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Abstract

This paper describes work in progress to develop a stan-
dard for interoperability among high-performance scien-
tific components. This research stems from growing recog-
nition that the scientific community needs to better man-
age the complexity of multidisciplinarysimulations and bet-
ter address scalable performance issues on parallel and
distributed architectures. Driving forces are the need for
fast connections among components that perform numeri-
cally intensive work and for parallel collective interactions
among components that use multiple processes or threads.
This paper focuses on the areas we believe are most cru-
cial in this context, namely, an interface definition language
that supports scientific abstractions for specifying compo-
nent interfaces and a ports connection model for specifying
component interactions.

1 Introduction

The complexity and resource demands of present-day
software systems create the need for more flexible so-
lutions than those offered by conventional programming
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styles based on a succession of subroutine calls. One so-
lution is component programming, based on encapsulat-
ing units of functionality and providing a meta-language
specification of their interfaces. Component-based soft-
ware development can be considered an evolutionary step
beyond object-oriented design. Object-oriented techniques
have been very successful in managing the complexity of
modern software, but they have not resulted in signifi-
cant amounts of cross-project code reuse. Sharing object-
oriented code is difficult because of language incompati-
bilities, the lack of standardization for inter-object commu-
nication, and the need for compile-time coupling of inter-
faces. Component-based software development addresses
issues of language independence—seamlessly combining
components written in different programming languages—
and component frameworks define standards for communi-
cation among components.

These advantages are especially appealing in high-
performance scientific computing, where high-fidelity,
multi-physics simulations are increasingly complex and of-
ten require the combined expertise of multidisciplinary re-
search teams working in areas such as mathematical mod-
eling, adaptive mesh manipulations, numerical linear and
nonlinear algebra, optimization, load balancing, computa-
tional steering, parallel I/O, sensitivity analysis, visualiza-
tion, and data analysis. Consequently, the interoperabil-
ity and rapid application development afforded by com-
ponent programming are of particular importance, as they
help to support incremental shifts in parallel algorithms
and programming paradigms that inevitably occur during
the lifetimes of scientific application codes. In addition,
since components can be configured to execute in remote
locations, component programming can offer high-level ab-
stractions that facilitate the use of distributed supercomput-
ing resources, which have been shown to offer powerful po-
tential [21].

Many differing opinions about component definitions
exist within the software community [7, 47]. We present
some working definitions as preliminaries for further dis-
cussion.
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� A componentis an independent unit of software de-
ployment. It satisfies a set of behavior rules and im-
plements standard component interfaces that allow it
to be composed with other components. These behav-
ior rules are often specified as design patterns that must
be followed when writing the component.

� A component integration frameworkis an implemen-
tation of a set of interfaces and rules of interaction that
govern the communication among components.

� A component architectureis a specification of a set
of interfaces and rules of interaction that govern the
communication among components and other neces-
sary tools, such as repositories and composition tools.

We have recently established the Common Component
Architecture (CCA) Forum [15], a group whose current
membership is drawn from various Department of En-
ergy national laboratories and collaborating academic in-
stitutions. The goal of the CCA Forum is to specify
a component architecture for high-performance comput-
ing, where our target architectures include workstation
networks, distributed-memory multiprocessors, clusters of
symmetric multiprocessors, and remote resources. We hope
that this work will lay a foundation for the definition of stan-
dardized sets of domain-specific component interfaces and
for the interoperability among toolkits developed by dif-
ferent teams across different institutions. The purpose of
this paper is to discuss the current CCA specification and to
present progress of the group to date.

The software industry has defined component standards
such as CORBA [40], COM [45], and JavaBeans [19] to
address similar complexities within their target applications
(see Section 3 for a detailed discussion). Our approach
leverages this work where appropriate, but addresses the
distinctly different technical challenges of large-scale sci-
entific simulations. Based on the lessons learned from re-
search projects in high-performance component architec-
tures by CCA participants (see, e.g., [3, 44, 25, 32, 36, 37])
and projects considering related design issues (see, e.g.,
[1, 23, 26, 6]), we are developing a single component inter-
face specification that will enable interactions among sci-
entific components that follow this standard. Additional re-
lated work [10, 8, 22, 35] can be found elsewhere.

