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AbstractÐWe present a brute-force ray tracing system for interactive volume visualization. The system runs on a conventional

(distributed) shared-memory multiprocessor machine. For each pixel we trace a ray through a volume to compute the color for that

pixel. Although this method has high intrinsic computational cost, its simplicity and scalability make it ideal for large datasets on current

high-end parallel systems. To gain efficiency several optimizations are used including a volume bricking scheme and a shallow data

hierarchy. These optimizations are used in three separate visualization algorithms: isosurfacing of rectilinear data, isosurfacing of

unstructured data, and maximum-intensity projection on rectilinear data. The system runs interactively (i.e., several frames per

second) on an SGI Reality Monster. The graphics capabilities of the Reality Monster are used only for display of the final color image.

Index TermsÐRay tracing, visualization, isosurface, maximum-intensity projection.

æ

1 INTRODUCTION

MANY applications generate scalar fields ��x; y; z� which
can be visualized by a variety of methods. These

fields are often defined by a set of point samples and an
interpolation rule. The point samples are typically in either
a rectilinear grid, a curvilinear grid, or an unstructured grid
(simplical complex). The two main visualization techniques
used on such fields are to display isosurfaces where
��x; y; z� � �iso, and direct volume rendering, where there is
some type of opacity/emission integration along the line of
sight. The key difference between these techniques is that
isosurfacing displays actual surfaces, while direct volume
rendering displays some function of all the values seen
along a ray throughout the pixel. Ideally, the display
parameters for each technique are interactively controlled
by the user. In this paper, we present interactive volume
visualization schemes that use ray tracing as their basic
computation method.

The basic ray-volume traversal method used in this

paper is shown in Fig. 1. This framework allows us to

implement volume visualization methods that find exactly

one value along a ray. Two such methods described in this

paper are isosurfacing and maximum-intensity projection.

Maximum-intensity projection is a direct volume rendering

technique where the opacity is a function of the maximum

intensity seen along a ray. The isosurfacing of rectilinear

grids has appeared previously [1], while the isosurfacing of

unstructured grids and the maximum-intensity projection

are described for the first time in this paper. More general

forms of direct volume rendering are not discussed in this
paper.

The methods are implemented in a parallel ray tracing
system that runs on an SGI Reality Monster, which is a
conventional (distributed) shared-memory multiprocessor
machine. The only graphics hardware that is used is the
high-speed framebuffer. This overall system is described in
a previous paper [2]. Conventional wisdom holds that ray
tracing is too slow to be competitive with hardware z-
buffers. However, when rendering a sufficiently large
dataset, ray tracing should be competitive because its low
time complexity ultimately overcomes its large time
constant [3]. This crossover will happen sooner on a
multiple CPU computer because of ray tracing's high
degree of intrinsic parallelism. The same arguments apply
to the volume traversal problem.

In Section 2, we review previous work, describe several
volume visualization techniques, and give an overview of
the parallel ray tracing code that provides the backbone of
our system. Section 3 describes the data organizational
optimizations that allow us to achieve interactivity. In
Section 4, we describe our memory optimizations for
various types of volume visualization. In Section 5, we
show our methods applied to several datasets. We discuss
the implications of our results in Section 6, and point to
some future directions in Section 7. Some material that is
not research-oriented but is helpful for implementors is
presented in the appendices.

2 BACKGROUND

Ray tracing has been used for volume visualization in many
works (e.g., [4], [5], [6]). Typically, the ray tracing of a pixel
is a kernel operation that could take place within any
conventional ray tracing system. In this section, we review
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how ray tracers are used in visualization, and how they are

implemented efficiently at a systems level.

2.1 Efficient Ray Tracing

It is well understood that ray tracing is accelerated through

two main techniques [7]: accelerating or eliminating ray/

voxel intersection tests and parallelization. Acceleration is

usually accomplished by a combination of spatial subdivi-

sion and early ray termination [4], [8], [9].
Ray tracing for volume visualization naturally lends

itself towards parallel implementations [10], [11]. The

computation for each pixel is independent of all other

pixels and the data structures used for casting rays are

usually read-only. These properties have resulted in many

parallel implementations. A variety of techniques have been

used to make such systems parallel, and many successful

systems have been built (e.g., [10], [12], [13], [14]). These

techniques are surveyed by Whitman [15].

