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Abstract. We propose a metamorphic geodesic regression approach ap-
proximating spatial transformations for image time-series while simulta-
neously accounting for intensity changes. Such changes occur for example
in magnetic resonance imaging (MRI) studies of the developing brain due
to myelination. To simplify computations we propose an approximate
metamorphic geodesic regression formulation that only requires pairwise
computations of image metamorphoses. The approximated solution is an
appropriately weighted average of initial momenta. To obtain initial mo-
menta reliably, we develop a shooting method for image metamorphosis.

1 Introduction

To study aging, disease progression or brain development over time, longitudinal
imaging studies are frequently used. Image registration is required if local struc-
tural changes are to be assessed. Registration methods that account for temporal
dependencies in longitudinal imaging studies are recent, including generaliza-
tions of linear regression or splines for shapes [5,19] or images [13] and methods
with general temporal smoothness penalties [3,4]. Changes in image intensities
are generally not explicitly captured and instead accounted for by using image
similarity measures which are insensitive to such changes. However, approaches
accounting for intensity changes after registration exist [17].

We generalize linear regression to image time-series, capturing spatial and
intensity changes simultaneously. This is achieved by a metamorphic regression
formulation combining the dynamical systems formulation for geodesic regression
for images [13] with image metamorphosis [10,12], similar to [11] for the large
displacement diffeomorphic metric mapping (LDDMM) case. While a number of
methods have been proposed to simultaneously capture image deformations and
intensity changes for image registration [8,6,15] the metamorphosis approach [12]
is most suitable here, because spatial deformations and intensity variations are
described by a geodesic. This allows generalizing the concept of a regression line.

Sec. 2 reviews image metamorphosis and its relation to LDDMM. Sec. 3
derives optimality conditions to allow for a shooting solution to metamorphosis
using an augmented Lagrangian approach [14]. Sec. 4 discusses first- and second-
order adjoint solutions. Sec. 5 introduces metamorphic geodesic regression. Sec. 5
shows how an approximate solution can be obtained by appropriate averaging
of the initial momenta of independent pair-wise metamorphosis solutions. We
show results on synthetic and real longitudinal image sequences in Sec. 7. The
paper concludes with a summary and an outlook on future work.



2 Metamorphosis

Starting from the dynamical systems formulation for LDDMM image registration

E(v) =
1

2

∫ 1

0

‖v‖2
L dt +

1

σ2
‖I(1) − I1‖

2, s.t. It + ∇IT v = 0, I(0) = I0, (1)

image metamorphosis allows exact matching of a target image I1 by a warped
and intensity-adjusted source image I(1) by adding a control variable, q, which
smoothly adjusts image intensities along streamlines. Here, σ > 0, v is a spatio-
temporal velocity field and ‖v‖2

L = 〈Lv, Lv〉, where L is a differential operator
penalizing non-smooth velocities. The optimization problem changes to [12,10]

E(v, q) =
1

2

∫ 1

0

‖v‖2
L+ρ‖q‖2

Q dt, s.t. It +∇IT v = q, I(0) = I0, I(1) = I1. (2)

The inexact match of the final image is replaced by an exact matching, hence
the energy value depends on the images to be matched only implicitly through
the initial and final constraints; ρ > 0 controls the balance between intensity
blending and spatial deformation. The solution to both minimization problems
(1) and (2) is given by a geodesic, which is specified by its initial conditions. The
initial conditions can be numerically computed through a shooting method.

3 Optimality conditions for Shooting Metamorphosis

To derive the second order dynamical system required for a shooting method, we
add the dynamical constraint through the momentum variable, p. Eq. 2 becomes

E(v, q, I, p) =

∫ 1

0

1

2
‖v‖2

L+
1

2
ρ‖q‖2

Q+〈p, It+∇IT v−q〉 dt, s.t. I(0) = I0, I(1) = I1.

