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a  b  s  t  r  a  c  t

In the  context  of long-range  digital  neural  circuit  reconstruction,  this  paper  investigates  an  approach  for
registering  axons  across  histological  serial  sections.  Tracing  distinctly  labeled  axons  over  large  distances
allows  neuroscientists  to study  very  explicit  relationships  between  the  brain’s  complex  interconnects
and,  for  example,  diseases  or  aberrant  development.  Large  scale  histological  analysis  requires,  however,
that the  tissue  be  cut  into  sections.  In  immunohistochemical  studies  thin sections  are  easily  distorted
due  to  the  cutting,  preparation,  and  slide mounting  processes.  In this  work  we  target  the  registration
of  thin  serial  sections  containing  axons.  Sections  are  first  traced  to extract  axon  centerlines,  and  these
traces  are  used  to  define  registration  landmarks  where  they  intersect  section  boundaries.  The  trace  data

also provides  distinguishing  information  regarding  an  axon’s  size  and  orientation  within  a section.  We
propose  the  use  of  these  features  when  pairing  axons  across  sections  in  addition  to  utilizing  the spa-
tial relationships  among  the  landmarks.  The  global  rotation  and  translation  of  an  unregistered  section
are accounted  for  using  a  random  sample  consensus  (RANSAC)  based  technique.  An  iterative  nonrigid
refinement  process  using  B-spline  warping  is  then  used  to  reconnect  axons  and  produce  the  sought  after

.
connectivity  information

. Introduction

.1. Motivation

Many neuroscientists are interested in microscopic-level brain

onnectivity and how variations in pathways that bridge functional
etworks influence mental capacity and behavior. Abnormalities in

ong-range pathways are thought to be directly linked to disorders

∗ Corresponding author for image processing, alignment, algorithm development,
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such as autism (Belmonte et al., 2004) and schizophrenia (Lynall
et al., 2010). Our long term goal is the examination of Williams
syndrome, a genetic disorder characterized by impaired cognition
and overly extroverted social tendencies (Dai et al., 2009). Specifi-
cally, we  would like to map  the limbic system pathways exhibiting
the genetic defects to explicitly identify the affected brain systems.
Our current preliminary work, however, focuses on reconstruct-
ing long-range neural circuits in macaque monkeys by means of
fluorescence confocal microscopy. We  are targeting neurons in
a 12 mm-deep region of interest and work with approximately
30 �m-thick slices of tissue. The size of the complete dataset is an
expected substantially large 400 sections. Reliably aligning struc-
tures across many microscope slides in the digital representation is

one of the many challenges long-range connectivity studies must
address. The objective of this paper is to register several moder-
ately deformed sections consisting of predominantly axons in an
automated fashion.

dx.doi.org/10.1016/j.jneumeth.2012.03.002
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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ig. 1. Illustration of a section, tile, and optical slice. Each section is cut approximate
or  fluorescence confocal imaging.

.2. Serial Section Registration Overview

The building block of our datasets is a section, as depicted in
ig. 1. We  refer to a section as a thin slab of tissue mounted on a
icroscope slide. In our case each section is ∼30 �m thick. Sections

re imaged using a confocal microscope, and we  refer to an image
rom a given focal plane as an optical slice. A tile (or image stack) is
he set of optical slices within one field of view of the microscope.
iles are mosaicked together to recreate a section. For this work
ll of the tiles are mosaicked for each section prior to registration
sing the framework presented in Tasdizen et al. (2010).

The histological techniques used to image neurons of interest
n fluorescence confocal microscopy impose digital reconstruction
hallenges. Tracing centerlines accurately is non-trivial for struc-
ures suffering from low signal-to-noise ratio (SNR) and patchy
taining. In applications where the image acquisition requirements
re on the order of several cubic millimeters, such as our connec-
ivity study, low magnification may  be necessary to capture the
rea of interest in a reasonable time frame at the cost of making
ndividual neuron differentiation even more difficult. Other data
haracteristics make section registration particularly challenging.
ig. 2 shows a single channel of an optical slice from the bottom of
ne section and the top optical slice from the following section. The
rst obvious feature of the images is that, generally speaking, only
eurons are stained, so the images are primarily low intensity back-
round (auto-fluorescence). A second noteworthy feature is that
he overlap of an axon pair occurs at the point where both axons

xit their respective section (ignoring any tissue losses). As a result,
egistration methods based on maximizing intensity correlation
n section boundary images are unsuitable, unlike an application
uch as transmission electron microscopy (TEM) where there is

ig. 2. Example 20× axonal confocal microscopy images from the bottom of one section (l
omposite of the regions marked by the boxes. The x − y pixel spacings are 0.63 �m.  (For 

o  the web version of the article.)
 �m thick, immunohistochemically stained, and placed on its own microscope slide

abundant overlap of intensity data (Tasdizen et al., 2010). A third
significant property is that because of tissue deformation in thin
sections, a particular region of axons may  align well under a rigid
transformation but the neighboring areas may not. These arbitrary
deformations introduced when cutting, staining, and mounting the
tissue must be accounted for during the restoration of neuron con-
tinuity across sections.

1.3. Related Work

Pursuits in digital neural circuit reconstruction have primarily
focused on examining single sections of tissue (Lu, 2011). Analysis
of fiber projections on the scale ultimately envisioned by neurosci-
entists entails reassembly of hundreds if not thousands of serial
sections, making the development of an automated registration
process necessary. A conceptually relevant work by Oberlaender
et al. (2007) proposed a framework for reconstructing neural cir-
cuits across serial sections in brightfield microscopy. However,
following coarse alignment using blood vessels, neurons in adja-
cent sections were relinked manually. Our work aims to augment
a degree of automation to axonal section registration.