2.2 Methods of Volume Visualization

There are several ways that scalar volumes can be made

into images. The most popular simple volume visualization

techniques that are not based on cutting planes are

isosurfacing, maximum-intensity projection, and direct volume

rendering.
In isosurfacing, a surface is displayed that is the locus of

points where the scalar field equals a certain value. There

are several methods for computing images of such surfaces,

including constructive approaches such as marching cubes
[16], [17] and ray tracing [18], [19], [20].

In maximum-intensity projection (MIP), each value in the
scalar field is associated with an intensity and the
maximum intensity seen through a pixel is projected onto
that pixel [21]. This is a ªwinner-takes-allº algorithm and,
thus, looks more like a search algorithm than a traditional
volume color/opacity accumulation algorithm.

More traditional direct volume rendering algorithms
accumulate color and opacity along a line of sight [4], [5],
[6], [8], [22]. This requires more intrinsic computation than
MIP and we will not deal with it in this paper.

2.3 Traversals of Volume Data

Traversal algorithms for volume data are usually custo-
mized to the details of the volume data characteristics. The
three most common types [23] of volume data used in
applications are shown in Fig. 2.

To traverse a line through rectilinear data some type of
incremental traversal is used (e.g., [24], [25]). Because there
are many cells, a hierarchy can be used that skips
ªuninterestingº parameter intervals, which increases per-
formance [26], [27], [28], [29].

For curvilinear volumes, the ray can be intersected
against a polygonal approximation to the boundary and,
then, a more complex cell-to-cell traversal can be used [30].

For unstructured volumes, a similar technique can be
used [31], [32]. Once the ray is intersected with a volume, it
can be tracked from cell-to-cell using the connectivity
information present in the mesh.

Another possibility for both curvilinear and unstruc-
tured grids is to resample to a rectilinear grid [33], although
resampling artifacts and data explosion are both issues.

3 TRAVERSAL OPTIMIZATIONS

Our system organizes the data into a shallow rectilinear
hierarchy for ray tracing. For unstructured or curvilinear
grids, a rectilinear hierarchy is imposed over the data domain.
Within a given level of the hierarchy we use the incremental
method described by Amanatides and Woo [24].

3.1 Memory Bricking

The first optimization is to improve data locality by
organizing the volume into ªbricksº that are analogous to
the use of image tiles in image-processing software and
other volume rendering programs [21], [34] (Fig. 3). Our
use of lookup tables is particularly similar to that of
Sakas et al. [21].

Effectively utilizing the cache hierarchy is a crucial task
in designing algorithms for modern architectures. Bricking
or 3D tiling has been a popular method for increasing
locality for ray cast volume rendering. The dataset is
reordered into n� n� n cells which then fill the entire
volume. On a machine with 128 byte cache lines, and using
16 bit data values, n is exactly 4. However, using float (32
bit) datasets, n is closer to 3.

Effective translation lookaside buffer (TLB) utilization is
also becoming a crucial factor in algorithm performance.
The same technique can be used to improve TLB hit rates by
creating m�m�m bricks of n� n� n cells. For example, a
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Fig. 1. A ray traverses a volume looking for a specific or maximum value.
No explicit surface or volume is computed.

Fig. 2. The three most common types of point-samples volume data.



40� 20� 19 volume could be decomposed into 4� 2� 2

macrobricks of 2� 2� 2 bricks of 5� 5� 5 cells. This

corresponds to m � 2 and n � 5. Because 19 cannot be

factored by mn � 10, one level of padding is needed. We

use m � 5 for 16 bit datasets and m � 6 for 32 bit datasets.
The resulting offset q into the data array can be

computed for any x; y; z triple with the expression:

q ���x� n� �m�n3m3��Nz � n� �m���Ny � n� �m��
��y� n� �m�n3m3��Nz � n� �m��
��z� n� �m�n3m3�
��x� n�modm�n3m2�
��y� n�modm�n3m�
��z� n�modm�n3�
�xmod n� n�n2�
�ymod n� � n�
�zmod n�;

where Nx, Ny, and Nz are the respective sizes of the dataset.
This expression contains many integer multiplication,

divide and modulus operations. On modern processors,

these operations are extremely costly (32+ cycles for the

MIPS R10000). Where n and m are powers of two, these

operations can be converted to bitshifts and bitwise logical

operations. However, the ideal size is rarely a power of two,

thus, a method that addresses arbitrary sizes is needed.

