
1

Interactive Simulation and Visualization
Christopher Johnson, Steven Parker, Charles Hansen,

Gordon Kindlmann, and Yarden Livnat
Center for Scientific Computing and Imaging

Department of Computer Science
University of Utah, Salt Lake City, UT 84112.

E-Mail: crj,sparker,hansen,gk,yarden@cs.utah.edu
Web: http://www.cs.utah.edu/sci

CONTENTS

I Simulation Steering and Visualization 2

II Methods for Interactivity 3
II-A Possible Approaches 3
II-B Facets of Interactive Visualization 3

II-B.1 Isosurface Extraction 3
II-B.2 View Dependent Isosurface Extraction .. 4

II-C Facets of Computational Steering 5
II-C.1 Program Instrumentation 5
II-C.2 Directed Scientific Computation. 6
II-C.3 Dedicated Steering Systems . .. 6
II-C.4 Data Presentation .. 7
II-C.5 Putting it all together 7

III Summary 7
III-A Future Directions in Interactive Simulation and Visualization. 8

IV Acknowledgments 8

A Volume Visualization 9

B Case Study: Computational Bioelectric Fields 10

2

Abstract

As computational engineering and science applications have grown in size and complexity, the process of analyzing and
visualizing the resulting vast amounts of data has become an increasingly difficult task. Traditionally, data analysis and visualization
are performed as post-processing steps after a simulation has been run. As simulations have increased in size, this task has
become increasingly difficult–often requiring significant computation, high-performance machines, high capacity storage, and
high bandwidth networks.Computational steeringis an emerging technology that addresses this problem by “closing the loop” and
providing a mechanism for integrating modeling, simulation, data analysis, and visualization. This integration allows a researcher
to interactively control simulations and perform data analysis while avoiding many of the pitfalls associated with the traditional
batch/post processing cycle.

In this paper, we describe the application of interactive simulation and visualization as applied to the domain of computational
field problems. We discuss the integration of visualization techniques within an integrated problem solving environment, SCIRun,
as well as a case study of the simulation and visualization of bioelectric fields.

Keywords

Computational steering, scientific computing, scientific visualization, modeling, simulation.

I. SIMULATION STEERING AND VISUALIZATION

Data analysis and visualization play critical roles in the scientific process. Unfortunately, these tasks are
often performed only as a post-processing step after batch jobs are run. For this reason, errors invalidating
the results of the entire simulation may be discovered only during post-processing. What is more, the de-
coupling of simulation and analysis/visualization can present serious scientific obstacles to the researcher in
interpreting the answers to “what if” questions.

Given the limitations of the batch/post processing cycle, a better approach might be to break the cycle and
improve the integration of simulation and visualization. In 1987, the Visualization in Scientific Computing
(ViSC) workshop reported as follows [1]:
Scientists not only want to analyze data that results from super-computations; they also want to interpret what
is happening to the data during super-computations. Researchers want tosteercalculations in close-to-real-
time; they want to be able to change parameters, resolution or representation, and see the effects. They want
to drive the scientific discovery process; they want tointeractwith their data.

Although these thoughts were recorded ten years ago, they express a very simple, contemporary idea: that
scientists want more interaction than is permitted by most simulation codes. Computational steering has been
defined as “the capacity to control all aspects of the computational science pipeline” [2]. By “computational
science pipeline,” we mean the succession of steps required to solve computational science and engineering
problems. This succession often involves geometric modeling (mesh generation, CAD), simulation (approxi-
mation methods, solvers), and visualization (scalar, vector, and tensor fields). We apply the concept of steer-
ing to link visualization with computation and geometric design to interactively explore (steer) a simulation
in time and/or space. As the application is developed, a scientist can leverage the steering and visualization to
assist in the debugging process as well as to modify the computational aspects based upon performance feed-
back. As knowledge is gained, a scientist can change the input conditions, algorithms, or other parameters of
the simulation and visualization.