(3)
To simplify the numerical implementation we use an augmented Lagrangian
approach [14] converting the optimization problem (3) to

E(v, q, I, p) =

∫ 1

0

1

2
‖v‖2

L +
1

2
ρ‖q‖2

Q + 〈p, It + ∇IT v − q〉 dt

− 〈r, I(1) − I1〉 +
µ

2
‖I(1) − I1‖

2, s.t. I(0) = I0, (4)

where µ > 0 and r is the Lagrangian multiplier function for the final image-match
constraint. The variation of Eq. 4 results in the optimality conditions











It + ∇IT v = 1
ρ
(Q†Q)−1p, I(0) = I0,

−pt − div(pv) = 0, p(1) = r − µ(I(1) − I1).

L†Lv + p∇I = 0,

(5)

The optimality conditions do not depend on q, since by optimality q =
1
ρ
(Q†Q)−1p. Hence, the state for metamorphosis is identical to the state for



LDDMM registration, (I, p), highlighting the tight coupling in metamorphosis
between image deformation and intensity changes. The final state constraint
I(1) = I1 has been replaced by an augmented Lagrangian penalty function.

4 Shooting for Metamorphosis

The metamorphosis problem (2) has so far been addressed as a boundary value
problem by relaxation approaches [7,12]. This approach hinders the formulation
of the regression problem and assures geodesics at convergence only. We propose
a shooting method instead. Since the final constraint has been successfully elim-
inated through the augmented Lagrangian approach, ∇p(0)E can be computed
using a first- or second-order adjoint method similarly as for LDDMM registra-
tion [18,1]. The numerical solution alternates between a descent step for p(0) for
fixed r, µ and (upon reasonable convergence) an update step

r(k+1) = r(k) − µ(k)(I(1) − I1).

The penalty parameter µ is increased as desired such that µ(k+1) > µ(k). Nu-
merically, we solve all equations by discretizing time, assuming v and p to be
piece-wise constant in a time-interval. We solve transport equations and scalar
conservation laws by propagating maps [2] to limit numerical dissipation.

4.1 First-order adjoint method

Following [1], we can compute ∇v(0)E by realizing that the Hilbert gradient is

∇v(0)E = v(0) + K ∗ (p(0)∇I(0)),

where K = (L†L)−1. Therefore based on the adjoint solution method [2,9]

∇v(0)E = v(0) + K ∗ (p̂(0)∇I(0)) = v(0) + K ∗ (|DΦ|p̂(1) ◦ Φ∇I(0)), (6)

where Φ is the map from t = 1 to t = 0 given the current estimate of the velocity
field v(x, t) and p̂(1) = r−µ(I(1)−I1) with I(1) = I0 ◦Φ−1. Storage of the time-
dependent velocity fields is not required as both Φ and Φ−1 can be computed
and stored during a forward (shooting) sweep. Instead of performing the gradient
descent on v(0) it is beneficial to compute it directly with respect to p(0) since
this avoids unnecessary matrix computation. Since at t = 0: −(L†L)δv(0) =
δp(0)∇I(0), it follows from Eq. 6 that

∇p(0)E = p(0) − p̂(0) = p(0) − |DΦ|(r − µ(I(1) − I1)) ◦ Φ.

4.2 Second-order adjoint method

The energy can be rewritten in initial value form (wrt. (I(0), p(0))) as

E =
1

2
〈p(0)∇I(0), K ∗ (p(0)∇I(0))〉 +

1

2ρ
〈(Q†Q)−1p(0), p(0)〉

− 〈r, I(1) − I1〉 +
µ

2
‖I(1) − I1‖

2, s.t. Eq. (5) holds.



At optimality, the state equations (5) and











−λI
t − div(vλI) = div(pK ∗ λv),

−λ
p
t − vT∇λp = −∇IT K ∗ λv + 1

ρ
(Q†Q)−1λI ,

λI∇I − p∇λp + λv = 0,

hold, with final conditions: λp(1) = 0; λI(1) = r − µ(I(1)− I1). The gradient is

∇p(0)E = −λp(0) + ∇I(0)T K ∗ (p(0)∇I(0)) +
1

ρ
(Q†Q)−1p(0).

The dynamic equations and the gradient are only slightly changed from the
LDDMM registration [18] when following the augmented Lagrangian approach.