Some of the multiplications can be converted to shift/add

operations, but the divide and modulus operations are

more problematic. The indices could be computed incre-

mentally, but this would require tracking nine counters,

with numerous comparisons and poor branch prediction

performance.
Note that this expression can be written as:

q � Fx�x� � Fy�y� � Fz�z�
where

Fx�x� � ��x� n� �m�n3m3��Nz � n� �m���Ny � n� �m�
� ��x� n�modm�n3m2�
�xmod n� n�n2

Fy�y� � ��y� n� �m�n3m3��Nz � n� �m��
��y� n�modm�n3m�
�ymod n� � n

Fz�z� � ��z� n� �m�n3m3�
��z� n�modm�n3�
�zmod n�:

We tabulate Fx, Fy, and Fz and use x, y, and z, respectively,
to find three offsets in the array. These three values are
summed to compute the index into the data array. These
tables will consist of Nx, Ny, and Nz elements, respectively.
The total sizes of the tables will fit in the primary data cache
of the processor even for very large data set sizes. Using this
technique, we note that one could produce mappings which
are much more complex than the two level bricking
described here, although it is not at all obvious which of
these mappings would achieve the highest cache utilization.

For many algorithms, each iteration through the loop
examines the eight corners of a cell. In order to find these
eight values, we need to only lookup Fx�x�, Fx�x� 1�, Fy�y�,
Fy�y� 1�, Fz�z�, and Fz�z� 1�. This consists of six index
table lookups for each eight data value lookups.

3.2 Multilevel Grid

The other basic optimization we use is a multilevel spatial
hierarchy to accelerate the traversal of empty cells, as is
shown in Fig. 4. Cells are grouped divided into equal
portions and, then, a ªmacrocellº is created which contains
the minimum and maximum data value for its children
cells. This is a common variant of standard ray-grid
techniques [35] and is especially similar to previous
multilevel grids [36], [37]. The use of minimum/maximum
caching has been shown to be useful [28], [29], [38]. The ray-
isosurface traversal algorithm examines the min and max at
each macrocell before deciding whether to recursively
examine a deeper level or to proceed to the next cell. The
typical complexity of this search will be O� ���n3

p � for a three
level hierarchy [36]. While the worst case complexity is still
O�n�, it is difficult to imagine an isosurface occurring in
practice approaching this worst case. Using a deeper
hierarchy can theoretically reduce the average case com-
plexity slightly, but also dramatically increases the storage
cost of intermediate levels. We have experimented with
modifying the number of levels in the hierarchy and
empirically determined that a trilevel hierarchy (one top-
level cell, two intermediate macrocell levels, and the data
cells) is highly efficient. This optimum may be data
dependent and is modifiable at program startup. Using a
trilevel hierarchy, the storage overhead is negligible
(< 0:5 percent of the data size). The cell sizes used in the
hierarchy are independent of the brick sizes used for cache
locality in the first optimization.

Macrocells can be indexed with the same approach as
used for memory bricking of the data values. However, in
this case, there will be three table lookups for each
macrocell. This, combined with the significantly smaller
memory footprint of the macrocells made the effect of
bricking the macrocells negligible.
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Fig. 3. Cells can be organized into ªtilesº or ªbricksº in memory to
improve locality. The numbers in the first brick represent layout in
memory. Neither the number of atomic voxels nor the number of bricks
need be a power of two.



4 ALGORITHMS

This section describes three types of volume visualization
that use ray tracing:

. isosurfacing on rectilinear grids,

. isosurfacing on unstructured meshes,

. maximum-intensity projection on rectilinear grids.

The first two require an operation of the form: Find a
specific scalar value along a ray. The third asks: What is the
maximum value along a ray. All of these are searches that
can benefit from the hierarchical data representations
described in the previous section.

4.1 Rectilinear Isosurfacing

Our algorithm has three phases: traversing a ray through
cells which do not contain an isosurface, analytically
computing the isosurface when intersecting a voxel contain-
ing the isosurface, shading the resulting intersection point.
This process is repeated for each pixel on the screen. A
benefit is that adding incremental features to the rendering
has only incremental cost. For example, if one is visualizing
multiple isosurfaces with some of them rendered transpar-
ently, the correct compositing order is guaranteed since we
traverse the volume in a front-to-back order along the rays.
Additional shading techniques, such as shadows and
specular reflection, can easily be incorporated for enhanced
visual cues. Another benefit is the ability to exploit texture
maps which are much larger than physical texture memory,
which is currently available up to 64 MBytes. However,
newer architectures that use main memory for textures
eliminate this issue.

For a regular volume, there is a one-to-one correspon-
dence with the cells forming bricks and the voxels. This
leads to a large branching factor for the shallow hierarchy,
which we have empirically found to yield the best results.