The characteristics of our datasets outlined in the previous sec-
tion have led us to approach section alignment using landmarks as
opposed to an intensity-driven method. For two-view microscopy
registration, Al-Kofahi et al. (2003) used dendritic branch points
from centerline traces as landmarks, and an extension of the widely
used ImageJ tool called Fiji (Fiji Is Just ImageJ) has a plugin for regis-

tering multi-view microscopy datasets containing fluorescent bead
landmarks (Preibisch et al., 2009). However, the end applications do
not target serial section registration, which must account for arbi-
trary tissue deformations. As previously mentioned, Oberlaender

eft) and the top of the adjacent section (center). The far right image shows a colored
interpretation of the references to color in this figure legend, the reader is referred
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tion across section boundaries. Fig. 3 depicts the features associated
with a point landmark located at some x − y coordinate. These fea-
tures include the angle at which each axon approaches a section
02 L. Hogrebe et al. / Journal of Neuro

t al. (2007) used blood vessels for registration. We  do not use blood
essels to aid in coarse alignment because there is no explicit blood
essel channel in our datasets. We  instead derive landmarks from
raced axons due to the substantial research already invested in
-D neurite tracing (DIADEM, in press; Donohue and Ascoli, 2011;
l-Kofahi et al., 2003, 2002; Meijering et al., 2004; Rodriguez et al.,
009; Wang et al., 2011; Chothani et al., 2011; Zhao et al., 2011;
uretken et al., 2011; Bas and Erdogmus, 2011), so our landmark
cquisition approach is similar to Al-Kofahi et al. (2003).  However,
s opposed to using trace branch points as landmarks, we propose
o use the location a trace intersects a section boundary for serial
ection registration.

Alternative methods attempt to simplify the registration prob-
em using block-face acquisition procedures. Gerneke et al. (2007)
mbedded tissue blocks in wax or resin and stained the exposed
op of the sample as it was repeatedly imaged and sliced. Roy
t al. (2009) employed a cryo-imaging technique that also com-
ined imaging with sectioning. These sectioning methods attempt
o minimize distortion of sections by eliminating any handling
hat unnecessarily contributes to deformations. We  do not utilize

 block-face acquisition approach since it would be unsuitable for
ur immunohistochemical staining requirements.

Methods for serial thin section registration require correction
or both a global rotation and translation of the sample across

icroscope slides as well as local distortions attributed to tissue
eformation and loss. Correspondences between the axons of adja-
ent sections are initially unknown. For coarse (rigid) alignment
f TEM data, Saalfeld et al. (2010) assigned correspondences to
eature points across images and then used random sample consen-
us (RANSAC) (Fischler and Bolles, 1981) when finding appropriate
lobal transformation parameters. This general methodology for
dentifying corresponding landmarks has also been used in stereo
ision applications (Zhang and Negahdaripour, 2004). Another
pproach commonly used for rigid point registration is the iterative
losest point (ICP) algorithm (Besl and McKay., 1992; Rusinkiewicz
nd Levoy, 2001). During each iteration point correspondences
re calculated based on smallest Euclidean distances to points in
he opposite set. These new correspondences dictate a transform
pdate. In a pipeline for finding rigid transformation parameters for
oint sets both RANSAC and ICP are commonly applied. We  opt to
se a RANSAC-based technique since our correspondence assign-
ents are expected to contain some errors (outliers), and we  have

o guarantee that the sections are free of being grossly misaligned
t capture time.

A nonrigid registration framework is needed to correct for
ocal deformations. This is not only necessary for visualization
urposes but more importantly for updating axon connectivity
ssignments across sections. Al-Kofahi et al. (2003) present a vari-
nt of the ICP algorithm for their two-view microscopy application
hat incorporates the ability to fit an expanded set of models such
s parabolic transformations. Nonrigid point registration methods
uch as thin-plate spline-robust point matching (TPS-RPM) (Chui
nd Rangarajan, 2003) and coherent point drift (CPD) (Myroneko
t al., 2007) define energy functions that enforce smoothness in
he transformations. We  utilize the concept of motion coherence
o register our datasets, meaning tissue should be warped in a sim-
lar manner locally. Our refinement process is most similar to the

ethod outlined in Xie and Farin (2004),  which combines coarse-
o-fine basis spline (B-spline) warping with the ICP algorithm.

. Methods
.1. Methods Overview

The goal of our method is to align axon endpoints at sec-
ion boundaries. Using an established neurite tracing algorithm
e Methods 207 (2012) 200– 210

to identify where axons exit a section, we are able to define
point landmarks at the section boundaries. After calculating land-
mark similarities based on local landmark spatial configurations,
we assign temporary correspondences between two sections
using minimum weighted bipartite matching. In conjunction with
RANSAC, the correspondences allow a suitable least-squares solu-
tion for the global rotation and translation parameters to be
recovered. For refining the registration, i.e. aligning axon endpoints,
we iteratively update the correspondences and apply nonrigid
transformations with the intent of first correcting for large land-
mark displacements and shifting towards making more local
corrections. When registering two sections we use the common
nomenclature of reference and moving entities. Specifically, a mov-
ing section is transformed to align with a reference, or fixed, section.

2.2. Landmark Extraction

To extract axonal profiles, we  traced our datasets using the freely
available software package NeuronStudio (Rodriguez et al., 2006,
2008, 2009). Tracing with NeuronStudio is semi-automatic in that
a user must manually place seed points, but the tracing itself does
not require intervention. As discussed in Rodriguez et al. (2009),
neurites are thresholded locally and centerline nodes are placed
during a process called voxel scooping. The output is a 3-D trace
file (swc) commonly used by neurocomputing applications, many
of which are presented in Meijering (2010).