We recognize two levels of interoperability:component-
level interoperability, for which all the vital functions of
any onearchitecture are accessible to any compliant com-
ponent through a standard interface (e.g., facilities avail-
able within a CORBA ORB), andframework-levelinterop-
erability, for which the frameworks themselves interoperate
through a standardized interface (e.g., inter-ORB communi-
cation via CORBA IIOP). Providing component-level inter-
operability requires defining an interaction model common

to all components and a small set of indispensable high-
level framework services. In addition to these requirements,
framework-level interoperability necessitates the standard-
ization of a number of low-level services. Since defining a
standard for interoperability at the framework level requires
a superset of features needed for the component level, our
focus is on providing the latter now and extending it in the
future to include framework-level interoperability features.
The scope of this paper is limited to component-level inter-
operability.

The remainder of this paper motivates and explains our
approach, beginning in Section 2 with a discussion of some
of the challenges in large-scale scientific computing. Sec-
tion 3 compares our strategy with related work in the soft-
ware industry. Section 4 presents a high-level view of the
CCA standard and provides a roadmap outlining the rela-
tionships among its constituents. Sections 5 and 6 describe
in detail the parts of the CCA standard that are most crucial
for defining component interactions in high-performance
scientific software, namely, a scientific interface definition
language and a “ports” component linking and composition
model with direct-connect and collective capabilities. Fi-
nally, Section 7 outlines future directions of work.

2 Motivating Examples

Our work is motivated by collaborations with various
computational science research teams, who are investigat-
ing areas such as combustion [14], microtomography [48],
particle beam dynamics [30], mold filling [31], and plasma
simulation [43]. In conjunction with theoretical and ex-
perimental research, these simulations are playing increas-
ingly important roles in overall scientific advances, partic-
ularly in fields where experiments are prohibitively expen-
sive, time consuming, or in some cases impossible. While
each of these simulations requires different mathematical
models, numerical methods, and data analysis techniques,
they could all benefit from infrastructure that is more flexi-
ble and extensible and therefore better able to manage com-
plexity and change.

To enable a more concrete discussion of the CCA ap-
proach, we briefly review some challenges arising in chem-
ically reacting flow simulations, which have demanding re-
quirements for high resolution and complex physical sub-
models for turbulence, chemistry, and multiphase flows.
Section 2.1 presents current functionality of a particular
application, while Section 2.2 describes potential enhance-
ments that component-based technology could help to sup-
port.
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2.1 Computational Hydrodynamics Example

We consider the CHAD (Computational Hydrodynamics
for Advanced Design) application [14, 42] because it ex-
hibits computational requirements common within many of
high-performance scientific codes. CHAD has been devel-
oped for fluids simulations in the automotive industry under
the Supercomputing Automotive Applications Partnership
with the United States Council for Automotive Research
and five Department of Energy national laboratories (Ar-
gonne, Lawrence Livermore, Los Alamos, Oak Ridge, and
Sandia). CHAD is the successor of KIVA [2], which has
become a standard tool for device-level modeling of inter-
nal combustion engines. CHAD is intended for automotive
design applications such as combustion, interior airflow,
under-hood cooling, and exterior flows. Currently, CHAD
solves the single-phase, compressible Navier-Stokes equa-
tions using an arbitrary Lagrangian-Eulerian formulation
with hybrid unstructured meshes and a finite volume dis-
cretization scheme. The application was designed from its
inception as parallel code usingFortran 90 and encap-
sulation of nonlocal communication in gather/scatter rou-
tines using the Message Passing Interface (MPI) standard
[39].

2.2 Component Challenges and Opportunities

CHAD researchers are experimenting with numerical
strategies ranging from explicit through semi-implicit and
even more fully implicit schemes using Newton-type meth-
ods. Using semi-implicit and implicit techniques helps to
overcome stability andaccuracy restrictions on computa-
tional timesteps, and thereby can often help to reduce over-
all time to solution.