5 Metamorphic Geodesic Regression

Our goal is the estimation of a regression geodesic (under the geodesic equations
for metamorphosis) wrt. a set of measurement images {Ii} by minimizing

E =
1

2
〈m(t0), K ∗m(t0)〉+

1

2ρ
〈(Q†Q)−1p(t0), p(t0)〉+

1

σ2

N
∑

i=1

Sim(I(ti), Ii) (7)

such that Eq. (5) holds. Here, σ > 0 balances the influence of the change of
the regression geodesic with respect to the measurements, m(t0) = p(t0)∇I(t0)
and Sim denotes an image similarity measure. A solution scheme with respect
to (I(t0), p(t0)) can be obtained following the derivations for geodesic regres-
sion [13]. Such a solution requires the integration of the state equation as well
as the second-order adjoint. Further, for metamorphosis it is sensible to also
define Sim(I(ti), Ii) based on the squared distance induced by the solution of
the metamorphosis problem between I(ti) and Ii. Since no closed-form solutions
for these distances are computable in the image-valued case an iterative solu-
tion method is required which would in turn require the underlying solution of
metamorphosis problems for each measurements at each iteration. This is costly.

6 Approximated Metamorphic Geodesic Regression

To simplify the solution of metamorphic geodesic regression (7), we approximate
the distance between two images I1, I2 wrt. a base image Ib at time t as

Sim(I1, I2) = d2(I1, I2) ≈ t2
1

2
〈m1(0) − m2(0), K ∗ (m1(0) − m2(0))〉

+ t2
1

2ρ
〈(Q†Q)−1(p1(0) − p2(0)), p1(0) − p2(0)〉, (8)

where p1(0) and p2(0) are the initial momenta for I1 and I2 wrt. the base image
Ib (i.e., the initial momenta obtained by solving the metamorphosis problem



between Ib and I1 as well as for Ib and I2 respectively) and m1(0) = p1(0)∇Ib,
m2(0) = p2(0)∇Ib. This can be seen as a tangent space approximation for meta-
morphosis. The squared time-dependence emerges because the individual differ-
ence terms are linear in time.

We assume that the initial image I(t0) on the regression geodesic is known.
This is a simplifying assumption, which is meaningful for example for growth
modeling wrt. a given base image1. Substituting into Eq. (7) yields

E(p(t0)) =
1

2
〈m(t0), K ∗ m(t0)〉 +

1

2ρ
〈(Q†Q)−1p(t0), p(t0)〉

+
1

σ2

N
∑

i=1

1

2
(∆ti)

2〈m(t0)−mi, K∗(m(t0)−mi)〉+
1

2ρ
(∆ti)

2〈(Q†Q)−1(p(t0)−pi), p(t0)−pi〉.

Here, m(t0) = p(t0)∇I(t0), ∆ti = ti − t0, mi = pi∇I(t0) and pi is the initial
momentum for the metamorphosis solution between I(t0) and Ii. For a given
I(t0), the pi can be independently computed. The approximated energy only
depends on the initial momentum p(t0). The energy variation yields the condition

R[(1 +
1

σ2

N
∑

i=1

(∆ti)
2)p(t0)] = R[

1

σ2

N
∑

i=1

(∆ti)
2pi],

where the operator R is R[p] := ∇I(t0)
T K ∗ (∇I(t0)p) + 1

ρ
(Q†Q)−1p. Since

K = (L†L)−1 and ρ > 0 this operator is invertible and therefore

p(t0) =
1

σ2

∑N

i=1(∆ti)
2pi

1 + 1
σ2

∑N

i=1(∆ti)2

σ→0
≈

∑N
i=1(∆ti)

2pi
∑N

i=1(∆ti)2
.

The last approximation is sensible since typically σ << 1. It recovers the meta-
morphosis solution if there is only one measurement image and the base image.