Tracing serves as our landmark detection step. The centerline
endpoints near section boundaries indicate where axons exit a
section, so point landmarks are set at these locations. Landmark
features in addition to position are also available, since the axons in
our datasets generally transition smoothly with respect to orienta-
Fig. 3. Landmark information for the same traced axon across a section boundary.
The  cyan line comes from the trace data, and the red line represents the vector used
to  calculate the angle information. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)
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oundary, �, the traversal angle of each axon in the plane of the
ample, �, and the radius of each axon, r.

.3. Coarse Alignment

Global rotation and translation between two sections are com-
uted before connecting individual axons back together. This is
ccomplished by first pairing landmarks according to a simple cri-
erion that considers the spatial relationships among the axons. The
quation for the correspondence measure is,

m,n = 1
2

N∑
i=1

(hm[i] − hn[i])2

hm[i] + hn[i]
, (1)

here m and n are point indices, hm and hn are histograms of dis-
ances to neighboring landmarks for points m and n, respectively,
nd N is the number of bins in hm and hn. If both hm[i] and hn[i] are
ero, the summation term for the current i is set to zero. This equa-
ion may  be recognized as the Chi-square measure for comparing
wo histograms (Belongie et al., 2001; Bradski and Kaehler, 2008).
or each point a local histogram is constructed representing the dis-
ances to all neighboring axons from the current axon of interest
ithin a specified distance threshold. The number of histogram bins
ust also be specified. The term serves to provide local spatial infor-
ation regarding an axon’s neighborhood and helps determine, for

xample, whether or not the axon is in a sparse region. The angu-
ar distributions of neighbors are not yet included since the global
otation of the moving section is unknown.

Next we assign temporary correspondences to landmarks such
hat the lowest total sum of correspondence measures is produced,
ith the expectation that truly corresponding landmarks have very

imilar neighborhood configurations and hence the smallest c val-
es. Assigning correspondences between the two datasets can be
iewed as finding matches for the nodes of a bipartite graph. A
ipartite graph, G = {U, V, E}, consists of two disjoint sets, U and
, whose edges, E, only bridge points belonging to different sets.
ur two sets consist of the landmarks of the sections to be regis-

ered. A weighted graph is constructed by assigning the c values
o the edges. Because the correspondence metric indicates the best

atch for a point m to another point n when it is smallest, the
roblem is that of determining the minimum weighted sum of edge

inks. This is a standard minimum weighted bipartite matching task,
nd we currently solve the matching problem using the Hungarian
lgorithm (Jungnickel, 2005).

Having correspondences across two point sets allows parame-
ers of a rotation/translation model to be calculated. As shown in
2),

(i)
reference

= Rp(i)
moving

+ T + �(i), i ∈ 1, . . . , M,  (2)

he ith point in a moving dataset, p(i)
moving

, can be rotated by the
otation matrix, R, and translated by the vector, T, to align with its
orresponding point in the reference dataset, p(i)

reference
, with some

ismatch dependent on the noise, �(i).
A 3-D formulation of this problem is presented in Arun et al.

1987), although the concepts are directly applicable to our 2-D
ase. The solution for the rotation and translation of two point
ets with known correspondences is determined in a least-squares
ense. That is to say, we find the 2 × 2 rotation matrix, R̂, and the

 × 1 translation vector, T̂. The rotation can be determined after
valuating (3),
M

i=1

q(i)
moving

q(i)
reference

= H = U�VT, (3)
e Methods 207 (2012) 200– 210 203

where the q vectors for each of the datasets are simply the two point
sets with the centroids, creference and cmoving, subtracted out. The q
vectors are ordered so that corresponding points have the same
indices. The U�VT term represents the singular value decomposi-
tion of H. Finally, a matrix X = VUT is calculated. If the determinant
of X is 1, then R̂  = X. If the points used to calculate the rotation
are collinear or have large amounts of noise (e.g. do not really
correspond), then det(X) = − 1 and may  represent a reflection or
is meaningless. For simplicity, both of these cases can be catego-
rized as model fitting failures and, if possible, a different set of
corresponding points can be tested. The translation,

T̂ = creference − R̂cmoving, (4)

is obtained by finding the difference between the centroid of the
reference point set and the centroid of the moving dataset after
rotation. The conceptual understanding is that the aligned point
sets should have the same centroid. The reader is referred to Arun
et al. (1987) for mathematical justifications for these solutions.

The previous discussion briefly reiterates a way to deter-
mine rotation and translation parameters from two  sets of points
with specified correspondences. We  still face the problem, how-
ever, that although correct correspondences are identified after
the minimum weighted bipartite matching procedure, they exist
amidst numerous incorrect assignments. Ideally, global rotation
and translation parameters should be calculated based on land-
mark correspondences that have been correctly assigned. Because
perfect assignments cannot be guaranteed, however, we  make use
of RANSAC, a robust model fitting paradigm for data containing
outliers (Fischler and Bolles, 1981). Outliers in this context refer to
landmarks that have been incorrectly associated. Likewise, inliers
refer to landmarks that have been correctly matched within a tol-
erance level.

In our application RANSAC first randomly selects a subset of
points and attempts to fit a rotation/translation model based on
their correspondences. A potential rotation and translation are cal-
culated using the randomly sampled points and the least-squares
solution previously described. The remaining points from the mov-
ing dataset are then transformed using these model parameters.
The points that transform within a specified distance threshold, �,
with respect to their corresponding point are added to a consen-
sus set. If the total number of inliers increases for a particular set of
transformation parameters, the parameters are saved as the current
best set. The process is repeated for a specified number of iterations
or until the internal iteration limit, k, given in (5) is reached,

k = log(1 − p)
log(1 − ωn)

,  (5)

where p is the desired probability that at least one inlier is randomly
selected for model fitting, ω is the actual probability of randomly
selecting an inlier, and n is the number of points randomly selected
for the model fitting (Fischler and Bolles, 1981). The ω term is
updated each time a new best model has been found and is assigned
based on the number of current inliers divided by the total num-
ber of points. Once the algorithm has terminated all of the points
marked as inliers are used to form a final least-squares rotation
and translation estimation. Fig. 4 shows an example of two  coarsely
aligned landmark sets taken from larger sections.