Figure 1 demonstrates some typical interactions among
components for a semi-implicit solution procedure within
a PDE-based simulation. While a single diagram cannot
express the richness of interactions within CHAD, nor the
range of functionality needed by our motivating applica-
tions, this picture does convey key themes that motivate the
CCA approach. We focus on (1)fast interactionsbetween
components via a “ports” component linking and composi-
tion model that allows direct connections (see Section 6.2),
and (2)collective interactionsamong components that use
multiple processes or threads (see Section 6.3). Collective
abstractions are important for communication between both
tightly coupled and loosely coupled components. For ex-
ample, Figure 1 demonstrates collective directly connected
ports between parallel preconditioner and Krylov solver
components. The diagram also shows collective distributed
port communication between numerical components of a
parallel application and remote visualization tools.

Visualization

Collective distributed 
ports

D

E

Process Parallel  application

MPI

B

C

A

MPIMPI

Mesh 
Krylov solver
Preconditioner
Interpolation
Visualization

B

C

A

D

Components

E

Shared memory

Collective 
directly connected 
ports

Figure 1. Diagram of component interactions.
Parallel numerical components that use distributed data structures

and require interconnections with low latency and high bandwidth

are represented in the upper portion of the figure. Components for

visualization, which can often be more loosely coupled and dif-

ferently distributed than the numerical components, are shown in

the figure’s lower portion. Communication within a parallel com-

ponent is at the discretion of the component itself. For example,

in this diagram component A (a mesh) uses MPI to communicate

among the four processes overwhich it is distributed, while compo-

nent E (a visualization tool) uses shared memory. Communication

between components is handled by ports.

The goals of the CCA Forum are to simplify the infusion
of new techniques within the lifetimes of existing applica-
tions such as CHAD and to facilitate the construction of new
models. Interactions among multiple tools that use current-
generation infrastructure typically require labor-intensive
translations between interfaces and data structures. We aim
to simplify this process and also to enable dynamic interac-
tions, since researchers may wish to introduce new compo-
nents during the course of ongoing simulations. For exam-
ple, a researcher may wish to visualize flow fields on a local
workstation by dynamically attaching a visualization tool to
an ongoing simulation that is running on a remote parallel
machine. Upon observing that the flow fields are not con-
verging as expected, the researcher may wish to introduce a
new scheme for hierarchical mesh refinement.

One of the most computationally intensive phases within
the semi-implicit and implicit strategies under consideration
within CHAD is the solution of discretized linear systems of
the formAx = b, which are very large and have sparse co-
efficient matricesA. The Equation Solver Interface (ESI)
Forum [20] is defining collections of abstract interfaces for
solving such systems, with a goal of enabling applications
like CHAD to experiment more easily with multiple solu-
tion strategies and to upgrade as new algorithms with bet-
ter latency tolerance or more efficient cache utilization are
discovered and encapsulated within toolkits. This area is
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one of many (e.g., partitioning, mesh management, dis-
cretization, optimization, visualization) that could benefit
from component-based infrastructure to facilitate experi-
ments among different tools.

3 Relationship to Existing Standards

Component architecture standards such as CORBA [40],
COM [45], and JavaBeans [19] have been defined by in-
dustrial corporations and consortia and are employed by
millions of users. Unfortunately, these standards do not
address the needs of high-performance scientific comput-
ing, primarily because they do not support efficient paral-
lel communication channels between components. Abstrac-
tions suitable for high-performance computing are needed.
The existence of many successful high-performance lan-
guages and libraries—such as HPC++ [24], POOMA [4],
ISIS++ [12], SAMRAI [29], and PETSc [5]—testifies that
such abstractions can enable the user to develop more effi-
cient programs faster. Similarly, we need abstractions that
capture high-performance concepts in component architec-
tures. For example, PARDIS [37] and PAWS [6] success-
fully show that introducing abstractions for single program
multiple data (SPMD) computation can enable more effi-
cient interactions between SPMD programs. In this section,
we briefly review these industry standards and explain their
limitations for high-performance scientific computing.