Implementation of an interactive simulation and visualization environment requires a successful integration
of the many aspects of scientific computing, including performance analysis, geometric modeling, numerical
analysis, and scientific visualization. These requirements need to be effectively coordinated within an efficient
computing environment (which, for large-scale problems, means dealing with the subtleties of various high-
performance architectures).

Recently, several tools and environments for computational steering have been developed. These range
from tools that modify performance characteristics of running applications, either by automated means or
by user interaction, to tools that modify the underlying computational application, thereby allowing applica-
tion steering of the computational process. Our view is that a Problem Solving Environment (PSE) should

3

encompasses all of these characteristics, from algorithm development through performance tuning to appli-
cation steering, for scientific exploration and visualization, and that it should provide a rich environment for
accomplishing computational science [3].

In the remainder of this paper, we first describe the application of interactive simulation and visualization
as applied to the domain of computational field problems. Within the paper, we discuss the use of interactive
visualization techniques within an integrated problem solving environment, SCIRun, and also as applied to
the simulation and visualization of bioelectric fields (see the Case Study).

II. M ETHODS FORINTERACTIVITY

A. Possible Approaches

Interactive visualization typically combines two approaches: providing efficient algorithms for the presen-
tation of data, and providing efficient access to the data.

The first approach is obvious but challenging. Even though computers continually get faster, data sizes are
growing at an even more rapid rate. Therefore, the total time from data to picture is not shrinking for many
problem domains. Alternative algorithms, such as ray tracing [4] and view dependent algorithms [5] can
restore a degree of interactivity for very large datasets. These algorithms each have tradeoffs and are suitable
in different scenarios.

The second approach is less obvious but very powerful. Through the integration of visualization tools with
simulation codes, a scientist can achieve a new degree of interactivity through the direct visualization and
even manipulation of the data. The scientist does not necessarily wait for the computation to finish before
interacting with the data, but can interact with a running simulation. While conceptually simple, this approach
poses numerous technical challenges.

These two basic approaches raise many important issues. Some of them are explored here.

B. Facets of Interactive Visualization

The goal of interactive visualization is to provide the ability to rapidly examine (and understand) data
through visualization methods. Unfortunately, as data sizes grow, standard visualization algorithms do not
scale well and different approaches are needed. New algorithms that effectively handle large data must be
developed and refined. One common method for visualization is to explore 3D data sets through examination
of isosurfaces. To demonstrate the need for algorithmic improvement for visualization, consider isosurface
extraction. There are multiple methods for the visualization of isosurfaces, including geometric representa-
tion and rendering, direct isosurface rendering and volume rendering. We describe methods for achieving
interactive rates with the first method and point out the power of interactive isosurfacing through volume
rendering in the accompanying sidebar1.

B.1 Isosurface Extraction

The standard, non accelerated method for isosurface extraction is the Marching Cubes algorithm [7]. This
algorithm checks each cell of the data set to see if it contains an isosurface. If the scientist is exploring the
data set, the potential for examining multiple isovalues means that many cells are checked repeatedly when
they don’t contain data that contributes to the final image.

One can preprocess the data and build specific data structures that allow for rapidly extracting isosurfaces.
One such method is the Near Optimal IsoSurface Extraction (NOISE) algorithm [8]. Using a new repre-
sentation, termed thespan space, of the underlying domain, the isosurface extraction algorithm is bounded
with a worst case complexity ofO(

√
n + k) for thesearch phase, wheren is the size of the data set andk

is the number of cells in the isosurface. The memory requirement is kept atO(n) while the preprocessing
step isO(n log n). This reduces the search domain for a particular isosurface from all the cells to only those

1For examples of direct isosurface rendering, see [4], [6]

4

cells thatcontainthe isosurface [8], [9]. Figure 1 shows a screen dump from an interactive parallel rendering
system built with the NOISE algorithm [10]

Fig. 1. An earth mantle convection system showing multiple isosurfaces.

B.2 View Dependent Isosurface Extraction

While algorithms such as NOISE have effectively eliminated the search phase bottleneck, the cost of
constructing and rendering the isosurface remains high. Many of today’s simulation data sets contain very
large and complex isosurfaces that can easily overwhelm even state-of-the-art graphics hardware. An output
sensitive approach that can further increase interactivity is needed.