If we assume a regular volume with even grid point
spacing arranged in a rectilinear array, then ray-isosurface
intersection is straightforward. Analogous simple schemes
exist for intersection of tetrahedral cells as described below.

To find an intersection (Fig. 5), the ray ~a� t~b traverses
cells in the volume checking each cell to see if its data range
bounds an isovalue. If it does, an analytic computation is

performed to solve for the ray parameter t at the
intersection with the isosurface:

��xa � txb; ya � tyb; za � tzb� ÿ �iso � 0:

When approximating � with a trilinear interpolation
between discrete grid points, this equation will expand to
a cubic polynomial in t. This cubic can then be solved in
closed form to find the intersections of the ray with the
isosurface in that cell. We use the closed form solution for
convenience since its stability and efficiency have not
proven to be major issues for the data we have used in
our tests. Only the roots of the polynomial which are
contained in the cell are examined. There may be multiple
roots, corresponding to multiple intersection points. In this
case, the smallest t (closest to the eye) is used. There may
also be no roots of the polynomial, in which case the ray
misses the isosurface in the cell. The details of this
intersection computation are given in Appendix A. Note
that using trilinear interpolation directly will produce more
complex isosurfaces than is possible with a marching cubes
algorithm. An example of this is shown in Fig. 6, which
illustrates case 4 from Lorensen and Cline's paper [17].
Techniques such as the Asymptotic Decider [39] could
disambiguate such cases, but they would still miss the
correct topology due to the isosurface interpolation scheme.

4.2 Unstructured Isosurfacing

For unstructured meshes, the same memory hierarchy is
used as is used in the rectilinear case. However, we can
control the resolution of the cell size at the finest level. We
chose a resolution which uses approximately the same
number of leaf nodes as there are tetrahedral elements. At
the leaf nodes a list of references to overlapping tetrahedra
is stored (Fig. 7). For efficiency, we store these lists as
integer indices into an array of all tetrahedra.

Rays traverse the cell hierarchy in a manner identical to
the rectilinear case. However, when a cell is detected that
might contain an isosurface for the current isovalue, each of
the tetrahedra in that cell are tested for intersection. No
connectivity information is used for the tetrahedra; instead,
they are treated as independent items, just as in a traditional
surface-based ray tracer.

The isosurface for a tetrahedron is computed implicitly
using barycentric coordinates. The intersection of the
parameterized ray and the isoplane is computed directly,
using the implicit equations for the plane and the para-
metric equation for the ray. The intersection point is
checked to see if it is still within the bounds of the
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Fig. 4. With a two-level hierarchy, rays can skip empty space by
traversing larger cells. A three-level hierarchy is used for most of the
examples in this paper.

Fig. 5. The ray traverses each cell (left) and, when a cell is encountered
that has an isosurface in it (right), an analytic ray-isosurface intersection
computation is performed.



tetrahedron by making sure the barycentric coordinates are
all positive. Details of this intersection code are described in
Appendix B.

4.3 Maximum-Intensity Projection

The maximum-intensity projection (MIP) algorithm seeks
the largest data value that intersects a particular ray. It
utilizes the same shallow spatial hierarchy described above
for isosurface extraction. In addition, a priority queue is
used to track the cells or macrocells with the maximal
values. For each ray, the priority queue is first initialized
with single top level macrocell. The maximum data value
for the dataset is used as the priority value for this entry in
the priority queue. The algorithm repeatedly pulls the
largest entry from the priority queue and breaks it into
smaller (lower level) macrocells. Each of these cells are
inserted into the priority queue with the precomputed
maximum data value for that region of space. When the
lowest-level cells are pulled from the priority queue, the
algorithm traverses the segment of the ray which intersects
the macrocell. Bilinear interpolation is used at the intersec-
tion of the ray with cell faces since these are the extremal
values of the ray-cell intersection in a linear interpolation
scheme. For each data cell face which intersects the ray, a
bilinear interpolation of the data values is computed, and
the maximum of these values in stored again in the priority
queue. Finally, when one of these data maximums appears
at the head of the priority queue, the algorithm has found
the maximum data value for the entire ray.