3.1 Microsoft COM and ActiveX

COM (Component Object Model) is Microsoft’s com-
ponent standard that forms the basis for interoperability
among all Window-based applications. ActiveX [11] de-
fines standard COM interfaces for compound documents.
Microsoft has developed a distributed version of COM,
called DCOM, that targets networked Windows worksta-
tions.

COM targets business objects and does not include ab-
stractions for parallel data layout or basic scientific com-
puting data types, such as complex numbers and Fortran-
style dynamic multidimensional arrays. Also, COM does
not easily support implementation inheritance and multiple
inheritance (which can be implemented through aggrega-
tion or containment). Some scientific libraries (see, e.g.,
[20]) require multiple inheritance and a simple model for
polymorphism, which COM does not provide.

3.2 Sun JavaBeans and Enterprise JavaBeans

JavaBeans and Enterprise JavaBeans (EJB) are compo-
nent architectures developed by Sun and its partners. They
are based on Sun’sJava programming language and are
cross-platform competitors to Microsoft’s COM.

Neither JavaBeans nor EJB directly addresses the issue
of language interoperability, and therefore neither is ap-
propriate for the scientific computing environment. Both
JavaBeans and EJB assume that all components are writ-
ten in theJava language. Although the Java Native In-
terface [34] library supports interoperability with C and
C++, using the Java virtual machine to mediate communi-
cation between components would incur an intolerable per-
formance penalty on every intercomponent function call.

3.3 OMG CORBA

CORBA is a distributed object specification supported
by the OMG (Object Management Group), a consortium
of over eight hundred partners. CORBA supports the in-
teraction of complex objects written in different languages
distributed across a network of computers running different
operating systems.

The current CORBA specification does not define a com-
ponent model, although a CORBA 3.0 component speci-
fication [41] is currently under review by the OMG. Like
COM, CORBA does not provide abstractions necessary for
high-performance scientific computing, such as Fortran-
style dynamic multi-dimensional arrays and complex num-
bers. Although CORBA enables robust and efficient im-
plementations for distributed applications, it is far too in-
efficient when a method call is made within the same ad-
dress space. While a recently established high-performance
CORBA working group [28] may eventually address a sub-
set of our performance concerns, their mandate does not ad-
dress the range of parallel computing issues, as discussed
in Section 2. CORBA also has a limited object model in
that method overriding is not supported and the semantics
of multiple implementation inheritance can lead to ambigu-
ities.

While CORBA 2.0 does not provide for a component in-
teraction mechanism, the CCA specification does. It should
be observed that the CORBA object model is sufficiently
powerful to suppport an implementation of the CCA. This
is a good example of the intent of the CCA specification:
a layer on top of an existing system that enables high-
performance computing. Such a “CCA over CORBA” im-
plementation, targeting distributed environments, is being
planned by one of the participating forum members.

4 Overview of the CCA Standard

We define the Common Component Architecture as a set
of specifications and their relationships as depicted in Fig-
ure 2. The elements with gray background pertain to spe-
cific implementations of a component architecture, while
the elements with white background depict parts of the CCA
standards necessary for component-level interoperability.
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As shown in the picture, components interact with
each other and with a specific framework implementa-
tion through standard application programming interfaces
(APIs). Each component can define its inputs and outputs
by using ascientific interface definition language (SIDL);
these definitions can be deposited in and retrieved from
a repository by using aCCA Repository API. The repos-
itory API defines the functionality necessary to search a
framework repository for components as well as to ma-
nipulate components within the repository. In addition,
these component definitions can serve as input to a proxy
generator that generates component stubs, which form the
component-specific part of theCCA Ports. Components can
use framework services directly through theCCA Services
interface. TheCCA Configuration APIsupports interac-
tion between components and various builders for functions
such as notifying components that they have been added to
a scenario and deleted from it, redirecting interactions be-
tween components, or notifying a builder of a component
failure.