Large and complex isosurfaces have two characteristics: 1) many of the polygons that make up the iso-
surface are smaller than a pixel and 2) the polygons have significant depth complexity, such that the number
of polygons that project to a given pixel is quite high. By reducing the required generation of non-visible
isosurfaces, we can increase the interactivity for such data sets. Recall that Marching Cubes examined every
cell and that search acceleration methods reduced that search to only those cells containing an isosurface.
If we can further reduce the search to only those isosurfaces that arevisible in the final image, we can gain
more interactivity. Since many of the polygons project to the same pixel, we can achieve this goal using a
view-dependent algorithm.

The WISE algorithm [5], is based on a hierarchical front-to-back traversal of the dataset with dynamic
pruning of sections that are hidden from the view point by previously extracted sections of the isosurface.
These coarse visibility tests are done in software against a one bit per pixel virtual screen. Finally, the
triangulation of the visible cells are forwarded to the graphics accelerator for rendering by the hardware. It is
at this stage that the final and exact partial-visibility of the triangles is resolved.

This work explores the middle ground between a mostly hardware based (e.g. Marching Cubes + Z-buffer)
algorithm and a purely software (e.g. ray-tracing) algorithm for isosurface extraction. The goal is to reduce
the load on the network and/or graphics hardware by performingsomeof the visibility tests in software. The
approach leads to an output sensitive method that can reduce the load of other components in the visualization
pipeline [22], such as transmission of the isosurface geometry over a network.

5

View dependent algorithms provide significant improvements for interactivity for very large data. We
anticipate significant development using view dependent methods in the coming years.

C. Facets of Computational Steering

One of the primary goals of computational steering is to make scientific applications more interactive and
flexible. Unfortunately, many traditional scientific codes are neither. Often, systems have been developed
over a period of years or even decades. Adapting such complex and rigid applications to computational
steering methods can be difficult. To further complicate matters, many steering systems are just as inflexible,
forcing the user to adopt a particular methodology, code within a rigid hierarchy, or rely on a particular
software tool.

Such rigidity is especially undesirable given the long life-span of most scientific applications and the wide
range of computational requirements found in these applications. Before acceptable interaction and flexibility
can be achieved, an attempt to implement steering must address four major facets of the problem: control
structures, data distribution, data presentation and user interfaces. These facets may not all be present in
every problem, nor do they portray the entire problem - they simply outline fundamental considerations.

Computational steering requires integrating the modeling, computation, data analysis, visualization and
data input components of a scientific simulation. The most critical aspect of any system is that it must allow
for the efficient extraction of relevant scientific information, from simple x-y plots to sophisticated three-
dimensional visualizations, as well as specific numerical quantities. This requires that the system be tightly
coupled with the simulation code in order provide more information than would normally be available in a
separate data analysis system.

A computational steering programming “model” is the software architecture used to integrate compu-
tational components in a manner that allows the efficient extraction of scientific information and permits
changes to simulation parameters and data in a meaningful way. This new architecture often requires some
modification of the original scientific code, but the extent and nature of the changes will depend on the model
chosen. At one extreme, the scientific program will be completely rewritten and transformed to support steer-
ing. Less radical approaches may reuse pieces of the computation or use off-the-shelf visualization packages
to simplify the construction of a steerable system [11], [12], [13].

Important to the success of any computational steering system is the means by which it permits the user to
specify various types of changes to be made in the simulation. For example, various devices may allow the
user to specify changes in the computation, ranging from simple text files to sophisticated scripting languages
to graphical user interfaces to three-dimensional widgets. Another less obvious problem is that of integrating
changed data into the simulation in a scientifically meaningful fashion. In most coupled systems, it does not
make sense to change one quantity without making corresponding changes in other quantities. For example,
in a fluid dynamics system, it would not make sense to allow sudden changes in pressure without making
corresponding changes in another quantity such as temperature in order to maintain balance under the ideal
gas law.