2.4. Refined Alignment

In a localized region, such as that illustrated in Fig. 4, we assume
the inexact alignment of landmarks following coarse registration

are attributable to a combination of factors such as small amounts
of tissue loss, local shearing from the microtome, and section
shrinkage/expansion. When examining the entire section at once,
larger stretching distortions introduced during the sectioning and
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Fig. 4. Example rough alignment of landmarks using the process described in
Section 2.3. The os represent axon intersections at the bottom boundary of a section
w
s
s

m
n
a
p
p
m
m
o
f

t
a
a
c
p

C

w
p
E
f
i
p
u
a
p
a
a
w
m

r
d
a
T
p
I
t
O
o

region as depicted in Fig. 6. Therefore, we determine the general
direction of distortion for an area of the moving section and shift
the regional control points to compensate. For a particular control
point with indices p and q, we  calculate its displacement vector,
hile the xs represent the axon intersections at the top boundary of the adjacent
ection. The size of the region is ∼1290 �m × 1290 �m with isotropic x − y pixel
pacings of 0.63 �m.

ounting are also apparent. In the interest of registering for con-
ectivity analysis we currently disregard any minor tissue losses
nd just warp a moving section’s landmarks to coincide with the
receding reference section. Taking into consideration that the
hysical sections are very thin, we propagate corrections for the
oving section throughout the entire section. In other words, each
osaicked optical slice is warped the same as the top mosaicked

ptical slice. The succeeding section is then registered to this trans-
ormed section.

The refinement process begins by recalculating landmark fea-
ure similarities using an updated metric. We  now incorporate
ngular information with respect to the x − y plane since the
pproximate rotation of the moving section, R̂,  is known from the
oarse alignment. The updated correspondence criterion between
oints m and n is,

m,n = w
Pm,n

Pthresh
+ (1 − w)

Dm,n

Dthresh
, (6)

here w is a weight, Pm,n is a Chi-square histogram measure com-
aring the positional distributions of nearby points, Dm,n is the
uclidean distance between points m and n, Pthresh is a threshold
or Pm,n, and Dthresh is a threshold placed on Dm,n. The Pm,n term
s formed by dividing the region surrounding a point into bins in
olar coordinates up to a specified distance. Within this region we
se bins that are evenly spaced both radially and rotationally, such
s is depicted in Fig. 5. The feature is a 2-D histogram, and com-
arison of two of these features is performed in the same manner
s in (1).  Similar to Belongie et al. (2001) interim correspondences
re again assigned using minimum weighted bipartite matching,
ith additional considerations made to reduce erroneous landmark
atchings discussed next.
When assigning correspondence values for a given landmark,

estrictions are used to limit the permissible point correspon-
ences. An upper threshold, Pthresh, is placed on Pm,n to prohibit
xons with largely different neighborhoods from being matched.
o enforce local matching, a distance threshold, Dthresh, prevents a
oint from being paired with one outside of the specified radius.
n other words, if either of the terms surpass their respective
hreshold, landmarks m and n are forced to be non-corresponding.
therwise, the thresholds are used as normalization factors. The
rientation of axons in the section and their size are also used
Fig. 5. Example bin layout in polar coordinates.

to prevent insensible matchings. For example, if the difference in
orientation in the x − y plane is larger than a threshold, �thresh, a
potential match is disregarded. Analogously, maximum allowable
differences are also placed on radii and boundary angles, rthresh and
�thresh, respectively.

Once correspondences have been reassigned, the arbitrary
deformations are addressed using nonrigid transformations. We
accomplish nonrigid warping using third order B-splines defined
on a 2-D lattice of knot points (Unser, 1999). Control points are used
to modify the shape of the underlying function, which in our case
represents the deformation. The number of control points avail-
able is coupled with the number of B-spline knots. We  iteratively
reposition control points to pull regions of distorted tissue into
alignment using the current correspondence assignments. Progres-
sively increasing the density of the control point grid permits finer
local refinement.

We  adjust control points in a straightforward manner by taking
advantage of the fact that, in general, our misaligned landmarks
require approximately the same amount of correction in a given
Fig. 6. Illustration depicting approximate motion coherence for a local set of
coarsely aligned landmarks. The os are the reference landmarks and the xs are
the  moving landmarks. The connecting lines indicate the current correspondences,
which are used to determine the displacement vector, Vp,q , for the control point
(black dot).
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ig. 7. Example landmark adjustment for several refinement iterations. The os re
he  axon intersections at the top boundary of the adjacent section. The connect
rame.

p,q, based on how landmarks are misaligned in the four surround-
ng grid cells. For each pair of corresponding landmarks in these
rid cells we also define a displacement vector, vm,n, originating at
he moving points. From the vm,ns we select the median x and y
omponents as the motion for the control point. The median dis-
lacement vector components are chosen since it is possible for

mproper correspondences to still exist, and as long as half of the
orrespondences in the grid cells surrounding a control point are
orrect the region shifts in the general needed direction. If only one
andmark exists within the grid cells around a control point, it will
e drawn towards its corresponding point directly.

