
A Positivity Preserving Finite Element Methodfor Hyperboli Partial Di�erential EquationsMatthew Hubbard and Martin BerzinsShool of Computing, University of Leeds, Leeds, LS2 9JT, U.K.Abstrat. This paper desribes a framework in whih ux and slope limiters, om-monly used in the �nite volume ommunity, an be applied in the ontext of �niteelement methods, both to the spatial disretisation and the mass matrix. This gives anonlinear �nite element method whih uses di�erent basis funtions for disretisationof the time and spae derivatives and is inherently positivity preserving for hyperbolipartial di�erential equations. The proedure an be arried out on irregular triangularmeshes and is applied here to the two-dimensional salar advetion equation. A num-ber of alternative methods are possible, but the end results do not di�er enormouslyand one representative sheme is piked out to be ompared with other shemes for asimple test ase involving onstant advetion at an oblique angle to the mesh. Otherases, not disussed here, show similar qualities.1 IntrodutionThe aim of this paper is to suggest links between limiting tehniques, whih areused as a matter of ourse in the �nite volume ommunity for the modelling ofhyperboli partial di�erential equations, and �nite element methods, whih arenotoriously poor at approximating problems of this type, partiularly in morethan one spae dimension. Limiters are used to ombine a low order but positive(and usually upwind) sheme with a high order sheme to reate an auratemethod whih avoids spurious, numerially indued, osillations. They are animportant omponent of many of today's most suessful �nite volume meth-ods but have yet to be employed in the traditional �nite element framework:it has proved diÆult to onstrut upwind and positive �nite element methods,although SUPG shemes have been a partial suess, and the more reent de-velopments in Disontinuous Galerkin and Flutuation Splitting methods haveillustrated the strength of the relationship between �nite volume and �nite ele-ment methods.This work essentially employs a ell vertex �nite volume approah, but on-siders how it might be reast as a mass-lumped �nite element sheme with nonlin-ear basis funtions. It then onsiders how a mass matrix might be inorporated,what it might look like, and how it might be modi�ed to give a positive shemewhen it is inverted. This follows the approah of Cardle [5℄ in whih the basisfuntions are modi�ed di�erently for the spae and time derivatives, and extendsearlier, one-dimensional work of Berzins [2℄. Results are presented for a standardtest ase to illustrate the auray of the new method.



2 Matthew Hubbard and Martin Berzins2 A Mass-Lumped ShemeThe system whih will be studied here is the two-dimensional salar advetionequation, given by ut + � �ru = 0 ;approximated on triangular meshes. This represents the transport of a quantityu with veloity �. Applying the mass-lumped, linear Galerkin �nite elementmethod to this equation leads, after some simple algebrai manipulation, to anedge-based form of the sheme, given by
i3 _ui = Xj2[4i 16 (�ij � nij�1;j+1)(uj + ui) : (1)Here the sum is over the nodes j adjaent to node i, 
i is the area of the pathof ells surrounding node i and nij�1;j+1 are the `inward' pointing normals (seeFig. 1) saled by the distane between nodes j�1 and j+1 (j is inremented andderemented modulo Ni, the number of nodes adjaent to node i, and inreasesantilokwise). 