Several approaches can be used to make scientific applications into steerable systems. Each approach has
strengths and weaknesses. In many cases, one might use components of all of these approaches.

C.1 Program Instrumentation

One way to implement the steering of an existing scientific application is to make small modifications in
the source to provide access points for the parameters and results. This process is called “instrumentation”
and typically takes the form of subroutine calls inserted in the code wherever results become available or
when new parameters can be used. These calls can transmit data to and from a separate visualization process.
They might perform visualization tasks internally, or they might trigger a thread that siphons the data off
while the computation continues concurrently. Systems such as Falcon [14], Progress [15] implement this
approach. The instrumentation technique has the advantage of being minimally intrusive to an existing scien-
tific code. Instrumentation works well for domain-specific applications and development of new applications

6

when parameters to be controlled are clearly defined. However, it may provide only limited control over the
existing applications as the user may access only the parameters that have been instrumented. This technique
also has implementation complications, such as the overhead of data transmission if the data is being sent to a
separate visualization process, the stalling of computation if visualization is done internally, and complicated
synchronization.

C.2 Directed Scientific Computation

An alternative approach to program instrumentation is to break a code up into various modules that the user
controls explicitly by issuing a sequence of commands. One popular approach for doing this is to rely upon
scripting languages such as Python or Tcl [16], [17]. This model has been used successfully in commercial
packages such as IDL, MATLAB, or Mathematica. It is also being used in large physics applications at both
Los Alamos and Lawrence Livermore National Laboratories [11], [18].

The advantage of this method is that it is possible to reuse almost all of the original scientific code. It is
also portable and quite easy to implement on most systems since it avoids the problems of managing multi-
ple threads and synchronization. This makes it suitable for controlling most kinds of applications–including
large parallel applications on both distributed memory and shared memory systems. The scripting language
interface provides expert users with a fine degree of control over most, if not all, program parameters. This
system can be also used for scripting long-running simulations, rapid prototyping of new features, and de-
bugging. As an added benefit, most scripting languages provide access to Tk, a toolkit for building graphical
user-interfaces. Thus, one could implement a graphical user interface over a command-driven system if
needed.

Scripting languages have been used quite successfully in steering a variety of scientific applications [19].
They have also been used in the construction of advanced systems, including SCIRun. They form an ideal
control mechanism for the construction of steering systems and other large-scale scientific applications.

C.3 Dedicated Steering Systems

If a scientist is fortunate enough to be designing a new model with computational steering in mind, there is
more room for innovation. The SCIRun system [20], [2], [21] has been designed for this scenario. It allows
the scientist to construct a simulation using reusable computational components connected within a visual
programming environment. Each of these components, as well as the system as a whole, have been designed
to integrate modeling, computation, and visualization, and to facilitate the interactive steering of all phases
of the simulation.

Unlike directed approaches, the SCIRun system manages each module as an independent thread of ex-
ecution. This allows the user to interact with the system, even when long-running operations are involved
(although data dependencies between operations may force the user to wait for results). The dataflow model
used by SCIRun also simplifies synchronization issues, making it relatively easy to “siphon off” data and
feed it to various analysis and visualization modules as a simulation progresses.

A dedicated steering system such as SCIRun offers many advanced features, especially if one is writing a
new application. While such systems offer a somewhat flexible model that can accommodate existing code,
applying them to existing code can be difficult in practice. Scientific applications may not have been written
in a manner that is easily translated to such a steering environment. In other cases, there may just be too much
“dust on the deck,” in which case it would be easier to start over. Advanced steering systems such as SCIRun
may also rely on a style of programming that is difficult to implement on certain machines. For example, the
computational model used in SCIRun was designed for use with shared-memory symmetric multiprocessing
systems. Implementing the system on a distributed message passing machine involves different challenges,
such as synchronization, memory use, and data distribution, among others.

7

C.4 Data Presentation

Another consideration is the presentation of information to the end user of the steering system. Choices
range from off-the-shelf visualization tools to custom analysis and visualization programs [12], [13], [19],
[20]. Ideally, a flexible control structure will allow a variety of tools to be mixed and matched for each
specific problem.

