
A Positivity Preserving Finite Element Methodfor Hyperboli
 Partial Di�erential EquationsMatthew Hubbard and Martin BerzinsS
hool of Computing, University of Leeds, Leeds, LS2 9JT, U.K.Abstra
t. This paper des
ribes a framework in whi
h 
ux and slope limiters, 
om-monly used in the �nite volume 
ommunity, 
an be applied in the 
ontext of �niteelement methods, both to the spatial dis
retisation and the mass matrix. This gives anonlinear �nite element method whi
h uses di�erent basis fun
tions for dis
retisationof the time and spa
e derivatives and is inherently positivity preserving for hyperboli
partial di�erential equations. The pro
edure 
an be 
arried out on irregular triangularmeshes and is applied here to the two-dimensional s
alar adve
tion equation. A num-ber of alternative methods are possible, but the end results do not di�er enormouslyand one representative s
heme is pi
ked out to be 
ompared with other s
hemes for asimple test 
ase involving 
onstant adve
tion at an oblique angle to the mesh. Other
ases, not dis
ussed here, show similar qualities.1 Introdu
tionThe aim of this paper is to suggest links between limiting te
hniques, whi
h areused as a matter of 
ourse in the �nite volume 
ommunity for the modelling ofhyperboli
 partial di�erential equations, and �nite element methods, whi
h arenotoriously poor at approximating problems of this type, parti
ularly in morethan one spa
e dimension. Limiters are used to 
ombine a low order but positive(and usually upwind) s
heme with a high order s
heme to 
reate an a

uratemethod whi
h avoids spurious, numeri
ally indu
ed, os
illations. They are animportant 
omponent of many of today's most su

essful �nite volume meth-ods but have yet to be employed in the traditional �nite element framework:it has proved diÆ
ult to 
onstru
t upwind and positive �nite element methods,although SUPG s
hemes have been a partial su

ess, and the more re
ent de-velopments in Dis
ontinuous Galerkin and Flu
tuation Splitting methods haveillustrated the strength of the relationship between �nite volume and �nite ele-ment methods.This work essentially employs a 
ell vertex �nite volume approa
h, but 
on-siders how it might be re
ast as a mass-lumped �nite element s
heme with nonlin-ear basis fun
tions. It then 
onsiders how a mass matrix might be in
orporated,what it might look like, and how it might be modi�ed to give a positive s
hemewhen it is inverted. This follows the approa
h of Cardle [5℄ in whi
h the basisfun
tions are modi�ed di�erently for the spa
e and time derivatives, and extendsearlier, one-dimensional work of Berzins [2℄. Results are presented for a standardtest 
ase to illustrate the a

ura
y of the new method.



2 Matthew Hubbard and Martin Berzins2 A Mass-Lumped S
hemeThe system whi
h will be studied here is the two-dimensional s
alar adve
tionequation, given by ut + � �ru = 0 ;approximated on triangular meshes. This represents the transport of a quantityu with velo
ity �. Applying the mass-lumped, linear Galerkin �nite elementmethod to this equation leads, after some simple algebrai
 manipulation, to anedge-based form of the s
heme, given by
i3 _ui = Xj2[4i 16 (�ij � nij�1;j+1)(uj + ui) : (1)Here the sum is over the nodes j adja
ent to node i, 
i is the area of the pat
hof 
ells surrounding node i and nij�1;j+1 are the `inward' pointing normals (seeFig. 1) s
aled by the distan
e between nodes j�1 and j+1 (j is in
remented andde
remented modulo Ni, the number of nodes adja
ent to node i, and in
reasesanti
lo
kwise). 
j+1=2
i� nij�1;j+1 i j � 1
j

j + 1

Fig. 1. The geometry asso
iated with the edge adjoining nodes i and j.This s
heme is un
onditionally unstable, but 
an be adjusted to introdu
e anupwind bias along the grid edges. A di�usive 
omponent is added (the di�eren
ebetween the 
ontribution of an edge to the 
entral s
heme (1) and to a purelyupwind s
heme), and a limiter, denoted here by V (�), applied to give
i3 _ui = Xj2[4i 16 (�ij � nij�1;j+1) �2um + V (rj)rj (ud � um)� ; (2)in whi
h rj = �ud � umum � uu � dudd �j :