In a similar sense as the ICP algorithm and the method presented
n Xie and Farin (2004),  we iteratively update the correspondence
ssignments and transformations to progress the registration. The
orrespondences are assigned according to (6) and a stage of
ipartite matching. The control point density increases at each

teration for improved local control. A specified control point spac-
ng, SD, determines when the correspondence assignments should
ompletely favor Dm,n and effectively become nearest neighbor
ssignments. The number of iterations beyond the first required
o reach this spacing is calculated as in (7) using the initial control
oint spacing, SI, and its defined rate of change, SRC.

D =
⌈

logSRC

(
SD

SI

)⌉
(7)

D is then used to perform a simple adjustment to the weight in
6). For the first iteration w is set to 1.0, and subsequent changes
hift emphasis from matching similar clusters to nearest neighbors.
fter each transformation w is updated as,

(i+1) = w(i) − 1
ID

, (8)

here i is the current iteration number. Upon reaching the (ID + 1)th
teration the restrictions imposed by �thresh, rthresh, and �thresh are
elieved to ensure that any trace inconsistencies do not prohibit
rue axon endpoints from being matched. Further iterations can
e run for additional tweaking until a termination spacing, ST, is
eached. Lastly, Dthresh is automatically adjusted throughout the
terations so that it is never larger than the current control point
rid spacing. An example warping progression is shown in Fig. 7.

. Results

.1. Datasets

Confocal datasets used for this study are a subset of those

cquired as part of a larger neuroanatomical investigation of the
acaque brain. Imagery included here represents Neuropeptide

ntibody # AB1565 (Chemicon) expressing neuronal fiber projec-
ions immunohistochemically labeled with Alexa 568 (Invitrogen)
t axon intersections at the bottom boundary of a section while the xs represent
es indicate correspondences for the current iteration, which is labeled in each

secondary antibody. Fluorescence microscopy was performed on
five consecutive tissue sections of the right hemisphere in the
region of the basal forebrain and hypothalamus. A Nikon A1R confo-
cal microscope equipped for resonant mode acquisition was  used
for 20× imaging yielding a x − y resolution of 0.63 �m/pixel. The
Alexa 568 probe was excited using a 561 nm wavelength laser with
512 × 512 pixel emission image fields captured at ∼3.7 frames/s.
For each section a region was acquired comprising 13 × 17 fields
(∼4200 �m × 5500 �m)  over 25 optical slices at 0.60 �m intervals.

3.2. Experiments

The registration is quantitatively assessed using landmarks
derived from two  sets of traces. The first collection of traces is
obtained using NeuronStudio. Although the traces are attained
semi-automatically, one drawback is that our dataset resolution
limits NeuronStudio’s ability to differentiate intertwined or cross-
ing axons that touch. As a result many axon traces become merged.
For purposes of acquiring the locations where axons exit a section,
however, these endpoints generally remain intact (with exceptions
such as where an entwined axon pair exits a section). The second set
of experimental traces is obtained by manually correcting problem
areas in the NeuronStudio traces, such as false branch points and
incorrectly merged axons. Manual editing is accomplished using
Neuromantic (Myatt, in press). The purpose of using the two trace
sources is to show that with respect to aligning axon endpoints at
section boundaries, the result obtained using readily placed Neu-
ronStudio traces is comparable to that based on traces which have
undergone time-consuming manual editing.

The dataset used for quantitative evaluation is a
∼1290 �m × 1290 �m subset of the five section series described in
the previous section. The subset contains both a very sparse area as
well as a region representative of the general axon density of the
complete dataset. The average number of point landmarks at the
section boundaries acquired from the five NeuronStudio-traced
subsections is 286. For the manually adjusted traces the average is
229 landmarks. The difference is indicative of the elimination of
spurious landmarks during manual editing.

Coarse registration results are presented in Table 1. The total
possible correspondences are the number of correspondences
assigned between sections following the initial bipartite matching.
For computational savings a subset of the landmarks is used in the
matching, accounting for the low number of possible correspon-
dences compared to the average number of landmarks per section.
The subset is chosen by limiting landmarks used in the matching

to those whose associated axon approaches the section boundary
greater than a given steepness. For the datasets examined in
this work a threshold of approximately fifteen degrees reduces
the possible matches to the values listed in the table. The inlier
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Table  1
Coarse alignment correspondences for the subsets.

Trace source Sections # total possible
correspondences

# inlier
correspondences

NS 1, 2 92 31
NS 2, 3 94 32
NS  3, 4 118 44
NS  4, 5 112 42
M  1, 2 88 51
M  2, 3 94 57
M 3,  4 94 58
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Table 3
Precision and recall measures.

Trace source Sections Precision Recall

NS 1, 2 0.798 0.869
NS 2, 3 0.808 0.912
NS 3, 4 0.844 0.878
NS  4, 5 0.826 0.882
M 1,  2 0.924 0.943
M  2, 3 0.911 0.934
M  3, 4 0.922 0.957

T
R

N

M 4,  5 80 51

S: NeuronStudio, M:  manually edited.

orrespondence numbers in Table 1 indicate how many of the
nitial matches RANSAC uses to determine the final rotation and
ranslation; i.e. these are the corresponding landmarks that fall
ithin a given distance of each other after the moving section is

ransformed. These numbers are relatively low due to the limited
ature of the correspondence criterion from which they are based,
nd an extended discussion is covered in Section 4.

The final correspondences assigned by the registration refine-
ent stage are shown in Table 2, which translate into axon

onnectivity across sections. The table shows the comparison of the
umber of correspondences assigned manually and by the algo-
ithm, as well as the breakdown of correspondences assigned by
he algorithm. The algorithm correspondence breakdown contains
ubheadings that list landmark matchings as valid-to-valid, incor-
ect valid-to-valid, valid-to-spurious, and spurious-to-spurious.
alid and spurious landmarks are manually determined, with a
alid landmark defined as having a corresponding landmark in the
djacent section. For example, the valid-to-spurious column repre-
ents the number of valid landmarks from both sections that have
een incorrectly matched to a landmark without a correspond-

ng point. The last column shows the number of valid landmarks
ncorrectly left unmatched.