Often, the full power of a computational steering system comes from the tight integration of scientific codes
with visualization tools that were designed for that problem. Visualization is typically used to view the results
of the computation, but may be used in other roles as well, such as in visualizing memory usage, algorithm
performance, or multiprocessor communication patterns. It may also be used to examine intermediate results,
matrix structures, mesh details or domain decompositions.

In other cases, it may be possible to use pre-existing software as a presentation mechanism. For example,
a system may use public domain graphing libraries and image processing tools such as gnuplot and xv.
Explorer, AVS, and other commercial systems have also been used successfully in steering systems [12].

C.5 Putting it all together

Because computational scientists have a wide variety of needs, computational steering systems should
be able to operate in different modes in order to serve different users and applications. For example, in
a debugging or development mode, a researcher may want to use a highly interactive system that allows
parameters and simulations to be run in almost real time. However, that researcher may later want to run
large simulations requiring hundreds of CPU hours. In this case, it may be easier to use a control language
and write batch scripts than to use an interactive environment.

Users may also want to write extensions or use the system with their own applications. Unfortunately, doing
so may require a detailed understanding of each facet in the problem. Because they perceive the complexity
of applying such systems to their own work, many potential users continue to ignore computational steering
efforts. While there is no clear answer to this problem, it is clear that this issue will need to be addressed in
order for steering to be adopted into mainstream scientific computing efforts.

III. SUMMARY

In recent years, computational steering has started to gain an evolutionary acceptance within, rather than a
cause a revolutionary change to, the scientific computing process. This trend is likely to continue, but some
factors suggest that the evolution may accelerate:
• The melding of high-end graphics workstations and supercomputers will allow many more scientists to
perform both computations and visualizations using the same hardware. Instead of transferring gigabytes of
data to a visualization workstation, the researcher will be able to perform the visualization directly on the
supercomputer.
• Simulation is playing an increasingly important role in today’s scientific and engineering worlds. Increased
safety responsibilities, heightened environmental awareness, and cheaper CPU cycles have all increased the
motivation for many engineers to do more simulation rather than real-world experiments, which may endanger
subjects, use precious–and expensive–resources, cause various kinds of environmental contamination, and be
very costly in terms of both money and time.
• Visualization systems are becoming more accessible to average scientists. A few years ago, most scientists
did not have ready access to graphics workstations; now, with the advent of PC graphics cards, they are
becoming commonplace. Similar changes are in sight for high end 3D graphics engines, which will make
fast graphics machines available at a reasonable cost.
• Software development tools are making it easier for scientists to develop and use steering systems.
However, there are barriers to this progress:
• Many supercomputers are currently set up for batch mode processing, not for interactive use. A compu-
tational steering system violates many of the assumptions that are made in these batch mode systems. As a

8

result, site managers and system developers need to recognize the benefits of steering in large-scale applica-
tions. A common complaint is that “interactivity” is a waste of CPU cycles even though spending some time
interactively setting up a simulation may save tens to hundreds of hours of production time later on.
• Since accounting systems at supercomputer sites focus on counting CPU cycles, performing visualization
and rendering tasks using these cycles can be extremely expensive. These costs are highly relevant to the
large-scale problems run on large supercomputers, but may not be relevant to the scientist doing medium-
sized problems on a desktop superworkstation. There is also room for the investigation of tightly coupled
“visualization engines,” smaller machines placed at the supercomputer center site that can be used to offload
visualization tasks from the primary compute machine.
• The quantity of data generated by large scientific simulations continues to outstrip the capabilities of vi-
sualization engines — especially typical desktop workstations. Research into more appropriate visualization
algorithms and output sensitive techniques will be necessary.

Future research will need to address these barriers, and the policies and practices of supercomputer sites
will need to be flexible in order to make interactive supercomputing feasible.

