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Introduction 

Computer models have been used to study cardiac conduction since the late 1970’s [1]. At 

that time, computational power limited investigations to very simple geometries corresponding to 

single fibers or monolayer sheets of cells. With the evolution of computer technologies, 

computational models of the heart have become three-dimensional and increasingly more realistic 

[2-4], allowing a wider range of investigations to elucidate fundamental relationships of a set of 

biophysical parameters and the underlying potential distributions and current flow.  

Despite the considerable advances, there are relatively few models that integrate 

knowledge and data from the ion-channel to the organ level. One reason for this is a simulation of 

wavefront propagation in the whole heart at the resolution of a single cell quickly exceeds the 

computational capacity of the typical computer. We recently estimated the computational cost of 

simulating a single beat on a model of the human heart at “cellular” spatial resolution [5]. The 

volume of heart muscle is roughly 225 cm3 . To simulate the flow of current, we must first 

subdivide this volume into a computational grid of roughly similar sized elements. For box 

elements of volume (0.01 cm)3, a grid of 225 x 106 nodes is required.  For each one of nodes we 

must assign a local conductivity tensor (set of conductivities representing the fiber properties), a 

set of ion currents and some adjustable parameters. Assuming 50 numbers are associated with each 

node to define this information, 50 numbers x 4 Bytes/ number x 225 x 106 or 45 GBytes are 

needed just to hold the model in memory. To simulate an arrhythmia of only 10 sec with a time 

resolution of 10 µs (needed to resolve the fast kinetics of the sodium channel), these 10x1010 

numbers would have to be evolved over106 time steps. Consequently, a simulation of 

electrodynamics using an integrative model of the human heart at near cellular resolution is not 

very practical or even tractable, leading many to consider smaller hearts [2,3] where more is 

known about both the anatomy and membrane kinetics, given the wide range of experimental 

methods available to interrogate the electrophysiology in vitro.  
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Unfortunately, the nature of the action potentials and wavefront dynamics in these small 

animal hearts can be very different than in human hearts, owing in part to the marked differences 

in heart size, wall thickness, ion channel type and distribution. Furthermore, the differences in size 

and membrane kinetics are expected to impact the spatial scales over which certain types of 

heterogeneity can be manifested, confounding the ability to derive meaningful mechanisms of 

clinical arrhythmogenesis. 

The challenge of relating phenomena in small hearts to that found in larger hearts has 

become more important given the increase use of the mouse as a model of human cardiovascular 

disease. Because of the relative ease of manipulating the genome, there are now mouse models of 

long QT syndrome [6,7], hypertrophy [8,9] and regional ischemia [10] and other clinically relevant 

conditions [12]. In the human heart, is widely believed that many disease states lead to an 

increased probability of arrhythmia by increasing the heterogeneity in the structure of cardiac 

tissue and/or the expression of ion channel proteins. Because of the vastly different geometries and 

membrane kinetics, computer models are needed to derive the appropriate scaling laws and by 

doing so, help to elucidate the relationship between the mouse and human electrophysiology.  

A step toward this goal, is to create a computational model of wavefront conduction in the 

mouse heart that can yield data that can be related to clinical measurements such as including 

surface and transmural electrograms, Monophasic Action Potential (MAP) recording, and body 

surface ECG.  To accomplish this, the model of the mouse heart will need to include descriptions 

of the ventricular/atrial geometry, the local fiber orientation, material properties of the intracellular 

and extracellular spaces and the spatial distribution of the ion channels governing the activation 

and recovery processes. Ideally, these properties should be tunable over a range of pathological 

states to interpret a variety of experimental findings in the mouse heart.  

 

In this chapter, we present an integrative model of the mouse heart that combines a 

detailed description of the ion channel dynamics with a realistic description of the ventricular 
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geometry and fiber architecture. In addition, we present a paradigm for the rapid construction of 

preparation specific models of the mouse heart to explore normal and abnormal wavefront 

propagation. The paradigm combines semi-automated segmentation of magnetic resonance 

datasets to obtain the heart geometry and the local fiber orientation with advanced computational 

methods to solve the underlying equations of reaction and diffusion. We demonstrate the utility of 

this approach by simulating the activation and recovery patterns for a simple paced beat and 

generating signals that can be compared directly to data obtained from optical or electrical 

mapping. The results show that despite its small size, an integrative, three-dimensional model of 

the mouse heart can be used as a testbed to explore many fundamental phenomena of propagation 

and extracellular fields that are observed in larger hearts 

 

Methods  

Diffusion Tensor Imaging 

The first step toward creating a computational model of the heart is to obtain an adequate 

representation of both the ventricular geometry and the fiber architecture. Histological, sectioning 

methods have long been the standard for acquiring this information. LeGrice et al. used the 

histological data to create a finite element mesh of the canine ventricles [13]. Vetter and 

McCulloch used an analogous approach to create a model of the rabbit [2]. Unfortunately, the data 

gathering and reconstruction phases of serial sectioning methods are very time-consuming, leading 

to only a few stereotypic whole heart models.  