A component framework is said to be CCA compliant
if it conforms to these standards—that is, provides the re-
quired CCA services and implements the required CCA
interfaces. Different components require different sets of
services to interoperate. For example, some will require
remote communication while others communicate only in
the same address space. Therefore, the CCA standard
will allow different flavors of compliance; each component
will specify a minimum flavor of compliance required of a
framework within which it can interact.

CCA Ports Part of CCA Ports specific to the framework

Abstract Configuration APIRepository API

Any CCA Compliant Framework

CCA Services

Component 1 Component 2

  proxy
generator

Builder

Repository

Scientific IDL

Figure 2. Relationships among CCAelements.

We will now describe in some detail three elements of
the CCA standard that we believe are most critical for high-
performance scientific computing, namely, a scientific in-
terface definition language, a ports model, and a minimal

set of supporting services. Work on the other parts of the
CCA standard is also in progress, but details are beyond the
scope of this paper.

� SIDL is a programming-language-neutral interface
definition language used to describe component inter-
faces. The SIDL provides a method for describing
component and framework interfaces that is indepen-
dent of the underlying implementation programming
languages. Component descriptions using SIDL can
be used by repositories and by a proxy generator to
provide the component stubs element of communica-
tion ports.

� CCA Portsdefine the communication model for all
component interactions. Each component defines
one or more ports to describe the calling interface.
Communication links between components are imple-
mented by connecting compatible ports, where port
compatibility is defined as object-oriented type com-
patibility of the port interfaces, as can be described in
the SIDL. As shown in Figure 2, each port has two
parts. The first part is a set of framework-specific
but component-independent functionality pertaining to
component interaction (e.g., adding a listener to an
object) and has the same API for every component.
The second part implements component-specific but
framework-independent functionality; this part can be
generated automatically by a proxy generator based on
the component definition expressed in SIDL, and is re-
ferred to as a component stub. For example, a compo-
nent stub may contain marshaling functions in a dis-
tributed environment.

� CCA Servicespresent a framework abstraction that can
be used in the component stub implementation as well
as by the components themselves; this CCA element
provides a clear definition of theminimal services a
framework must implement in order to be CCA com-
pliant. Two critical concerns guiding this design are
that the services enable high-performance interactions
and that the services are sufficiently compact and user
friendly to enable a rapid learning process for compo-
nent writers, many of whom will not be computer sci-
entists. As such, we have identified that the key CCA
services are creation of CCA Ports and access to CCA
Ports, which in turn enable connections between com-
ponents.

Additional common facilities to handle naming, relation-
ship management, error handling, querying, and so forth are
of course also important, because in practice many compo-
nents would need and could share these facilities. However,
because the particular needs of different components and
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frameworks vary considerably depending on usage environ-
ment, discussion of these issues is beyond the scope of this
paper.

The following sections describe these features in more
detail. A reference implementation is tracking the evolution
of the Common Component Architecture. Likewise, several
ongoing computational science projects are experimenting
with the CCA to manage interoperability among compo-
nents developed by different research groups; these expe-
riences will motivate further extensions and refinements to
design.

5 The Scientific IDL

The Scientific Interface Definition Language is a high-
level description language used to specify the calling inter-
faces of software components and framework APIs in the
component architecture. SIDL provides language interoper-
ability that hides language dependencies to simplify the in-
teroperability of components written in different program-
ming languages. With the proliferation of languages used
for numerical simulation—such asC, C++ , Fortran 77 ,
Fortran 90 , Java , andPython —the lack of seamless
language interoperability can be a significant barrier to de-
veloping reusable scientific components.

For the purposes of our high-performance scientific com-
ponent architecture, SIDL must be sufficiently expressive
to represent the abstractions and data types common in sci-
entific computing, such as dynamically dimensioned mul-
tidimensional arrays and complex numbers. Unfortunately,
no such IDL currently exists, since most IDLs have been
designed for operating systems [17, 18] or for distributed
client-server computing in the business domain [33, 40, 46].