A. Future Directions in Interactive Simulation and Visualization

Interactive simulation and visualization (and interactive steering) will succeed only if such systems can be
useful to scientists and engineers. Systems should be modular and easy to extend with existing code. Users of
such systems should be able to add new capabilities easily without being overwhelmed in systems program-
ming issues. Steering systems should be adaptable to hardware ranging from the largest of supercomputing
systems to low-end workstations and PCs. Finally, steering systems must be demonstrably usable in scientific
research. Working prototypes are a start, but we hope that scientists and engineers will soon view steering
systems as among the most useful and necessary of their working tools.

Much of our future work will explore the distribution of data and the combination of command-driven
techniques with the component-oriented approach used in SCIRun. We are investigating the construction of
distributed steering systems involving multiple platforms and languages. Ultimately, we hope that this can
lead to the development of steering systems that are highly interactive and easy to extend and modify, that
work well with large amounts of data, and that can be used on ordinary workstations, high end servers, and
supercomputing systems.

In addition to the software aspects of the computational steering system, the visualization software will
continue to evolve. Component oriented designs have been successful for visualization in many different
areas (such as the visualization toolkit,vtk [22]). However, making such component oriented deigns work for
interactive large-scale computational steering systems continues to be a challenge.

Other advances in simulation technology, such as the increased importance of adaptive mesh refinement,
present a simultaneous challenge and opportunity for computational steering. While an adaptive mesh is more
difficult to manage, it presents a natural vehicle to perform multi-resolution data transmission, visualization,
and even to effect user-directed changes in the computation. Adaptive structures will be the focus of much
present and future research.

As interactive simulation and visualization systems become more common, issues related to data manage-
ment will grow critical. It is easy for a researcher to generate hundreds or even thousands of images, datafiles,
and results. Organizing that data is a significant problem and much work remains to be done to help in this
area. Unfortunately, most existing steering research has focused only on implementation and interactivity.
However, as these problems are solved, the emphasis will need to shift towards issues of data management,
quality of service, and reproducibility of results.

IV. A CKNOWLEDGMENTS

This research was supported in part by awards from the DOE, NSF, and NIH. We also acknowledge facili-
ties from SGI-Utah Visual Supercomputing Center at the University of Utah. The authors would like to thank
David Weinstein for his helpful comments and suggestions.

9

APPENDICES

I. VOLUME VISUALIZATION

Conceptually, direct volume rendering is a simple way to visualize volume data. The individual values in
the dataset are made visible by an assignment of optical properties, like color and opacity, which are then
composited to form an image. As a tool for scientific visualization, the appeal of direct volume rendering is
that in contrast to isosurfacing or segmentation, no intermediate geometric information needs to be calculated,
so the process maps from the dataset “directly” to an image.

In practice, a significant amount of work is needed to create an intelligible rendering. The basic problem
is creating the mapping from data values to optical properties, called the “transfer function,” which plays
the critical role of selecting those aspects of the dataset to appear in the rendering. The number of degrees
of freedom in transfer functions is huge, but current interfaces for setting them are not constrained by the
dataset in question. Thus, it is too easy to find a poor transfer function, and users generally find a good
transfer function only after a slow process of trial and error.

Our work on this problem has focused on a specific use of direct volume rendering, visualizing scanned
medical data (such as CT or MRI) to display the surfaces of organs or bone. While showing these boundaries
may seem to be a problem of edge detection (a problem, in other words, of computer vision), the two problems
differ in a subtle but important way. While edge detection seeks to locate edges within the two or three spatial
dimensions of the image, we need to “locate” boundaries within the range of data values occurring in the
dataset, values which represent some physical property like radio-opacity or proton density. It is the lack of a
spatial component to this process which makes it unintuitive.

Our solution is to create the transfer function in two distinct steps. The first step is an automated analysis
using metrics borrowed from edge detection, but which are then projected into the space of data values. The
information accumulated this way is used to compute a “distance function,” which gives the signed distance
to an object boundary as a function of data value. Having the distance function simplifies the user’s task
immensely, because it can constrain the otherwise unwieldy parameter space of transfer functions to only
those that emphasize the boundaries within the dataset. In the second step, the user generates a “boundary
appearance function,” which maps distance (rather than data value) to color and opacity.