An alternative to sectioning for acquiring fiber directions is the use of MRI diffusion 

tensor imaging (DTI) methods [14] DTI exploits the dependence of the molecular diffusion of 

water in the tissue microstructure to provide estimates of the local fiber structure. Random 

translational motion, such as diffusion, has been shown to cause an irreversible loss of coherence 

and thus attenuates the MR signal. The signal attenuation in cardiac tissue can be expressed as: 
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where TEt =  is the time of echo, G is a time-varying magnetic field gradient vector,λ  is the spin 

gyromagnetic constant and  
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echo sequence. The scalar quantity ΣvvT is equal to the apparent diffusion coefficient ( ADC ), 

which is defined in terms of the laboratory coordinates. The linear transform Ugv =  (where U  is 

an orthonormal matrix) transforms v  to the global coordinate system 

 

ggADC T ⋅⋅= ΣUUT                                                           (3) 

 

From ADC , eigenvalues (Σ ) and eigenvectors ( U )can be computed such that  

ΣUUD T= . The row of U  corresponding to the largest eigenvalue is taken to be the primary 

fiber direction. Similarly, the secondary fiber direction is taken to be the row of U  corresponding 

to the second largest eigenvalue. Thus the elements 3..1u of U are found experimentally.  

 

Our group [15] was among the first to show quantitatively that the DTI estimates of fiber 

orientation in small sections of heart tissue compared well with those measured using standard 

histology. Scolan et al. [16] used DTI to obtain the 3D fiber structure of the rabbit heart and also 

found good correspondence to histological measurements. The relative ease of data collection 
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using DTI versus histology makes it an attractive method to follow morphometric changes through 

the course of an interventional treatment.  

 

Reaction-Diffusion Model 

Once the geometry and fiber directions are obtained, the next step is to create a stiffness 

matrix that contains the information on the geometry and material properties. Cardiac tissue can be 

viewed as an interconnected mesh of myocytes, collagen and vasculature in which the myocytes 

are coupled through a conductive intracellular space and surrounded by an interstitial space.  The 

bidomain model was developed to represent cardiac tissue as a syncytium [17]. In the bidomain 

framework, the intracellular and interstitial spaces are considered to be uniformly continuous. For 

convenience, quantities associated with the intracellular (i) and interstitial (e) spaces are defined 

over the entire tissue volume. In tissue, current can only pass from one region to the other through 

the membrane. In the bidomain model, the transmembrane current is volume averaged and is 

defined at each point [18]. The bidomain equations are given as: 

 

( ) ( )me V∇⋅−∇=+⋅∇ iei DDD φ                                              (4) 

( ) ( ) mem IV βφ −=∇⋅∇+⋅∇ ii DD                                             (5) 

 

where mV  and eφ  are the transmembrane and extracellular potentials, respectively 

and 2
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= =  is the surface to volume ratio, where if  is the fraction of intracellular 

space and a is the cell radius. The transmembrane current density, mI , is composed of a 

capacitive and an ionic current, namely 
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In the most general case where fiber orientation is not constant, i,eD  becomes a function 

of position and is assigned separately to each point in both the intracellular and interstitial domains 

[19].   

The bidomain model can be extended to simulate the possible shunting effects of a blood 

bath or other conductive medium by assuming an adjoining volume conductor in which the 

potentials and currents satisfy Laplace's equation. At the tissue/air or bath/air boundaries in the 

intracellular and extracellular spaces, the boundary conditions are no current flux. At the 

tissue/bath boundaries, the intracellular space is sealed (no flux) while the current and potential are 

continuous across the boundary in the extracellular space [20]. To obtain a unique solution, the 

extracellular potential at some point in the domain is set bath to V0  to act as the ground.  