Positive Finite Elements for Hyperboli
 PDEs 3The value ud is taken from the downwind vertex of edge ij (node i if �ij �nij�1;j+1 � 0, node j otherwise), um is taken from the upwind vertex of edgeij, and uu is taken from the interse
tion of the extension of edge ij beyond theupwind vertex with the opposite edge of the triangle into whi
h it extends (seeFig. 1). Linear interpolation is used to evaluate this value, whi
h is 
onsistentwith the Galerkin method originally 
onsidered and guarantees that the value ofuu remains bounded by the lo
al solution values. �ij is evaluated at the midpointof edge ij. dd is invariably the length of edge ij, while du is the distan
e betweenthe upwind vertex and the interse
tion point with the opposite edge.It 
an be shown that, as long as 0 � V (r)=r � 2 and 0 � V (r) � 2, thes
heme (2), 
ombined with forward Euler time-stepping, is positive (and hen
estable) for Æt satisfying Æt
i Xj2[4i �1 + dddu � j�ij j � 1for all nodes i, where �ij = �ij � nij�1;j+1. In this work, two limiters have beenused, both of whi
h satisfy the above 
onditions:� V (r) = max(0;min(2r;min(0:25 + 0:75r; 4))), a third order limiter derivedby Gaskell and Lau [6℄.� V (r) = (r + jrj)=(1 +max(1; jrj)), a modi�ed form of van Leer's limiter [4℄.The relationship between the s
heme (2) and �nite elements is not immedi-ately obvious. However, it 
an be repli
ated by augmenting the standard linearbasis fun
tion �i(x; y), used in the Galerkin approa
h, with a nonlinear term,based around the lo
al grid edges:~�i(x; y) = �i(x; y) + 4 Xj2[4i sgn(�ij) �1� V (rj)rj ��i(x; y)�j(x; y) :3 In
luding a Mass MatrixThe 
onsistent linear Galerkin s
heme on triangles gives a system of ordinarydi�erential equations de�ned byXj2[4i 
j+1=212 [2 _ui + _uj + _uj+1℄ = Gi(u) (3)where Gi is simply the right hand side obtained from the 
hosen spatial dis
reti-sation, u is the ve
tor of all solution values at the given time level and 
j+1=2is the area of the triangle with verti
es i, j, j + 1 (see Fig. 1).The lumped s
heme is positive, but this property will normally be lost whenthe mass matrix, introdu
ed in (3), is inverted. The aim here is to manipulate themass matrix in a manner whi
h will retain the positivity property of the s
heme.The approa
h is similar to that used in spatial limiting: the lumped matrix is



4 Matthew Hubbard and Martin Berzinstaken as a starting point, and to this is added a 
omponent proportional to thedi�eren
e between the lumped matrix and the 
onsistent matrix derived fromlinear basis fun
tions. It follows the philosophy of Cardle [5℄, in that the timeand spa
e derivatives are treated independently.A variety of s
hemes of this form have been implemented [2,3℄ and anotheralternative is presented here. In fa
t, most of the pro
edures produ
e similarresults: there is far more sensitivity to the dis
retisation of the spatial terms.Forward Euler time-stepping is used in all the s
hemes, but a 
ell-based `limiting'is 
hosen here rather than an edge-based one. As in [3℄, the time derivative isdis
retised �rst, givingXj2[4i 
j+1=212 (2un+1i + un+1j + un+1j+1 )= ÆtGi(un) + Xj2[4i 
j+1=212 (2uni + unj + unj+1) ; (4)in whi
h n indexes the time level. The mass matrix 
an be modi�ed beforedis
retising the time derivative, and a nonlinear method 
onstru
ted based onlimiting ratios of di�eren
es in time derivatives so that the modi�ed mass matrixis an M-matrix (whose inverse 
ontains only non-negative entries) [2℄. However,this only enfor
es positivity of _u. It doesn't automati
ally impose positivity onthe solution.Equation (4) 
an be rewritten asXj2[4i 
j+1=212 �4un+1i + (un+1j � un+1i ) + (un+1j+1 � un+1i )�= ÆtGi(un) + Xj2[4i 
j+1=212 �4uni + (unj � uni ) + (unj+1 � uni )�Cumulatively, the latter terms on ea
h side give the di�eren
e between lumpedand 
onsistent Galerkin s
hemes. These di�eren
es are limited in a manner whi
hguarantees that the matrix on the left hand side is diagonally dominant withnon-positive o�-diagonal entries (and hen
e an M-matrix), so its inversion willretain the positivity of the s
heme. The resulting method takes the formXj2[4i 
j+1=212 h4un+1i +max(rn+1j+1=2 � 1; 0)(un+1i � un+1j+1 )+max(sn+1j+1=2 � 1; 0)(un+1i � un+1j )i= ÆtGi(un) + Xj2[4i 
j+1=212 h4uni +max(rnj+1=2 � 1; 0)(uni � unj+1)+max(snj+1=2 � 1; 0)(uni � unj )i (5)