7 Experimental Results

7.1 Simulated Examples

In Fig. 1, four images (32 × 32, spacing 0.04) are synthesized to simulate the
movement of a bull’s eye. The outside white loop of the eye shrinks with no
intensity changes, while the inside circle grows at a constant speed and its in-
tensity changes from white to gray. The images are at time instants 0, 10, 20,
30 and we chose the first one as the base image. Eight Gaussian kernels [16] are

1 Ideally one would like to construct an image on the geodesic given all the measure-
ment images and then perform all computations with respect to it. For the linear
regression model the point defined by the mean in time and the measurements, (t, y),
is on the regression line. If such a relation exists for metamorphic geodesic regression,
e.g., some form of unbiased mean with similar properties, remains to be determined.



used for K: {K0.5, K0.4, K0.3, K0.25, K0.2, K0.15, K0.1, K0.05}; ρ = 0.75. The re-
sult confirms that the spatial transformation and intensity changes are captured
simultaneously. The dark solid circle at the center of the average momentum of
Fig. 1 indicates that the intensity of the inside circle will decrease gradually. The
white loop outside of the dark area captures the growth of the inside circle.

Fig. 1. Bull’s eye metamorphic re-
gression experiment. Measurement
images (top row). Metamorphic re-
gression result (middle row) and mo-
menta (bottom row). The first image
is chosen as base image. Momenta
images: left: time-weighted average
of the initial momenta; right: mo-
menta of the measurement images
with respect to the base image.

Fig. 2 shows a square (64 × 64; spacing
0.02) moving from left to right at a uniform
speed with gradually decreasing intensity.
Measurements are at 0, 10, 20, 30, 40. We
used a multi-Gaussian kernel K with {K1.0,
K0.75, K0.5, K0.4, K0.3, K0.2, K0.1} and
set ρ = 5.0. Metamorphic regression suc-
cessfully captures the spatial transformation
and the intensity changes of the square even
when adding vertical oscillations. As ex-
pected, metamorphic regression eliminates
the oscillations while capturing the intensity
change and the movement to the right. We
see from the time-weighted average of the
initial momenta that intensity changes are
controlled by the values inside the square re-
gion (dark: decreasing intensity; bright: in-
creasing intensity). The spatial transforma-
tions are mainly controlled by the momenta
on the square edges.

(a) (b)

Fig. 2. Square metamorphic regression experiment. (a) moving square with decreasing
intensities and no oscillations during movement; (b) moving and oscillating square with
alternating intensities. For both cases, the base image is the first one. Top row: mea-
surement images, middle row: metamorphic regression results, bottom row: momenta
images (left: time-weighted average of the initial momenta, to the right: momenta of
the measurement images with respect to the base image).



7.2 Real Images

Fig. 3. Representative datasets at 3, 6
and 12 months (left to right).

Fig. 3 shows two representative longitudi-
nal MRI time-series (300×250 with spacing
0.2734) of nine macaque monkeys at age 3,
6, and 12 months. Some subjects have no
visible myelination in the anterior parts of
the brain at 3 months (top left), while oth-
ers show substantial myelination (bottom
left). Here, we use metamorphic geodesic
regression not for an individual longitudi-
nal image set, but for all nine monkeys and
all time-points simultaneously. We use an
unbiased atlas for images at 12 months as the base image. Metamorphic geodesic
regression is applied over the remaining 18 images at 3 and 6 months. We use a
multi-Gaussian kernel, K, with {K40, K20, K15, K10, K5, K2.5}; ρ = 500.

Fig. 4 shows regression results for the simple metamorphic model and for
its LDDMM version [11] which cannot capture intensity changes. The metamor-
phic regression geodesic captures intensity changes of the brain well (increase in
white matter intensity with age caused by myelination) while capturing spatial
deformations, most notably a subtle expansion of the ventricles.

(a) (b) (c)

Fig. 4. Regression results for monkey data: LDDMM (top) metamorphosis (bottom).
(a) Images on geodesic at 12, 6, 3 months; (b) Zoom in for images on geodesic at 12,
6, 3 months; (c) Zoom in for images at 3 months to illustrate spatial deformation.

8 Discussion and Conclusions

We proposed metamorphic geodesic regression for image time-series which si-
multaneously captures spatial deformations and intensity changes. For efficient
computations we use a tangent space approximation with respect to a chosen
base-image. Solutions can be computed by solving pairwise metamorphosis prob-
lems through a shooting approach. Future work will address the properties of the
approximation, alternative models of intensity change and the trade-off between
spatial deformation and change in image intensities.
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