 

Numerical Discretization of the Diffusion Matrix 

 

Analytic solutions to the bidomain equations are unavailable in all but the most trivial 

cases. To solve more realistic problems, a numerical approach must be used. The most common 

numerical scheme for solving this system of equations is the finite difference (FD) method. This 

method, however, is best suited to regular geometries. The finite element method (FEM) is the 

preferred scheme to deal with complicated geometries, but it is less intuitive than FD. An 

alternative to FEM is the vertex-centered finite volume (FV) method [21]. FV enforces local 

current conservation and the resulting grid can be interpreted as a lattice of interconnected 

resistors. In addition, the method naturally enforces no flux boundary conditions, eliminating the 

need for ghost nodes or other tricks that have plagued finite difference methods for non-

rectangular and non-uniformly anisotropic domains. Penland et al. provide a detailed description 

of the FV method and its application to general, three-dimensional anisotropic cardiac tissue [22]. 
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Ionic Currents 

 

The ionic current in equation 6 is the sum of individual currents flowing across the cell 

membrane. 

∑
=
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Generally, xI  is a function of the transmembrane voltage and a non-linear function of some 

number of state variables representing the gates that modulate current flow, given by 
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where pz  is the average state of a given channel  ( OpenzClosed =≤≤= 10 ), q  is typically an 

integer exponent, xG  is the maximum conductance and xE  is the reversal potential for xI .  

The channels themselves are governed by equations of the form 

zVzV
dt
dz

mzmz )()1)(( βα +−=                                             (9) 

where zα and zβ are rate constants that are generally dependent on mV . Alternatively, more 

detailed descriptions of gating behavior are available in the form of multi-state Markov models, 

which can facilitate the representation of effects of certain genetic mutations [23]. 

The specifics of the ionic currents and thus action potential shape depend greatly on 

species and the location within a given heart. For example, in the mouse heart the transient 

outward current (Ito) is the dominate repolarization current rather than the rapid (Ikr) and slow 

(Iks) repolarization currents that tend to dominate the repolarization phase of the cardiac action 

potential of larger mammals [24]. The specific distribution of the channels can lead to intrinsic 

changes in action potential duration throughout the myocardium [25]. The marked differences in 

the timecourse of the murine cardiac action potential compared to the human cardiac action 



 

 
9

potential has raised some questions about the utility of the mouse as a model system of clinical 

electrophysiological dysfunction. 

 While no mouse membrane model exists, Pandit et al. recently published a detailed model 

of the rat myocyte action potential [26]. We have chosen to modify the Pandit model by increasing 

the upstroke velocity (by increasing the maximum sodium conductance Nag  to cmmS /5.1 ) to 

more closely match experimental findings for the mouse [25]. 

 

Model Construction 

An intact mouse heart (C57BL/6J strain, Jackson Laboratory, Bar Harbor, Me) was fixed 

in formalin and scanned using a 1 cm-diameter loop-gap RF coil on a 7.1 T MRI microscope in a 

short axis view.  To minimize displacement, the heart was placed in a centrifuge tube, producing 

some distortion of the geometry. Three-dimensional standard spin-echo diffusion-weighted images 

(10 x 10 x 12.5 mm FOV, 500 ms TR, 12.6 ms TE, 3.5 ms-duration half-sine diffusion encoding 

pulses, 6.3 ms pulse separation) were acquired.  The reduced encoding DTI dataset consisted of 

one full-encoding, high-resolution (128 x 128 x 128 matrix size) non-diffusion-weighted image, 

and 12 reduced-encoded (128 x 64 x 64) images encoded in each of an optimized set of 12 

diffusion-sensitizing directions [5].  Diffusion weighted images were reconstructed to full-

encoding matrix size via a modified keyhole method with zeroth order intensity correction.  To 

reduce noise, adaptive Wiener filtering was applied to each image. 

Since the MRI data set is a cube of data containing cardiac tissue and non-cardiac tissue, a 

method was developed to differentiate the two volumes. The raw DT MRI 13-channel data was 

converted into linear tensors using a non-linear least-squares fitting algorithm [5]. Voxels with low 

diffusion signals corresponded to non-cardiac tissue (background and blood bath), and were 

masked out during the least-squares fitting. The non-masked voxels were decomposed into 

primary, secondary, and tertiary fiber orientations using a standard eigen-decomposition. This 
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segmented, decomposed data, served as the input into BioPSE software system (Scientific 

Computing and Imaging Institute, University of Utah) in order to construct the finite volume mesh 

and corresponding stiffness matrices [27]. 