Positive Finite Elements for Hyperboli
 PDEs 5in whi
h rj+1=2 = uj � uiui � uj+1 and sj+1=2 = 1rj+1=2The right hand side of (5) 
an be shown to be a positive 
ombination of lo
alsolution values for an appropriate limit on the time-step, so the overall s
hemeshould be positive.Note that, throughout this dis
ussion, j and j +1 refer to 
onse
utive nodesaround a pat
h of 
ells 
entred on node i. In [3℄ this 
ell-based pairing of edgesis repla
ed by asso
iating ea
h edge with its proje
tion a
ross the pat
h, in themanner of the above spatial dis
retisation.Equations (5) are solved iteratively (indexed below by m), using a Ja
obi-type method to give0� Xj2[4i hmax(rm+1j+1=2 � 1; 0) +max(sm+1j+1=2 � 1; 0)i1Aum+1i= 3Æt
i Gi(un)+ Xj2[4i hmax(rnj+1=2 � 1; 0)(uni � unj+1) + max(snj+1=2 � 1; 0)(uni � unj )i+ Xj2[4i hmax(rmj+1=2 � 1; 0)umj+1) + max(smj+1=2 � 1; 0)umj )i :The initial estimate at time level n is taken to be un and, in the following results,ten iterations were always enough to rea
h 
onvergen
e. In this work, r and shave been repla
ed by V (r) and V (s) (using the modi�ed van Leer limiter)be
ause this improves the a

ura
y of the s
heme and improves the restri
tionon the time-step. The positivity property remains inta
t.4 ResultsThe test 
ase shown here represents the doubly periodi
 adve
tion of a doublesine wave pro�le, given initially byu(x; y; 0) = sin(2�x) sin(2�y) ;with a 
onstant velo
ity of � = (1; 2)T, a
ross the domain [0; 1℄� [0; 1℄. All of theresults are obtained on uniform triangular grids 
onsisting of squares divided bydiagonals from bottom left to top right 
orners. This means that the adve
tionvelo
ity is not aligned with grid edges.The results indi
ate that the new s
heme mat
hes the performan
e of a good
ell 
entred s
heme (the MLG s
heme of Batten et al. [1℄) on a similar typeof mesh, having smaller L1 error but larger L1 error, but still lags behind a
ell vertex Lax-Wendro� s
heme to whi
h Flux-Corre
ted Transport (FCT) hasbeen applied [7℄. This is also seen in other 
ases approximated.
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ase at t = 1.5 Con
lusionsThe method presented above is still in the very early stages of development. The`lumped' method is very a

urate, parti
ularly when the third order limiter isused, but this is unsurprising sin
e it is e�e
tively a 
ux limited �nite volumemethod applied on the dual of the triangular grid: the novelty being the methodused to 
al
ulate the ratios to be limited. As presented it is only �rst ordera

urate in time. The 
onsistent �nite element method is, as yet, less su

essful.This may be be
ause the Galerkin method is used as the basis, and the nonlinearapproa
h, while guaranteeing positivity, appears to add a di�usive term to thelumped s
heme. It would be more interesting to apply it to other methods su
has Taylor-Galerkin, or a 
u
tuation splitting method whi
h have more leeway forimprovement. At the moment, the more restri
tive the limiting is on the massmatrix, the better the solution.Referen
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