Mathematically, the transfer function is created as the composition of the distance function and the bound-
ary appearance function. This combines the two steps, the automatically measured information about the
boundaries, and the user-specified information about their desired appearance (such as thickness, sharpness,
translucency, and color). Setting a transfer function is now simpler, because the hard part of the job has
been done already. The user retains control over the transfer function, but at a comfortable remove from the
underlying space of raw data values.

This two-step approach has immediate relevance to more complex rendering tasks. The domain of the
transfer function may not be just the one-dimensional range of data values, as described here, but some
higher-dimensional feature space. However, as long as a distance function can be computed for this new
domain, the user’s same boundary appearance function can used to create the transfer function. One example
of such a domain is the two-dimensional space of data value and gradient magnitude (a first derivative).
Figure 2 shows volume renderings from the visible woman data set [23] made with “two-dimensional” opacity
functions, shown here as the inset gray-scale images. The horizontal and vertical axes represent data value
and gradient magnitude respectively, and brightness represents opacity. If the initially generated opacity
function shows more features than desired (upper left), the structure of the opacity function makes it simple
to select individual boundaries for rendering.

Abstracted levels of interaction such as this become more important as the size of datasets, and hence re-
quired rendering time, grow with advances in measurement equipment and techniques. Also, where datasets
and associated volume rendering methods are more complex (such as in vector or tensor visualization), meth-
ods for guiding the user towards useful parameter settings, based on information about the goal of the visual-
ization, become a necessary part of generating informative scientific visualizations. Research in these areas
is currently underway.

10

Fig. 2. Manipulation of an automatically generated two-dimensional opacity function to selectively render different material
boundaries: skin (upper right), bone (lower right), and the registration cord laced around the body prior to scanning (lower
left).

II. CASE STUDY: COMPUTATIONAL BIOELECTRIC FIELDS

Much of the problem solving environment research at Utah has focused on SCIRun, an interactive environ-
ment for creating and steering scientific applications [2], [24], [20], [3]. SCIRun is a scientific programming
environment that allows the interactive construction and steering of large-scale scientific computations. A
scientific application is constructed by connecting computational elements (modules) to form a program (net-
work). This program may contain several computational elements as well as several visualization elements,
all of which work together in orchestrating a solution to a scientific problem. Geometric inputs and computa-
tional parameters may be changed interactively, and the results of these changes provide immediate feedback
to the investigator.

Here we address the application of SCIRun to two bioelectric field problems in medicine, simulation of
cardiac defibrillation and simulation of temporal lobe epilepsy.

Every year, approximately 500,000 people die suddenly because of abnormalities in their hearts’ electrical
systems (cardiac arrhythmias) and/or from coronary artery disease. While external defibrillation units have

11

been in use for some time, their use is limited because it takes such a short time for a heart attack victim to die
from insufficient oxygen to the brain. Lately, research has been initiated to find a practical way of implanting
electrodes within the body to defibrillate a person automatically upon onset of cardiac fibrillation. Because
of the complex geometry and inhomogeneous nature of the human thorax and the lack of sophisticated thorax
models available to researchers, most past design work on defibrillation devices has relied on animal studies.
In order to provide an alternative based on human geometry, we have constructed a large scale computer
model of the human thorax, the Utah Torso Model [25], [26], for simulating both the endogenous fields of
the heart and applied current sources (defibrillation devices). Using this model, we are also able to simulate
a multitude of electrode configurations, electrode sizes, and magnitudes of defibrillation shocks. Given the
large number of possible external and internal electrode sites, magnitudes, and configurations, it is a daunt-
ing problem to computationally test and verify various configurations. For each new configuration tested,
geometries, mesh discretization levels, and a number of other parameters must be changed.

Excitation currents in the brain produce an electrical field that can be detected as small voltages on the
scalp. By using electroencephalograms, or EEGs, to measure changes in the patterns of the scalp’s electrical
activity, physicians can detect some forms of neurological disorders. However, these measurements provide
physicians with only a blurred projection of brain activity. A pervasive problem in neuroscience is determin-
ing which regions of the brain are active, given voltage measurements at the scalp. If accurate solutions to
such problems could be obtained, neurologists would gain non-invasive access to patient-specific cortical ac-
tivity. Access to such data would ultimately increase the number of patients who could be effectively treated
for neural pathologies such as multi-focal epilepsy.