To reduce the average length of the priority queue, the
algorithm performs a single trilinear interpolation of the
data at one point to establish a lower-bound for the
maximum value of the ray. Macrocells and datacells which
do not exceed this lower-bound are not entered into the
priority queue. To obtain this value, we perform the
trilinear interpolation using the t corresponding to the
maximum value from whatever previous ray a particular
processor has computed. Typically, this will be a value
within the same block of pixels and exploits image-space
coherence. If not, it still provides a bound on the maximum
along the ray. If this t value is unavailable (due to program
startup, or a ray missing the data volume), we choose the
midpoint of the ray segment which intersects the data
volume. This is a simple heuristic which improves the
performance for many datasets.

Similar to the isosurface extraction algorithm, the MIP
algorithm uses the 3D bricking memory layout for efficient
cache utilization when traversing the data values. Since
each processor will be using a different priority queue as it
processes each ray, an efficient implementation of a priority
queue which does not perform dynamic memory allocation
is essential for performance of the algorithm.

5 RESULTS

We applied ray tracing isosurface extraction to interactively
visualize the Visible Woman dataset. The Visible Woman
dataset is available through the National Library of
Medicine as part of its Visible Human Project [40]. We
used the computed tomography (CT) data which was
acquired in 1mm slices with varying in-slice resolution. This
rectilinear data is composed of 1,734 slices of 512� 512
images at 16 bits. The complete dataset is 910 MBytes.
Rather than down-sample the data with a loss of resolution,
we utilize the full resolution data in our experiments. As
previously described, our algorithm has three phases:
traversing a ray through cells which do not contain an
isosurface, analytically computing the isosurface when
intersecting a voxel containing the isosurface, and shading
the resulting intersection point.

Fig. 8 shows a ray tracing for two isosurface values. Fig. 9
illustrates how shadows can improves the accuracy of our
geometric perception. Fig. 10 shows a transparent skin
isosurface over a bone isosurface. Table 1 shows the
percentages of time spent in each of these phases, as
obtained through the cycle hardware counter in Silicon
Graphics' Speedshop.1 As can be seen, we achieve about 10
frames per second (FPS) interactive rates while rendering
the full, nearly 1 GByte, dataset.

Table 2 shows the scalability of the algorithm from 1 to
128 processors. View 2 uses a zoomed out viewpoint with
approximately 75 percent pixel coverage whereas view 1
has nearly 100 percent pixel coverage. We chose to examine
both cases since view 2 achieves higher frame rates. The
higher frame rates cause less parallel efficiency due to
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Fig. 7. For a given leaf cell in the rectilinear grid, indices to the shaded
elements of the unstructured mesh are stored.

1. Speedshop is the vendor provided performance analysis environment
for the SGI IRIX operating system.

Fig. 6. (a) The isosurface from the marching cubes algorithm. (b) The
isosurface resulting the true cubic behavior inside the cell.



synchronization and load balancing. Of course, maximum
interaction is obtained with 128 processors, but reasonable
interaction can be achieved with fewer processors. If a
smaller number of processors were available, one could
reduce the image size in order to restore the interactive
rates. Efficiencies are 91 percent and 80 percent for view 1
and 2, respectively, on 128 processors. The reduced
efficiency with larger numbers of processors (> 64) can be
explained by load imbalances and the time required to
synchronize processors at the required frame rate. The
efficiencies would be higher for a larger image.

Table 3 shows the improvements which were
obtained through the data bricking and spatial hierarchy
optimizations.

Using a ray tracing architecture, it is simple to map each
isosurface with an arbitrary texture map. The Visible Man
dataset includes both CT data and photographic data. Using
a texture mapping technique during the rendering phase
allows us to add realism to the resultant isosurface. The
photographic cross section data which was acquired in
0.33mm slices can be registered with the CT data. This
combined data can be used as a texture mapped model to
add realism to the resulting isosurface. The size of the
photographic dataset is approximately 13 GBytes, which
clearly is too large to fit into texture memory. When using
texture mapping hardware, it is up to the user to implement
intelligent texture memory management. This makes
achieving effective texture performance nontrivial. In our
implementation, we down-sampled this texture by a factor
of 0.6 in two of the dimensions so that it occupied only 5.1

GBytes. The frame rates for this volume with and without
shadows and texture are shown in Table 4. A sample image
is shown in Fig. 11. We can achieve interactive rates when
applying the full resolution photographic cross sections to
the full resolution CT data. We know of no other work
which achieves these rates.