j+1=2
i� nij�1;j+1 i j � 1
j
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Fig. 1. The geometry assoiated with the edge adjoining nodes i and j.This sheme is unonditionally unstable, but an be adjusted to introdue anupwind bias along the grid edges. A di�usive omponent is added (the di�erenebetween the ontribution of an edge to the entral sheme (1) and to a purelyupwind sheme), and a limiter, denoted here by V (�), applied to give
i3 _ui = Xj2[4i 16 (�ij � nij�1;j+1) �2um + V (rj)rj (ud � um)� ; (2)in whih rj = �ud � umum � uu � dudd �j :



Positive Finite Elements for Hyperboli PDEs 3The value ud is taken from the downwind vertex of edge ij (node i if �ij �nij�1;j+1 � 0, node j otherwise), um is taken from the upwind vertex of edgeij, and uu is taken from the intersetion of the extension of edge ij beyond theupwind vertex with the opposite edge of the triangle into whih it extends (seeFig. 1). Linear interpolation is used to evaluate this value, whih is onsistentwith the Galerkin method originally onsidered and guarantees that the value ofuu remains bounded by the loal solution values. �ij is evaluated at the midpointof edge ij. dd is invariably the length of edge ij, while du is the distane betweenthe upwind vertex and the intersetion point with the opposite edge.It an be shown that, as long as 0 � V (r)=r � 2 and 0 � V (r) � 2, thesheme (2), ombined with forward Euler time-stepping, is positive (and henestable) for Æt satisfying Æt
i Xj2[4i �1 + dddu � j�ij j � 1for all nodes i, where �ij = �ij � nij�1;j+1. In this work, two limiters have beenused, both of whih satisfy the above onditions:� V (r) = max(0;min(2r;min(0:25 + 0:75r; 4))), a third order limiter derivedby Gaskell and Lau [6℄.� V (r) = (r + jrj)=(1 +max(1; jrj)), a modi�ed form of van Leer's limiter [4℄.The relationship between the sheme (2) and �nite elements is not immedi-ately obvious. However, it an be repliated by augmenting the standard linearbasis funtion �i(x; y), used in the Galerkin approah, with a nonlinear term,based around the loal grid edges:~�i(x; y) = �i(x; y) + 4 Xj2[4i sgn(�ij) �1� V (rj)rj ��i(x; y)�j(x; y) :3 Inluding a Mass MatrixThe onsistent linear Galerkin sheme on triangles gives a system of ordinarydi�erential equations de�ned byXj2[4i 
j+1=212 [2 _ui + _uj + _uj+1℄ = Gi(u) (3)where Gi is simply the right hand side obtained from the hosen spatial disreti-sation, u is the vetor of all solution values at the given time level and 
j+1=2is the area of the triangle with verties i, j, j + 1 (see Fig. 1).The lumped sheme is positive, but this property will normally be lost whenthe mass matrix, introdued in (3), is inverted. The aim here is to manipulate themass matrix in a manner whih will retain the positivity property of the sheme.The approah is similar to that used in spatial limiting: the lumped matrix is



4 Matthew Hubbard and Martin Berzinstaken as a starting point, and to this is added a omponent proportional to thedi�erene between the lumped matrix and the onsistent matrix derived fromlinear basis funtions. It follows the philosophy of Cardle [5℄, in that the timeand spae derivatives are treated independently.A variety of shemes of this form have been implemented [2,3℄ and anotheralternative is presented here. In fat, most of the proedures produe similarresults: there is far more sensitivity to the disretisation of the spatial terms.Forward Euler time-stepping is used in all the shemes, but a ell-based `limiting'is hosen here rather than an edge-based one. As in [3℄, the time derivative isdisretised �rst, givingXj2[4i 
j+1=212 (2un+1i + un+1j + un+1j+1 )= ÆtGi(un) + Xj2[4i 
j+1=212 (2uni + unj + unj+1) ; (4)in whih n indexes the time level. The mass matrix an be modi�ed beforedisretising the time derivative, and a nonlinear method onstruted based onlimiting ratios of di�erenes in time derivatives so that the modi�ed mass matrixis an M-matrix (whose inverse ontains only non-negative entries) [2℄. However,this only enfores positivity of _u. It doesn't automatially impose positivity onthe solution.Equation (4) an be rewritten asXj2[4i 
j+1=212 �4un+1i + (un+1j � un+1i ) + (un+1j+1 � un+1i )�= ÆtGi(un) + Xj2[4i 
