

The original question of interest, discussed in [22], was to determine what the solution to (25) converges to in the limit
that h → 0. We initially examined this numerically using the Greg6 method [22], and were ultimately able to prove that
for x ≠ 0 the solution converges point-wise to the solution to the discrete-space continuous-time diffusion equation, i.e.

lim
h→0

ph(x, t) = Gh(x − x0, t), x ≠ 0, t > 0.

While the Greg6 methodwas able to give insight into what the limit should be, we felt that its performance for small values
of h limited what we could explore numerically. This motivated the present study.

There are several difficulties in numerically evaluating the solution to (26). First, the Green’s function, Gh(x, t), may only
be represented as an appropriate Bessel function or, as we choose to make use of, an inverse Fourier integral. The Bessel
function representation is that

Gh(x, t) =
e−6Dt/h2

h3

3∏
d=1

I(x)d/h


2Dt
h2


,

where by (x)d wemean the dth component of x, and In denotes the modified Bessel function of the first kind of order n. The
Fourier representation of Gh is given by

Gh(x, t) =

∫∫∫


−1
2h ,

1
2h

3 e−4Dt
3∑

k=1
sin2(πhξk)/h2

e2π iξ·x dξ,

and in the Appendix to [22] we explain our numerical method for its evaluation (a mix of tabulation for sufficiently large
t values and direct evaluation by use of the double-exponential transform [36] and the trapezoidal rule for small t values).
Note, as h → 0 with x a fixed lattice point, Gh(x, t) will converge point-wise to the Green’s function of the free-space
diffusion,

G(x, t) =
1

(4πDt)3/2
e−|x|2/(4Dt).

The kernel to (26), Gh(0, t − s), will then have a non-integrable singularity (in the Lebesgue sense) of the form
1

(t − s)3/2
,

as h → 0. It is sufficient for our purposes to subsequently assume that the evaluation of the kernel is an expensive operation,
one that should be minimized in order to reduce the computational time in solving (26).
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Fig. 6. Numerical solutions to (26) using the HpPar4-6 method. Note, for each curve h = 2−n , where n is the number given in the inset. For all three
solutions, D = 1, k = 4π/1000, and the absolute error tolerance was set to 1e−7.

Table 6
Numerical parameters associatedwith Fig. 7. The number of quadrature points per partition in theHpPar4-6
method were chosen to be two more than the number of interpolatory abscissas (i.e. p + 3). Associated
physical parameters are given in Fig. 6.

h
2−6 2−8 2−10

NGreg6 16384 524288 4194304
MHpPar4−6 ,pHpPar4−6 ,QHpPar4−6 10, 10, 21 10, 10, 21 10, 10, 26

As we do not have an exact solution to (26), we assessed numerical error differently than in the preceding sections. For
the Greg6 method the absolute error was assessed by comparing the solution with NGreg6 + 1 points to the solution with
NGreg6/2 + 1 points. That is, the error metric, ẽGreg6, was

ẽGreg6

NGreg6


= max

n=0,2,4...,NGreg6

Ỹn − Yn/2

 .
Here Ỹn denotes the Greg6 method solution at the nth time-step with NGreg6 + 1 time points and Yn/2 denotes the Greg6
method solution with NGreg6/2+ 1 time points. Our search strategy to find the value of NGreg6 that reduces the error below
a given tolerance was the same as the previous sections, but used ẽGreg6 instead of eGreg6 when comparing to the tolerance.

For the HpPar method, the modified error metric we used compared the current numerical solution, ỹh(tm,j), to the
solution with one less polynomial degree but the same number of elements, ŷh(tm,j), at the collocation points for the latter.
That is, if ỹh uses degree pHpPar interpolants on each element and has MHpPar total elements, the collocation points where
the two solutions are compared are the points,

tm,j = tm + αjhm, j = 0, . . . , pHpPar − 1, m = 0, . . . ,MHpPar − 1,

where the {αj}
pHpPar−1
j=0 are the mapping of the pHpPar Gauss–Lobatto nodes to [0, 1]. The new error metric, ẽHpPar, is then

ẽHpPar

MHpPar, pHpPar


= max

m=0,...,MHpPar−1
j=0,...,pHpPar−1

ỹh(tm,j)− ŷh(tm,j)
 .

Our numerical procedure to search for the first set of (pHpPar,MHpPar,QHpPar) that satisfy a given absolute error tolerance
remained the same as described in previous sections,with the exception of using ẽHpPar as the errormetric, and incrementing
MHpPar by two elements instead of one. For all solutions reported in this subsection, the number of quadrature nodes per
partition were chosen to be two more than the number of collocation points per element.

Similar absolute error metrics were constructed for each of the GLI, Sinc, HpStd, and HpStd4-1 methods. We found
that none of these methods were able to find a set of parameters where they resolve the solution to (26) to the tolerance
we use below (each was allowed to search for appropriate numerical parameters for over a day’s worth of computing time).
As such, we do not subsequently discuss these methods in the remainder. Note, for the Sinc method this result is not
unexpected as the sharp gradient is near the line t = s, see Section 2.2.