Fig. 12 shows an isosurface from an unstructured mesh
made up of 1.08 million elements which contains adaptively
refined tetrahedral elements. The heart and lungs shown
are polygonal meshes that serve as landmarks. The
rendering times for this data, rendered without the
polygonal landmarks at 512� 512 pixel resolution, is shown
in Table 5. As would be expected, the FPS is lower than for
structured data, but the method scales well. We make the
number of lowest-level cells proportional to the number of
tetrahedral elements, and the bottleneck is intersection with
individual tetrahedral elements. This dataset composed of
adaptively refined tetrahedra with volume differences of
two orders of magnitude.

Fig. 13 shows a maximum-intensity projection of the
Visible Female dataset. This dataset runs in approximately
0.5 to 2 FPS on 16 processors. Using the ªuse last tº
optimization saves approximately 15 percent of runtime.
Generating such a frame rate using conventional graphics
hardware would require approximately a 1.8 GPixel/
second pixel fill rate and 900 Mbytes of texture memory.

6 DISCUSSION

We contrast applying our algorithm to explicitly extracting
polygonal isosurfaces from the Visible Woman data set. For
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Fig. 8. Ray tracings of the bone and skin isosurfaces of the Visible Woman.



the skin isosurface, we generated 18,068,534 polygons. For
the bone isosurface, we generated 12,922,628 polygons.
These numbers are consistent with those reported by
Lorensen given that he was using a cropped version of
the volume [41]. With this number of polygons, it would be
challenging to achieve interactive rendering rates on
conventional high-end graphics hardware. Our method
can render a ray-traced isosurface of this data at roughly ten
frames per second using a 512� 512 image on 64
processors. Table 6 shows the extraction time for the bone
isosurface using both NOISE [42] and marching cubes [17].
Note that because we are using static load balancing, these
numbers would improve with a dynamic load balancing
scheme. However, this would still not allow interactive
modification of the isovalue while displaying the isosurface,
although using a downsampled or simplified detail volume
would allow interaction at the cost of some resolution.
Simplified, precomputed isosurfaces could also yield inter-
action, but storage and precomputation time would be
significant. Triangle stripping could improve display rates
by up to a factor of three because isosurface meshes are
usually transform bound. Note that we gain efficiency for
both the extraction and rendering components by not
explicitly extracting the geometry. Our algorithm is there-
fore not well-suited for applications that will use the
geometry for nongraphics purposes.

The interactivity of our system allows exploration of both

the data by interactively changing the isovalue or view-

point. For example, one could view the entire skeleton and

interactively zoom in and modify the isovalue to examine

the detail in the toes all at about 10 FPS. The variation in

framerate is shown in Fig. 14.
Brady et al. [43] describe a system which allows, on a

Pentium workstation with accelerated graphics, interactive

navigation through the Visible Human data set. Their

technique is two-fold:

1. Combine frustum culling with intelligent paging
from disk of the volume data, and

2. Utilize a two-phase perspective volume rendering
method which exploits coherence in adjacent frames.

Their work differs from ours in that they are using

incremental direct volume rendering while we are exploit-

ing isosurface or MIP rendering. This is evidenced by their

incremental rendering times of about 2 seconds per frame

for a 480� 480 image. A full (nonincremental) rendering is

nearly 20 seconds using their technique. For a single CPU,

our isosurface rendering time is several seconds per frame

(see Table 2) depending on viewpoint. While it is difficult to

directly compare these techniques due to their differing

application focus, our method allows for the entire data set
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Fig. 9. A ray tracing with and without shadows.

Fig. 10. Ray tracings of the skin and bone isosurfaces with
transparency.

TABLE 1
Data from Ray Tracing the Visible Woman

The frames-per-second (FPS) gives the observed range for the
interactively generated viewpoints on 64 CPUs.



to reside within the view frustum without severe perfor-

mance penalties since we are exploiting parallelism.
The architecture of the parallel machine plays an

important role in the success of this technique. Since any

processor can randomly access the entire dataset, the

dataset must be available to each processor. Nonetheless,

there is fairly high locality in the dataset for any particular

processor. As a result, a shared memory or distributed

shared memory machine, such as the SGI Origin 2000, is

ideally suited for this application. The load balancing

mechanism also requires a fine-grained low-latency com-

munication mechanism for synchronizing work assign-

ments and returning completed image tiles. With an

attached Infinite Reality graphics engine, we can display

images at high frame rates without network bottlenecks. We

feel that implementing a similar technique on a distributed

memory machine would be extraordinarily challenging,

and would probably not achieve the same rates without

duplicating the dataset on each processor.