A summary of Table 2 can be made in terms of precision and
ecall as,

recision = # true positives

# true positives + # false positives

ecall = # true positives

# true positives + # false negatives
.  (9)

he number of true positives refers to the number of correspon-
ences the algorithm selects correctly with respect to the manual
ssignments. The false positives are the incorrect correspondences,

nd the false negatives are the unmatched valid landmarks. The
erfect set of results would yield precision and recall values of 1.0.
he values derived from our results are shown in Table 3. Preci-
ion indicates how many points are paired correctly with a penalty

able 2
efined alignment correspondences for the subsets.

Trace source Sections # correspondences assigned Brea

Manually Algorithm V↔V

NS 1, 2 141 158 126 

NS  2, 3 145 167 135 

NS  3, 4 169 179 151 

NS  4, 5 158 142 142 

M 1,  2 194 197 182 

M 2,  3 199 202 184 

M  3, 4 185 192 177 

M 4,  5 182 182 177 

S: NeuronStudio, M:  manually edited, V: valid landmark, S: spurious landmark.
M  4, 5 0.973 0.973

NS: NeuronStudio, M:  manually edited.

incurred for incorrect correspondence assignments. Spurious point
matchings are the predominant cause for drawing the precision
away from the maximum of one. Recall indicates how many true
correspondences are missed.

In combination the precision and recall values suggest we match
truly corresponding points reasonably well, but also include a non-
negligible number of spurious landmarks. This applies more so to
the case of the experiments using landmarks derived from unedited
traces since there are more false landmarks available. The rea-
son some false landmarks get paired is that in the final stages of
the registration nearest neighbor assignments take hold under the
assumption that region stretching has been corrected and end-
points should be reconnected.

The registrations have been carried out on a standard Linux
desktop (Intel i7 3.2 GHz CPU with 8 GB RAM). Implementation
is currently based in MATLAB (2011),  with the nonrigid transfor-
mations performed using the Insight Toolkit (ITK, in press). The
average time for calculating the initial feature correspondences
was 1.36 s across all of the sections. RANSAC took an average of
0.044 s to find a suitable rotation and translation. There were a total
of seven iterations of recalculating correspondences and warping
landmarks. The average times for these two  steps at each iter-
ation were as follows: (1) 1.69, 0.79 s; (2) 1.69, 0.92 s; (3) 1.66,
1.36 s; (4) 1.58, 2.52 s; (5) 2.09, 6.44 s; (6) 1.64, 15.99 s; (7) 1.51,
46.81 s. The landmark warping times rise at each iteration due to
increasing control point densities. The matching time for iteration
5 is slightly higher since it is the first iteration distances are the
only contributing factors to correspondence assignments. There-
fore, additional points are included in the matching. Generation of
the transformed images was  performed off-line since the process
was much slower (on the order of minutes) than just manipulating
landmarks, depending on the amount of parallelization used and
the final control point density.

A visualization of what the registration aims to accomplish, i.e.

align axon endpoints at the section boundaries, is shown in Fig. 8
with the aligned endpoints marked by circles. From this visual eval-
uation alone the axon exhibits enough continuity to recognize that
the pieces comprise the same axon, although the landmark cor-

kdown of correspondences assigned by algorithm

 Incorrect V↔V V↔S S↔S V unmatched

1 9 22 19
1 5 26 13
1 13 14 21
2 9 19 19
1 11 3 11
2 13 3 13
0 8 7 8
0 4 1 5
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Fig. 8. Volume rendering of a single axon aligned. The circles highlight the section boundaries. Breaks in the renderings (stair-step effect) are the result of section boundaries
that  are not perfectly flat. Two  faint aligned axons can also be seen on either side of the marked axon.

Fig. 9. Example regions of aligned axons. Colors indicate different sections: 1 – Green, 2 – Orange, 3 – Yellow, 4 – Red, 5 – Blue. (a) Isosurfaces of a zoomed-in region of the
five  section testing subset. (b) Isosurfaces of a zoomed-in region of the five section full dataset.
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Fig. 10. Example registered centerlines for the five section testing subsets. Black lines represent segments with no connectivity to another section, and colors (randomly
assigned) mark axons connected across sections. (a) Aligned centerlines obtained semi-automatically. (b) Aligned manually corrected centerlines.
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espondences are what provide the connectivity information as to
hich segments should be considered the same axon. The stair-step
attern is caused by empty space along section boundaries that are
ot perfectly flat. We  also applied the method to the full dataset
ontaining approximately 900 landmarks per section. While quan-
itative results are only presented for the subregion, the same types
f errors are observable in the full dataset, namely spurious points
eing matched and some missed correspondences. Isosurface ren-
erings in Fig. 9 show examples of aligned axons, where sections
re tagged by different colors to make the axon transitions from
ne section to the next easily identifiable.

. Discussion and Conclusions

Our registration task faces the common challenge of incomplete
ne-to-one landmark correspondences across datasets. The sever-
ty of spurious and missing landmark formulation is dependent
n the tracing quality, as centerline endpoints at section bound-
ries are treated as landmarks. Faintly stained axons traced in one
ection but not the next, broken traces running along a section
oundary, incorrectly merged axons, and false branches near sec-
ion boundaries all generate erroneous landmarks. These problems
re more pronounced in the landmarks extracted from the semi-
utomatically acquired traces, hence the higher rate of spurious
andmark matchings in Table 2. The other problem is the merging
f centerlines for touching axons as they weave through a section,
ince individual axon identities are lost. This issue is highlighted
n Fig. 10a,  which shows the semi-automatically obtained center-
ines registered for the five section subset. The centerline colors
epresent axons connected across sections using the final corre-
pondence assignments, and the problematic merging is depicted
y the large bundle of green traces. In contrast, Fig. 10b  presents
egistered traces that have undergone time-consuming manual
diting prior to registration. The abundance of centerline colors in
ame region visually demonstrates that axon identities have been

ignificantly better preserved.