To solve these two bioelectric field problems in medicine, we are using SCIRun. In the first case to
design internal defibrillator devices and measure their effectiveness in an interactive graphical environment.
Similarly, in the second case, we are using SCIRun to develop and test computational models of epilepsy and
localize the focus of electrical activity within the brain due to an epileptic seizure.

Using SCIRun, scientists and engineers are able to design internal defibrillation devices and source models
for the epileptic foci, place them directly into the computer model, and automatically change parameters
(size, shape and number of electrodes) and source terms (position and magnitude of voltage and current
sources) as well as the mesh discretization level needed for an accurate finite element solution. Furthermore,
engineers can use interactive visualization capabilities to visually gauge the effectiveness of their designs and
simulations in terms of distribution of electrical current flow and density maps of current distribution.

Past (and much current) practice regarding the placement of the electrodes for either type of defibrillator
has been determined by clinical trial and error. One of our goals is to allow engineers to use SCIRun to assist
in determining the optimum electrode placement, size, shape, and strength of shock to terminate fibrillation
within a detailed model of the human thorax.

One of the challenges of solving the inverse EEG source localization problem is choosing an initial con-
figuration for the search method, such as a downhill simplex method, used to localize the electrical sources.
A good choice can result in rapid convergence, whereas a bad choice can cause the algorithm to search ran-
domly for a very long time before closing in on the solution. Furthermore, because the solution space has
many local minima, it is necessary to re-seed the algorithm many times in order to find the global minimum.

We have brought the user into the loop by enabling seed-point selection within the model. The user can
now seed specifically within physiologically plausible regions. This focus enables the algorithm to converge
much more quickly, rather than getting lost in non-global, local minima.

An image of our algorithm running within the SCIRun environment is shown in Figure 4. Interacting with
the model depicted in the OpenGL rendering window, the user can seed the downhill simplex search algo-
rithm with sources placed in physiologically plausible regions of the model. In practice, this computational
steering capability translates into more than a 50% reduction in the number of iterations required for simplex
convergence.

Even simulated experiments of such complexity can be time- and cost-prohibitive. However, using SCIRun,
an engineer can interactively steer such a simulation. An engineer can try an electrode configuration and start

12

Fig. 3. 3D adaptive finite element solution of an internal defibrillation simulation. A user can interactively investigate the isovoltage
surfaces and the lines of electric current flow, as well as change the position and shape of the electrode source.

the simulation. As the simulation progresses, the engineer can view the intermediate results. Long before
the system completes a detailed solution, the engineer might determine that the configuration is not accept-
able, and might therefore try a new configuration and restart the simulation. Instead of throwing everything
away and starting over, SCIRun uses temporal and spatial coherence to compute only those aspects that have
changed between the previous simulation(s) and the new simulation. In scenarios where only small changes
are made to input parameters, a significant CPU and storage savings can be achieved.

There are many engineering design problems that would benefit from such a system, ranging from the
biomedical problems discussed here, to traditional mechanical design, to CFD and computational combus-
tion design. SCIRun is forming the core of two different Problem Solving Environments oriented towards
such problems. The first is the Uintah Problem Solving Environment, targeted at large-scale computational
combustion problems within the Center for Simulation of Accidental Fires at Explosions (C-SAFE), a DOE
ASCI ASAP center [27]. The second environment is BioPSE, a research tool for bioelectric fields, being
developed by the NIH Center for Bioelectric Field Modeling, Simulation, and Visualization at the University
of Utah. Engineers in these fields desire a tool that will enable them to easily experiment with new geometric
configurations and also to modify computational models and numerical algorithms to achieve more accurate
results or compute the solution more efficiently. As an integrated visualization environment combined with
large-scale computational capabilities, SCIRun is a powerful tool in engineering design.

13