j+1=212 �4uni + (unj � uni ) + (unj+1 � uni )�Cumulatively, the latter terms on eah side give the di�erene between lumpedand onsistent Galerkin shemes. These di�erenes are limited in a manner whihguarantees that the matrix on the left hand side is diagonally dominant withnon-positive o�-diagonal entries (and hene an M-matrix), so its inversion willretain the positivity of the sheme. The resulting method takes the formXj2[4i 
j+1=212 h4un+1i +max(rn+1j+1=2 � 1; 0)(un+1i � un+1j+1 )+max(sn+1j+1=2 � 1; 0)(un+1i � un+1j )i= ÆtGi(un) + Xj2[4i 
j+1=212 h4uni +max(rnj+1=2 � 1; 0)(uni � unj+1)+max(snj+1=2 � 1; 0)(uni � unj )i (5)



Positive Finite Elements for Hyperboli PDEs 5in whih rj+1=2 = uj � uiui � uj+1 and sj+1=2 = 1rj+1=2The right hand side of (5) an be shown to be a positive ombination of loalsolution values for an appropriate limit on the time-step, so the overall shemeshould be positive.Note that, throughout this disussion, j and j +1 refer to onseutive nodesaround a path of ells entred on node i. In [3℄ this ell-based pairing of edgesis replaed by assoiating eah edge with its projetion aross the path, in themanner of the above spatial disretisation.Equations (5) are solved iteratively (indexed below by m), using a Jaobi-type method to give0� Xj2[4i hmax(rm+1j+1=2 � 1; 0) +max(sm+1j+1=2 � 1; 0)i1Aum+1i= 3Æt
i Gi(un)+ Xj2[4i hmax(rnj+1=2 � 1; 0)(uni � unj+1) + max(snj+1=2 � 1; 0)(uni � unj )i+ Xj2[4i hmax(rmj+1=2 � 1; 0)umj+1) + max(smj+1=2 � 1; 0)umj )i :The initial estimate at time level n is taken to be un and, in the following results,ten iterations were always enough to reah onvergene. In this work, r and shave been replaed by V (r) and V (s) (using the modi�ed van Leer limiter)beause this improves the auray of the sheme and improves the restritionon the time-step. The positivity property remains intat.4 ResultsThe test ase shown here represents the doubly periodi advetion of a doublesine wave pro�le, given initially byu(x; y; 0) = sin(2�x) sin(2�y) ;with a onstant veloity of � = (1; 2)T, aross the domain [0; 1℄� [0; 1℄. All of theresults are obtained on uniform triangular grids onsisting of squares divided bydiagonals from bottom left to top right orners. This means that the advetionveloity is not aligned with grid edges.The results indiate that the new sheme mathes the performane of a goodell entred sheme (the MLG sheme of Batten et al. [1℄) on a similar typeof mesh, having smaller L1 error but larger L1 error, but still lags behind aell vertex Lax-Wendro� sheme to whih Flux-Correted Transport (FCT) hasbeen applied [7℄. This is also seen in other ases approximated.
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Gaskell and LauFig. 2. Approximations of the L1 and L1 norms of the errors for the double sine wavetest ase at t = 1.5 ConlusionsThe method presented above is still in the very early stages of development. The`lumped' method is very aurate, partiularly when the third order limiter isused, but this is unsurprising sine it is e�etively a ux limited �nite volumemethod applied on the dual of the triangular grid: the novelty being the methodused to alulate the ratios to be limited. As presented it is only �rst orderaurate in time. The onsistent �nite element method is, as yet, less suessful.This may be beause the Galerkin method is used as the basis, and the nonlinearapproah, while guaranteeing positivity, appears to add a di�usive term to thelumped sheme. It would be more interesting to apply it to other methods suhas Taylor-Galerkin, or a utuation splitting method whih have more leeway forimprovement. At the moment, the more restritive the limiting is on the massmatrix, the better the solution.Referenes1. P. Batten, C. Lambert, D.M. Causon: Int. J. Numer. Methods Eng. 39, 1821 (1996).2. M. Berzins: Com. Num. Meth. Eng. 17, 659 (2001)3. M. Berzins, M.E. Hubbard: submitted to J. Comput. Phys. (2001)4. M. Berzins, J.M. Ware: Appl. Numer. Math. 16, 417 (1995)5. J.A. Cardle: Int. J. Numer. Methods Eng. 38, 171 (1995)6. P.H. Gaskell, A.C. Lau: Int. J. Numer. Methods Eng. 8, 617 (1988)7. M.E. Hubbard, P.L. Roe: Int. J. Numer. Methods Fluids 33, 711 (2000)