A tradeoff exists between the capacity to follow individual
xons over large distances and how readily results can be pro-
uced. While the semi-automatic traces are much faster to place
than by hand, the resolution of our datasets makes it difficult to
differentiate axons in moderate to heavily populated areas. With-
out correction, the ability to track any given axon is inhibited.
However, manual corrections are very time-consuming, especially
when considering hundreds of serial sections. Capturing sections
at a higher magnification could potentially help in improving trace
quality at the expense of substantially increased imaging times
and both computational and storage demands in dealing with
larger datasets. With the desire to maintain as much automation
as possible, another alternative is to register sections with the
semi-automatically obtained traces and track bundles of axons
versus individual projections. Our registration results indicate this
approach is plausible since truly corresponding landmarks are
matched well. Because this approach strays from our goal of fol-
lowing individual axons, however, it is also worth investigating
whether other automated tracing algorithms are better able to dif-
ferentiate axons at our current data resolution (Wang et al., 2011;
Chothani et al., 2011; Zhao et al., 2011; Turetken et al., 2011; Bas
and Erdogmus, 2011).

Several user set parameters are required for the registration,
though their selection is rather intuitive. Tables A.1 and A.2 in
Appendix A show the parameters used to register all of the sec-
tions. The coarse registration requires three significant parameters.
One parameter is the distance threshold for d, or the maximum dis-
tance for which to consider a landmark’s neighbors when creating
the distance histograms. Our moderately sized threshold captures
enough global context to identify the approximate region a point is
located in the section. The number of bins in d accounts for variabil-
ity in the locations of corresponding landmarks, since they will not
align under a rigid transform alone. The third primary parameter is
the distance tolerance, �, for determining a valid correspondence
in a given RANSAC iteration. The � threshold is intentionally set
to be lenient, implying that not all the inliers in Table 1 represent
truly corresponding axon pairs. The reason is because the match-
ing criterion for coarse alignment is solely based on distances to

neighbors. Considering the presence of spurious landmarks and
section stretching, it is difficult to match corresponding landmarks
exactly based exclusively on the distance criterion. Neverthe-
less, in cases of mismatch the correctly corresponding axon is
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Appendix A. Parameters

See Tables A.1 and A.2.

Table A.1
Coarse registration parameters.

Parameter Value Value in pixels

Distance threshold for d 409.5 �m 650
Number of radial bins for d 30
Distance error for RANSAC inlier: � 47.25 �m 75
Desired probability that a RANSAC 0.99
L. Hogrebe et al. / Journal of Neuro

earby, and the final least squares solution obtained provides
n acceptable coarse alignment. The logic behind the use of
he limited correspondence criterion is that under normal sec-
ion distortions most local axon configurations remain intact,
nd we only need to match a portion of them correctly to
stablish a global transformation. The criterion also allows us to
ssume no a priori knowledge of alignment. The numbers of inlier
orrespondences in Table 1 associated with the manually cor-
ected traces are higher since the distance-based correspondence
ssignments improve from the reduced number of spurious land-
arks.
The remaining two parameters in Table A.1 are the number of

oints used to calculate a potential rotation and translation, n, and
he desired probability that a pair of corresponding points is ran-
omly selected for model fitting, p. Parameter n is kept small since
e expect many of the initial correspondences to be incorrect as
reviously discussed, and we keep p near 1.0 so the iteration limit
alculated in (5) does not cause premature termination.

The parameters for the registration refinement are listed in
able A.2. The logic behind selection of the polar histogram param-
ters is similar to the prior discussion regarding the distance-only
istograms. However, the range threshold is smaller than that used

or d since we want to focus on more local differences. The choices
f radial and angular bin sizes are again moderately sized to account
or variations in the alignment of corresponding neighbors. The
thresh parameter prevents two points with very different neigh-
orhoods from being matched. In other words, this threshold aims
o keep spurious landmarks from being paired with one another.
he smaller the threshold, the more similar the polar histograms
eed to be for two points to be eligible for correspondence. We
llow some tolerance by setting Pthresh above the midpoint of its
ossible range.

The maximum radius a given point can be matched within is
thresh, though this value becomes bounded by the control point
pacing as the iterations progress. If there is too much distortion in

 region, i.e. a stretch larger than Dthresh, it is possible for a region
o not have any correspondences assigned. For a case like this the
ntent of starting with a sparse set of control points would be to pull
his region of the section into closer alignment as a nearby region
s corrected. The other thresholds that aim to restrict spurious

atchings based on radii, x − y plane orientations, and boundary
ngles are rthresh, �thresh, and �thresh, respectively. Axons are pre-
umed to transition roughly linearly across section boundaries, so
he value for �thresh assumes a factor of � has been subtracted
rom the moving section’s � angles (see Fig. 3). Because of sporadic
race inaccuracies, all three thresholds are allotted some leeway
o prevent truly corresponding landmarks from being disassoci-
ted.