7 FUTURE WORK AND CONCLUSIONS

Since all computation is performed in software, there are

many avenues which deserve exploration. Ray tracers have

a relatively clean software architecture, in which techniques
can be added without interfering with existing techniques,
without re-unrolling large loops and without complicated
state management as are characteristic of a typical polygon
renderer.

We believe the following possibilities are worth investi-
gating:

. Exploration of other hierarchical methods in addi-
tion to the multilevel hierarchy described above.

. Combination with other scalar and vector visualiza-
tion tools, such as cutting planes, surface maps,
streamlines, etc.

. Using higher-order interpolants. Although numer-
ical root finding would be necessary, the images
might look better [19]. Since the intersection routine
is not the bottleneck the degradation in performance
might be reasonable.

We have shown that ray tracing can be a practical
alternative to explicit isosurface extraction for very large
datasets. As data sets get larger and as general purpose
processing hardware becomes more powerful, we expect
this to become a very attractive method for visualizing large
scale scalar data both in terms of speed and rendering
accuracy.

APPENDIX A

RAY-ISOSURFACE INTERSECTION FOR TRILINEAR

BOXES

This appendix expands on some details of the intersection
of a ray and a trilinear surface. It is not new research, but is
helpful for implementors.

A rectilinear volume is composed of a three dimensional
array of point samples that are aligned to the Cartesian axes
and are equally spaced in a given dimension. A single cell
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TABLE 2
Scalability Results for Ray Tracng the Bone Isosurface

in the Visible Human

A 512� 512 image was generated using a single view of the bone
isosurface.

TABLE 3
Times in Seconds for Optimizations for Ray Tracing

the Visible Human

A 512� 512 image was generated on 16 processors using a single view
of an isosurface.

Fig. 11. A 3D texture applied to an isosurface from the Visible Man
dataset.



from such a volume is shown in Fig. 15. Other cells can be
generated by exchanging indices �i; j; k� for the zeros and
ones in the figure.

The density at a point within the cell is found using
trilinear interpolation:

��u; v; w� ��1ÿ u��1ÿ v��1ÿ w��000�
�1ÿ u��1ÿ v��w��001�
�1ÿ u��v��1ÿ w��010�
�u��1ÿ v��1ÿ w��100�
�u��1ÿ v��w��101�
�1ÿ u��v��w��011�
�u��v��1ÿ w��110�
�u��v��w��111;

�1�

where

u � xÿ x0

x1 ÿ x0

v � yÿ y0

y1 ÿ y0

w � zÿ z0

z1 ÿ z0
:

�2�

Note that

1ÿ u � x1 ÿ x
x1 ÿ x0

1ÿ v � y1 ÿ y
y1 ÿ y0

1ÿ w � z1 ÿ z
z1 ÿ z0

:

�3�
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TABLE 4
Frame Rates Varying Shadow and Texture for the Visible Male

Dataset on 64 CPUs (FPS)

Fig. 12. Ray tracing of a 1.08 million element unstructured mesh from
bioelectric field simulation. The heart and lungs are represented as
landmark polygonal meshes and are not part of the isosurface.

TABLE 5
Data from Ray Tracing Unstructured Grids at 512� 512 Pixels

on 1 to 124 Processors

The adaptively refined dataset is from a bioelectric field problem.

Fig. 13. A maximum-intensity projection of the Visible Female dataset.



If we redefine u0 � 1ÿ u and u1 � u, and similar definitions

for v0; v1; w0; w1, then we get:

� �
X

i;j;k�0;1

uivjwk�ijk

For a given point �x; y; z� in the cell, the surface normal is

given by the gradient with respect to �x; y; z�:

~N � ~r� � @�

@x
;
@�

@y
;
@�

@z

� �
:

So, the normal vector of �Nx;NY ;Nz� � ~r� is

Nx �
X

i;j;k�0;1

�ÿ1�i�1vjwk
x1 ÿ x0

�ijk

Ny �
X

i;j;k�0;1

�ÿ1�j�1uiwk
y1 ÿ y0

�ijk

Nz �
X

i;j;k�0;1

�ÿ1�k�1uivj
z1 ÿ z0

�ijk:

Lin and Ching [18] described a method for intersecting a

ray with a trilinear cell. We derive a similar result that is

more tailored to our implementation.
See Fig 16. Given a ray ~p � ~a� t~b, the intersection with

the isosurface occurs where ��~p� � �iso. We can convert this

ray into coordinates defined by �u0; v0; w0�: ~p0 � ~a0 � t~b0

and a third ray defined by ~p1 � ~a1 � t~b1. These rays ~p0 �
~a0 � t~b0 and ~p1 � ~a1 � t~b1 are now used for the intersection

computation. These two rays are in the two coordinate

systems (Fig. 16):