 To complete the mesh generation, a random seed was placed at a known cardiac node and 

a flood fill algorithm was used to determine all nodes belonging to the cardiac set. The same 

procedure was used in the left and right ventricular cavities to identify the blood bath set. All 

nodes not reached by the three flood fills where eliminated. Due to the node elimination process, 

some elements were incomplete. Nodes belonging to incomplete elements were eliminated and the 

remaining nodes were renumbered. 

 

Tissue Properties  

The tissue was assumed to be anisotropic with the cross fiber properties to be the same 

within sheets and across sheets (i.e. transversely isotropic). The following bidomain conductivities 

were assigned along fibers:  ilg = 5.0 mS/cm, elg = 4.0 mS/cm; the following were assigned across 

fibers: itg = 0.5 mS/cm, etg = 1.33 mS/cm. The surface to volume ratio was 1666 cm-1, 

corresponding to a cell radius of 8.4 microns and a fraction of intracellular space of 0.7. 

 

Numerical Methods 

Equations 4 and 5 were solved numerically using a semi-Implicit Crank-Nicholson scheme 

where the equations of the state variables for Iion in Eq. 6 were updated with forward Euler method. 

A fixed timestep of 2.0 µs was used. The extracellular ground was placed in the RV blood cavity. 

The Cuthill-McKee Algorithm was used to minimize the bandwidth of the matrix. The resulting 

system of equations was solved using an iterative Jacobi preconditioned GMRES algorithm with a 

tolerance of 410− mV. All simulations were performed using the custom software tool 

CARDIOWAVE (Duke University) [28] developed in our laboratory. The modular software is 
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designed to run on multiple processors. All simulations were executed on an IBM SP Power 3 

System at the North Carolina Supercomputing Center. 100 msec of simulated activity required 6 

hours on 11 processors. 

 

Results 

When performing a DTI scan, a non-diffusion weighted image is usually acquired to 

obtain the geometry, facilitating subsequent registration. Figure 1A shows a volume rendering of 

portion of the fixed mouse heart geometry used to create the computational mesh. Figure 1B 

shows a rendering of the computational grid formed from segmentation of the DTI data. Each 

element is a regular cube with dimensions of approximately 75 x 75 x 75 microns. At this 

resolution, the volume of the mouse heart comprises 225,236 nodes. The ventricular cavity is also 

discretized into 793 nodes so a blood bath can be incorporated for bidomain computations. The 

DTI data gives a local tensor at each voxel. The eigenvector associated with the largest eigenvalue 

has a direction that is aligned with the fiber direction. The surface fiber directions are shown on 

the geometry of Figure 1B as small white lines. The surface fibers run obliquely from apex to base 

on a portion of LV free wall and away from the septum they tend to run circumferentially around 

the heart. On the endocardial surface the fibers tend to align more vertically from apex to base. 

Note that unlike the mathematical description used by Legrice et al. [13] and Vetter and 

McCulloch [2], the fiber directions show significant local variation. Some of this is due to normal 

physiological variation, but some is due to the preparation of the heart and to processing artifacts 

arising from small tissue displacements that occur during then scan. The fibers through some 

portions of the wall reveal a surprisingly smooth rotation, similar to that found in the hearts larger 

mammals. The rotation of 80-90 degrees, however, is less than the 110-130 degrees found in larger 

hearts, although the rate of rotation is considerably faster, since the LV has an average thickness of 

approximately 1.5 mm and the RV has an average thickness of approximately 0.6 mm.. Three 
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projections of the fibers, uniformly sampled across the RV and LV, are shown in Figure 2, in two 

separate views.  

 

To study the activation and recovery, a stimulus was applied on the epicardial surface of th 

LV to simulate an ectopic beat. Figure 3 shows the transmembrane (Vm) and extracellular (Φe) 

potential distribution on the LV surface 0.5 msec (top row), 6.5 msec (second row), 8.5 msec 

(third row) and 10.5 msec (bottom row) after the stimulus onset. The distribution at 0.5 msec is 

during the application of the stimulus. In all images, light areas denote depolarized or positive 

potential, where darker regions denote hyperpolarized or negative potentials. At 0.5 msec, the 

transmembrane potential map reveals a small virtual cathode, by a characterized depolarized 

region flanked by two hyperpolarized regions [29]. The hyperpolarization is, however, very small 

(less than 0.5 mV) for the stimulus strength used. After the stimulus the wavefront propagates 

outward as an ellipsoidal front. For the assigned properties, the propagation velocity is 

approximately 68 cm/sec along fibers and 34 cm/sec across fibers. Both the pattern and conduction 

velocities compare well to that observed by Nygren et al. for the mouse using voltage sensitive 

dyes [30]. The extracellular potential distribution is characterized by a central negative region with 

two positive maxima that are roughly aligned with the surface fiber direction. This classical pattern 

is consistent with that first described by Taccardi et al. [31] in canine hearts and later by Macchi et 

al in rat hearts [32].  Because the mouse LV wall is thinner than the canine LV wall, however, 

there much less rotation in these patterns as the front propagates transmurally, compared to the 

canine heart [33]. 