The last series of parameters for the refined alignment relate
o the control point spacing. The initial spacing is a function of a
ough estimate of the amount of stretching present in the sections.
he testing subregions cover a small area, so their initial spacing is
et to only 176.4 �m.  In contrast, the full sections require a larger
nitial spacing due to more prevalent section-wide stretching, so
heir spacing begins at 1134 �m.  For the control point spacing
ate of change, we use the heuristic of halving the spacing at
ach iteration. Too rapid of a decrease can lead to missed corre-
pondences, since Dthresh is bounded by the spacing. The desired
pacing at which weight w forces Dm,n to completely dominate the
orrespondence measure in (6) is 12.6 �m,  and the desired final
rid spacing is 3.15 �m.  One clarification is that our grid spac-
ng halves at each iteration, so the SD and ST spacings are not

eached exactly. Instead, the first spacing reached that is smaller
han the specified value is used. Lastly, the challenges in dealing
ith large, high density control point grids, such as memory con-

umption, can in part be addressed by utilizing a full hierarchical
e Methods 207 (2012) 200– 210 209

B-spline implementation (Forsey and Bartels, 1988; Xie and Farin,
2004). In a scheme like this only regions containing landmarks have
increasing control point densities, so empty space is effectively
ignored.

There are many opportunities for extensions to this work. For
example, there are limitations to which datasets this method is
entirely applicable, such as those containing severe deformations
(perhaps as the result of a tear during mounting), small regions
of overlap, and extremely dense regions of axons. Because we
currently utilize spatial relationships among landmarks to aid in
identifying matching pairs, substantial landmark detection errors
or deformations so severe that large disparities exist between
axon geometric configurations and orientations are problematic.
For an immensely dense set of axons, we  could potentially again
lose the ability to identify unique local neighborhood configura-
tions. Our datasets so far exhibit moderate axon densities and
distortions. In addition, improvements are needed to reduce the
number of spurious landmarks incorrectly included in correspon-
dence assignments. The results based on the manually corrected
traces confirm that fewer false landmarks boosts both the pre-
cision and recall values, supporting the efficacy of the method.
However, the need still exists to reduce erroneous connections.
Finally, with the end goal of analyzing long-range neural cir-
cuits, it is obvious that many more consecutive sections must be
experimented on and statistics for the axon populations must be
generated.

A methodology for registering axonal processes across serial
sections has been presented in this work. We  take advantage of the
progress made in automated neurite tracing algorithms to extract
centerlines and set point landmarks at section boundaries. The trac-
ings also provide additional information for each landmark in terms
of the representative axon’s radius and orientation in the section.
We obtain a coarse registration without prior knowledge of how
sections are initially misaligned and allow for nonrigid warping in
response to moderate arbitrary deformations in the tissue. We  have
presented connectivity results for a region of axons and include
visualizations of the final automated alignment. While extensions
to the work presented are required to make it more applicable to
broader datasets, we  nevertheless show progress in providing neu-
roscientists with the ability to establish axonal connectivity in an
automated fashion.
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inlier is selected: p
Number of points used to determine a

model for RANSAC: n
3

x − y pixel spacings are 0.63 �m.
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Table  A.2
Refined registration parameters.

Parameter Value Value in pixels

Distance threshold for Pm,n 94.5 �m 150
Number of radial bins for Pm,n 10
Number of angular bins for Pm,n 10
Threshold for polar histogram

similarities: Pthresh

0.6

Threshold for distance of potential
matches: Dthresh

94.5 �m 150

Threshold for radii differences: rthresh 0.4 �m
Threshold for x − y plane orientation

differences: �thresh

�/3 rad

Threshold for boundary angle
differences: �thresh

�/3 rad

Initial control point grid spacing: SI 176.4 �m
(1134 �m for
full dataset)

280 (1800)

Control point spacing rate of change:
SRC

0.5

Desired control point spacing at which
Dm,n dominates: SD

12.6 �m 20

Desired termination control point 3.15 �m 5
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spacing: ST

 − y pixel spacings are 0.63 �m.
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Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.jneumeth.2012.03.002.
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ing and serial section registration of large stem datasets. Bioinformatics
2010;26(July):i57–63.

Tasdizen T, Koshevoy P, Grimm B, Anderson J, Jones B, Watt C, et al. Automatic
mosaicking and volume assembly for high-throughput serial-section transmis-
sion electron microscopy. J Neurosci Methods 2010;193:132–44.

Turetken E, González G, Blum C, Fua P. Automated reconstruction of dendritic and
axonal trees by global optimization with geometric priors. Neuroinformatics
2011;9(September(2–3)):279–302.

Unser M.  Splines: a perfect fit for signal and image processing. IEEE Signal Process
Mag 1999;16(6):22–38.

Wang Y, Narayanaswamy A, Tsai C, Roysam B. A broadly applicable 3-
d  neuron tracing method based on open-curve snake. Neuroinformatics
2011;9(September(2–3)):193–217.

Xie Z, Farin G. Image registration using hierarchical b-splines. IEEE Trans Vis Comput
Gr 2004;10(January/February(1)):85–94.
Zhang H, Negahdaripour S. Improved temporal correspondences in stereo-vision by
RANSAC. In: International conference in pattern recognition; 2004.

Zhao T, Xie J, Amat F, Clack N, Ahammad P, Peng H, et al. Automated reconstruction of
neuronal morphology based on local geometrical and global structural models.
Neuroinformatics 2011;9(September(2–3)):247–61.

http://dx.doi.org/10.1016/j.jneumeth.2012.03.002
http://www.diademchallenge.org
http://www.itk.org
http://www.reading.ac.uk/neuromantic

	Serial section registration of axonal confocal microscopy datasets for long-range neural circuit reconstruction
	1 Introduction
	1.1 Motivation
	1.2 Serial Section Registration Overview
	1.3 Related Work

	2 Methods
	2.1 Methods Overview
	2.2 Landmark Extraction
	2.3 Coarse Alignment
	2.4 Refined Alignment

	3 Results
	3.1 Datasets
	3.2 Experiments

	4 Discussion and Conclusions
	Acknowledgements
	Appendix A Parameters
	Appendix B Supplementary Data
	Appendix C Supplementary Data