The basic design of our scientific IDL borrows many
concepts from current standards, such as the CORBA
IDL [40] and theJava programming language [27]. This
approach allows us to leverage existing IDL technology and
language mappings. For example, CORBA already defines
language mappings toC, C++ , and Java , and ILU [33]
(which supports the CORBA IDL) defines language map-
pings toPython .

The scientific IDL provides additional capabilities nec-
essary for scientific computing [13, 38]. It supports object-
oriented semantics with an inheritance model similar to that
of Java with multiple interface inheritance and single im-
plementation inheritance. IDL support for multiple inher-
itance with method overriding is essential for scientific li-
braries that exploit polymorphism through multiple inher-
itance, such as used in the Equation Solver Interface [20]
standard. The IDL and associated run-time system provide
facilities for cross-language error reporting. We have also
added IDL primitive data types for complex numbers and
multidimensional arrays for expressibility and efficiency

when mapping to implementation languages.
We are developing SIDL support for reflection and dy-

namic method invocation, which are important capabili-
ties for a component architecture. Interface information
for dynamically loaded components is often unavailable at
compile time; thus, components and the associated com-
position tools and frameworks must discover, query, and
execute methods at run time. The SIDL reflection and
dynamic method invocation mechanisms are based on the
design of theJava library classes injava.lang and
java.lang.reflect . Reflection information for every
interface and class will be generated automatically by the
SIDL compiler based on IDL descriptions.

Our SIDL implementation currently supports language
mappings for bothC and Fortran 77 , and support for
C++ is under development. TheFortran 77 language
mapping is similar to theC language mapping defined
by CORBA except that SIDL interfaces and classes are
mapped toFortran integers instead of opaque data types.
The SIDL run-time environment automatically manages the
translation between theFortran integer representation
and the actual object reference. TheFortran 90 lan-
guage mapping is still under development.Fortran 90
is a particular challenge for scientific language interoper-
ability, becauseFortran 90 calling conventions and ar-
ray descriptors vary widely from compiler to compiler.

6 Component Interaction through Ports

Every component architecture is characterized by the
way in which components are composed together into ap-
plications. As introduced in Section 4, CCA Ports are
communication end points that define the connection model
for component interactions. Within Figure 1, ports define
the interactions between relatively tightly coupled parallel
numerical components, which typically require very fast
communication for scalable performance; ports also define
loosely coupled interactions with possibly remote compo-
nents that monitor, analyze, and visualize data.

To address this range of requirements, we adopt apro-
vides/usesinterface exchange mechanism, similar to that
within the CORBA 3.0 proposal [41]. This approach en-
ables connections that do not impede inter-component per-
formance, yet allows a framework to create distributed con-
nections when desired. In the ideal case, an attached com-
ponent would react as quickly as an inline function call.
We refer to this situation asdirect connection, which is
further discussed in Section 6.2. This type of connection
makes the most sense when the component instances ex-
ist in the same address space. Loosely coupled distributed
connections should be available through the very same in-
terface as the tightly coupled direct connections, without
the components being aware of the connection type. This
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need arises because high-performance components will of-
ten be parallel programs themselves. A parallel component
may reside inside a single multiprocessor or it may be dis-
tributed across many different hosts. Existing component
models have no concept of attaching two parallel compo-
nents together, and existing research systems, such as CU-
MULVS [26], PAWS [6], and PARDIS [37], approach this
problem in different ways. We therefore introduce acollec-
tive portmodel to enable interoperability between parallel
components, as discussed in Section 6.3.