The numerical solutions to (26) obtained using the HpPar4-6 method are shown in Fig. 6 for h = 2−6, 2−8, and 2−10.
The absolute error tolerance for each solution was set to 1e−7, with D = 1, k = 4π/1000, and x0 = (1/8, 1/8, 1/8). The
corresponding median running times of the HpPar4-6 and Greg6 methods, and associated numerical parameters for each
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Fig. 7. Median running times for the solutions obtained by the HpPar4-6 method in Fig. 6, and also by the Greg6 method. Physical parameters and
tolerance are given in Fig. 6. Corresponding numerical parameters are given in Table 6.

method, are shown in Fig. 7 and Table 6. Grading both the element spacing near t = 0 and the partitions towards t = s
was necessary for the HpPar method to satisfy the specified error tolerance. For example, when just grading the element
spacing our numerical search method was unable to find a set of parameters where the solutions satisfied the specified
error tolerances over the course of several days of searching. (The required number of elements became so large that the
calculation of the numerical solution to (26) was extremely time consuming.)

As shown in Fig. 7, the HpPar4-6 method outperforms the Greg6 method as h is decreased. In particular, for the finest
value of h, 2−10, the difference between the two methods is approximately a factor of ten in median running time. Table 6
shows this arises in part as the Greg6 method must increase the number of time-steps by a factor of 32 and then a factor
of eight to satisfy the specified tolerance when h is decreased from 2−6 to 2−10. In contrast, the numerical parameters of
the HpPar4-6 method barely change as h is decreased, with the number of elements and number of collocation points
remaining constant. Given that the solution to (26) is decreasing as h → 0, and apparently becoming smoother (see Fig. 6),
it is not surprising that the number of degrees of freedom needed to approximate the solution in the HpPar4-6 method
do not increase. A slight increase in the number of partitions is needed to resolve the finest value of h; this addition of
five partitions per element corresponds to the addition of 650 quadrature points. Profiling shows that for the HpPar4-6
method approximately 99% of the computing time was spent in the evaluation of the kernel, Gh(0, t − s) for h = 2−10. In
contrast, the Greg6 method spent approximately 39% of its running time in evaluating the kernel for h = 2−10. This is not
surprising since the Greg6 methodmust increase the number of time-steps it uses to gain accuracy in either of the solution
or quadrature approximations. By carefully placing the element boundaries and quadrature partitions, coupled with the use
of higher-order quadrature rules, the HpPar4-6 method is able to use more than a factor of 1000 less quadrature points
and 40000 less collocation points in resolving the solution to the specified tolerance.

5. Conclusions

A partitioned quadrature qualocationmethodwas developed to improve the computational performance of the standard
collocation method in solving linear Volterra integral equations with smooth kernels containing sharp gradients. The
method was compared to the standard collocation approach where quadrature approximation and solution approximation
are coupled. To demonstrate the benefit of decoupling the quadrature approximation from the solution approximation
several additional methods where the two are coupled were also examined. We first examined the baseline performance
of the methods for several equations with smooth, ‘‘well-behaved’’ kernels. For the examples under consideration all the
methods performed quite well, with our particular implementations of the standard collocation method and the Gregory
method having the fastest median running times. For smooth kernels that contained sharp gradients, we found the our
partitioned quadrature qualocation method, using both non-uniformly spaced elements and partitioned Gauss quadrature
rules performed the best. Only this method and the Gregory method were able to resolve all three examples we considered,
and the partitioned quadrature qualocation method was generally faster with a better running time scaling as higher
absolute error tolerances were considered. The benefit of decoupling the quadrature choice to evaluate the integral in (1)
from numerical representation of the solution, y(t), was readily apparent for these examples. The standard collocation
formulation, the global spectral method, and the Sinc method, where the quadrature choices are coupled to the solution
representation, were each unable to resolve all three of the smooth kernels with sharp gradient examples we considered.
(The standard collocation and Sinc method did perform well on the first kernel with sharp gradient example.)

For the original Volterra equation, Eq. (26), containing a smooth kernelwith sharp gradients thatmotivated thiswork, the
partitioned quadrature qualocationmethod of Section 2.1.2 substantially outperformed the Gregory convolutionmethod. As
the regularization parameter for the kernel was decreased, causing the kernel to become sharper, the qualocation method
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with geometrically spaced elements and geometrically spaced quadrature partitions showed almost no increase in degrees
of freedom need to represent the solution or evaluate the integrals involving the kernel. In contrast, the Gregory method
need a factor of 256 more degrees of freedom to resolve the smallest value of the regularization parameter than for the
coarsest value of the regularization parameter.

The MATLAB m-files we have developed for each of the methods will be made available online at [27].
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