~a0 � �ua0; va0; wa0� �
x1 ÿ xa
x1 ÿ x0

;
y1 ÿ ya
y1 ÿ y0

;
z1 ÿ za
z1 ÿ z0

� �
;

and

~b0 � �ub0; vb0; wb0� �
xb

x1 ÿ x0
;

yb
y1 ÿ y0

;
zb

z1 ÿ z0

� �
:

These equations are different because ~a0 is a location and ~b0

is a direction. The equations are similar for ~a1 and ~b1:

~a1 � �ua1; va1; wa1� �
xa ÿ x0

x1 ÿ x0
;
ya ÿ y0

y1 ÿ y0
;
za ÿ z0

z1 ÿ z0

� �
;

and

~b1 � �ub1; vb1; wb1� �
ÿxb

x1 ÿ x0
;
ÿyb

y1 ÿ y0
;
ÿzb

z1 ÿ z0

� �
:

Note that t is the same for all three rays. This point can be
found by traversing the cells and doing a brute-force
algebraic solution for t. The intersection with the isosurface
��~p� � �iso occurs where:

�iso �
X

i;j;k�0;1

uai � tubi
ÿ �

vaj � tvbj
� �

wak � twbk
ÿ �

�ijk

This can be simplified to a cubic polynomial in t:

At3 �Bt2 � Ct�D � 0;

where

A �
X

i;j;k�0;1

ubiv
b
jw

b
k�ijk

B �
X

i;j;k�0;1

uai v
b
jw

b
k � ubivajwbk � ubivbjwak

� �
�ijk

C �
X

i;j;k�0;1

ubiv
a
jw

a
k � uai vbjwak � uai vajwbk

� �
�ijk

D � ÿ�iso �
X

i;j;k�0;1

uai v
a
jw

a
k�ijk:

The solution to a cubic polynomial is discussed the
article by Schwarze [44]. We used his code (available on the
web in several Graphics Gems archive sites) with two
modifications: special cases for quadratic or linear solutions
(his code assumes A is nonzero), and the EQN_EPS
parameter was set to 1.e-30 which provided for maximum
stability for large coefficients.

B. RAY-ISOSURFACE INTERSECTION FOR

BARYCENTRIC TETRAHEDRA

This appendix is geared toward implementors and dis-
cusses the details of intersecting a ray with a barycentric
tetrahedral isosurface.

An unstructured mesh is composed of three dimensional
point samples arranged into a simplex of tetrahedra. A
single cell from such a volume is shown in Fig. 17, where
the four vertices are pi � �xi; yi; zi�.

The density at a point within the cell is found using
barycentric interpolation:

���0; �1; �2; �3� � �0�0 � �1�1 � �2�2 � �3�3;

where

�0 � �1 � �2 � �3 � 1:

Similar equations apply to points in terms of the vertices.
For points inside the tetrahedron, all barycentric coordi-
nates are positive.

One way to compute barycentric coordinates is to
measure the distance from the plane that defines each face
(Fig. 18). This is accomplished by choosing a plane equation
f0�p� � 0 such that f0�p0� � 1. Such equations for all four
plane-faces of the tetrahedron allow us to compute
barycentric coordinates of a point p directly: �i�p� � fi�p�.

If we take the ray p�t� � a� t~b, then we get an equation
for the density along the ray:
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TABLE 6
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��t� �
X3

i�0

fi�a� t~b��i:

If we solve for ��t� � �iso, then we get a linear equation in t,

so solution is straightforward. If the resulting barycentric

coordinates of p�t� are all positive, the point is in the

tetrahedron, and it is accepted. Finding the normal is just a

matter of taking the gradient:

~r��p� �
X3

i�0

�i ~rfi�p�:

Because fi is just a plane equation of the form ~ni � �pÿ qi�,
where qi is a constant point, the normal vector ~N is simply

~N �
X3

i�0

�i~ni:

This is a constant for the cell, but we do not precompute it

since it would require extra memory accesses.
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Fig. 14. Variation in framerate as the viewpoint and isovalue changes.

Fig. 15. The geometry for a cell. The bottom coordinates are the �u; v; w�
values for the intermediate point.
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Fig. 18. The barycentric coordinate �0 is the scaled distance d=D. The
distances are d and D are signed distances to the plane containing the
triangular face opposite p0.