In the JavaBeans model [19], components notify other
listener components by generating events. Components that
wish to be notified of events register themselves as listen-
ers with the target components. Although there are some
similarities to the CCA specification, JavaBeans does not
allow aprovides/usesdesign pattern as part of its standard.
In the COM/DCOM model [45], one component calls the
interface functions exported by another. The COM model
is very similar in form to the CCA specification. Platform
interoperability issues are, in the opinion of the CCA work-
ing group, important enough that COM has not been not
adopted outright. In the proposed CORBA 3.0 component
model [41], both events and aprovides/usesinterface model
are used. Theprovides/usespattern employed by the CCA
is very close to this proposed approach, and any component
that is CCA compliant will likely map easily to CORBA
3.0. However, at the time of this writing, CORBA 3.0 is
a proposed standard that is still undergoing rapid change,
and CORBA 3.0 may see no implementation for years. The
CCA working group believes that a compatible standard
for high-performance computing should appear much more
quickly than the CORBA 3.0 time frame. For this reason
we have chosen theprovides/usespattern for use as the
CCA Ports architecture. It is expected (and hoped) that the
CORBA 3.0 specification will not drift far from what is de-
scribed here.

6.1 The Basics of CCA Ports

The concept of CCA Ports arises from the data-flow
world, where component interactions are limited to pipelin-
ing data from one component to the next. CCA Ports gener-
alize this idea to admit method calls and return values along
the pipeline, allowing for a richer variety of component in-
teractions. Links between components are implemented by
a provides/usesinterface design pattern, which is flexible
enough to allow direct component interface connections for
high performance or connections through proxy intermedi-
aries enabling distributed object interactions. Significantly,
in the CCA model, port connection is the responsibility of
the framework; therefore, a particular component may find
itself connected in a variety of different ways depending on
its environment and mode of use (see [9] for details of the

CCA ports specification and an applet demonstration).
In the CCA architecture, components are linked together

by connecting a “port” interface from one component to a
“port” interface on another. As demonstrated in Figure 3,
we employ two types of ports:

� Providesport. A Providesport is an interface that a
component provides to others.

� Usesport. A Usesport interface has methods that one
component (the caller) wants to call on another com-
ponent (the callee); the caller component retrieves the
Usesinterface from the CCA Services handle.

Component 1 Component 2

CCAServices
2

CCAServices

4

registerUsesPort("A")
1

Port

Port

Port

addProvidesPort(         ,"A")

= getPort("A")Port

3

Figure 3. Illustration of the c onnection mech-
anism. h1i The provided interface (i.e.,ProvidesPort )

is made known to Component 1’s containing framework by

h2i passing it to theCCAServices handle via theaddPro-

videsPort() method.h3i At the framework’s option, either the

interface or a proxy for the interface can be given to Component 2

through itsCCAServices handle.h4iComponent 2 retrieves the

interface using thegetPort() method.

Providesports are generalized listeners in the sense that
they listen toUsesinterfaces (i.e., calls of their functions
by another component). EachUsesport maintains a list of
listeners. To connect one component to another, one adds
a Provides(input) port of one component to another’sUses
(output) port. This approach follows many features of the
proposed CORBA 3.0 design. When a component calls a
member function on one of itsUsesports, the same mem-
ber function on each listeningProvidesport is called. Note
that this means one call may correspond to zero or more
invocations on provider components.

As introduced in Section 4, all interaction between the
component and its containing framework will occur through
the component’sCCAServices object, which is set by
the containing framework. The component creates and
addsProvidesports to theCCAServices , and registers

7



and retrievesUsesports from theCCAServices . The
CCAServices enables access to the list ofProvidesand
Usesports and to an individual port by its instance name.
It also implements a method for obtaining the various ports
and registering them with the framework.

6.2 Direct-Connect Ports

Much of the reason for adopting theprovides/usesinter-
face exchange mechanism for connecting CCA components
is to enable high-performance computing. Except for the
SIDL bindings toUsesPort andProvidesPort inter-
faces, the overhead for the privilege of becoming a CCA
component is nothing more than a direct function call to the
connected object. That is, there is no penalty for using the
provides/usescomponent connection mechanism proposed
in the CCA specification. The cost of the intervening SIDL
binding for language independence is estimated to be ap-
proximately 2-3 function calls per interface method call.

Components can be directly connected in a variety of
ways; probably the simplest is to create an object that ex-
ports aDirectConnectPort interface subclassing both
theUsesPort andProvidesPort interfaces. This way
the framework gets aProvidesinterface from one compo-
nent and gives that same interface directly to a connecting
component as aUsesinterface. Note that with this approach
the framework still retains full control over the connection
between components. Optionally, the providedDirect-
ConnectPort can be translated through a proxy by a
separateUsesPort provided by the framework, without
the components on either end of the connection needing to
know.

6.3 Collective Ports

The concept ofCollective Portsis a small but pow-
erful extension of the basic CCA Ports model to han-
dle interactions among parallel components and thereby
to free programmers from focusing on the often intricate
implementation-level details of parallel computations. The
provides/usesport interfaces and other port information are
accessible from every thread or process in a parallel com-
ponent. The CCA standard does not place any restrictions
on the means by which particular implementations address
this. For example, in a distributed-memory model a copy of
these classes could be maintained by every process partic-
ipating in computation, whereas in shared memory a class
could be represented just once. However, the CCA standard
does require that as one of the CCA services the implemen-
tation maintain consistency among the classes.

The creation of a collective port requires that the pro-
grammer specify the mapping of data (or processes partici-
pating) in the operations on this port. In the most common

case the mappings of the input and output ports matcheach
other. For example,n processes or threads in one compo-
nent are mapped ton processes or threads in the other, and
in this case data would not need redistribution between the
parallel components. In the second most common case, a
serial component interacts with a parallel component. The
semantics of this interaction are very similar to broadcast,
gather, and scatter semantics used in collective communica-
tion. Collective ports are defined generally enough to allow
data to be distributed arbitrarily in the connected compo-
nents; as demonstrated in Figure 1, this capability is useful
in connecting a parallel numerical simulation with differ-
ently distributed visualization tools. We are investigating
issues in the behavior of information flow between collec-
tive ports, especially in cases of mismatch in cardinality,
time, and space.

7 Future Directions

This discussion has introduced the foundation for re-
search by the CCA forum in defining a common com-
ponent architecture that supports the needs of the high-
performance scientific computing community and leverages
existing component standards, but will likely not be ad-
dressed by them. Key facets of this work are development
of an IDL that supports scientific abstractions for compo-
nent interface specification and definition of a ports con-
nection model that supports collective interactions. This
architecture enables connections that do not impede inter-
component performance, yet allows a framework to create
distributed connections when desired. Currently, we are im-
plementing various Ports subclasses that relate directly to
high-performance computing. Among these are the collec-
tive ports discussed earlier, a component based on a numeric
solvers standard [20], and a reference implementation of a
CCA-compliant framework (see [15] for further informa-
tion). Other proposals for components and standard inter-
faces compliant with the current CCA Ports specification
are openly solicited.

Future plans include incorporating support for different
computational models (e.g., SPMD and threaded models)
and extending the definition of CCA Ports toaccommo-
date dynamic component hook-up and configuration. Some
changes to the existing port specification are inevitable as
we gain experience with actual high-performance compo-
nents. Currently, the CCA specification makes no provision
for framework services beyond Ports. At this moment a pro-
posal is being crafted for gaining access through the existing
CCA specification to services provided by existing frame-
works, such as CORBA or Enterprise JavaBeans. It does
not seem likely that the CCA working group will decide
to require any of these services to be present. This is be-
cause high-performance environments are often exotic, and
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requiring services may limit some of the intended audience
for this specification.

Beyond these modifications and clarifications to the ex-
isting standard, the CCA working group will function as
a standards body, incorporating or rejecting proposed port
and component additions to the essential core of the stan-
dard. This phase of our activity has just begun, but is vital
to the success of our mission. Our goal is to incorporate
enough standard interfaces and components to make plug-
and-play high-performance computing a reality. This is an
impossibly tall order for the CCA members to accomplish
by themselves. However, by incorporating components and
interfaces from interested researchers and consortia, it is
hoped that this vision can be realized.
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