Figure 4A shows the activation map that is obtained by tracking the time the upstroke 

reaches -60 mV at every point.  For the given pacing site, the entire heart activates in 

approximately 24 msec. Figure 4B shows the recovery map, obtained by tracking the point at 

which the recovery tail reached -60 mV. Note that the recovery map has a bullseye pattern near the 
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stimulus.  This region recovers from outside to inside, so that stimulus site is the last to recover 

[34]. The remainder of the heart recovers in the same direction as activation.   Because of the small 

heart size and strong electrotonic effects, the recovery is completed within 6 msec (62 msec to 68 

msec). Note that the recovery map is broader and less anisotropic than the activation map, due in 

part to the longer effective length constant during repolarization. Finally, the difference in the 

activation and recovery patterns is the APD distribution (Figure 4C). The APD range is 43.2 msec 

to 63.9 msec with the longest APD near the stimulus site. It is important to emphasize that these 

patterns are observed in the model because we assumed 

 

One advantage of computational modeling is the ability to relate measurements such as 

electrograms with transmembrane potentials and currents at high spatial resolution in the same 

preparation. Figure 5 shows two representative surface transmembrane potential signals and the 

corresponding electrograms at the sites along and across fibers. As has been reported in larger 

hearts, the amplitude of the electrograms across fibers is smaller and the shape is less symmetric 

than the electrograms along fibers. Both electrograms exhibit a prominent J wave, associated with 

the rapid early phase of repolarization and a slight T wave associated with the late phase of 

repolarization. Another significant advantage of the model is that information can be obtained in 

three dimensions. Figure 6 shows the transmembrane potentials and electrograms at five sites 

across the wall near the stimulus site. The times of the maximum negative deflection in the 

electrograms and the maximum rate of rise of the upstroke are coincident and are slightly shifted 

to the right as the front propagates from epicardium to endocardium. Note that the electrograms 

tend to increase in amplitude across the wall due, in part, to a reduction is front curvature.  
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Discussion 

It has long been recognized that three-dimensional models of the whole heart are needed 

to study many types of normal conduction and reentrant arrhythmias that cannot be reproduced in 

models of small sections of tissue.  Early whole heart models used cellular automaton algorithms 

with isotropic properties [35,36]. Later models incorporated realistic anatomy and fiber 

orientations, but relied on simplified FitzHugh-Nagumo kinetics or variants of the automaton 

approach to obtain reasonable simulation times [37-39]. It has only been within the last couple of 

years that investigators have attempted to create and use three-dimensional models are truly 

integrative, combining both realistic representations of anatomy and tissue properties with realistic 

models of ion fluxes (3,4,40). To achieve an integrative model, however, the heart sizes are 

generally smaller than human size and the spatial resolution is significantly larger than a single 

cell, in some cases compromising numerical accuracy. In this chapter, we demonstrated an 

approach for creating a preparation specific model of wavefront propagation in the mouse heart at 

near cellular resolution, using geometry and fiber data obtained directly from MRI images. By 

combining advanced visualization and analysis tools like BioPSE [27] with efficient, parallel 

computational algorithms such as those used in CARDIOWAVE [28], the approach can be 

extended straightforwardly to the human heart.  

The differences in the cardiac dimensions of the mouse and human heart are striking. The 

typical adult mouse heart weighs between 150 and 175 mg [12]. In contrast, the adult human heart 

weighs approximately 280,000 mg. The mouse heart used in this study had an average LV wall 

thickness of approximately 1.5 mm, and an average RV wall thickness of approximately 0.6 mm. 

These dimensions are roughly an order of magnitude smaller than the human heart. In fact, the RV 

murine heart wall is only about 3 or 4 resting length constants for current flow, significantly 

impacting transmural activation in the heart. Perhaps the most compelling fact is that the number 

of cells in the mouse heart (10x106 myocytes) is within that used for several large-scale models of 
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heart dynamics (41). Thus it is conceivable, with modern day computers, to simulate tens of beats 

in a model of the entire mouse heart at cellular resolution, with a physiologically realistic model of 

the action potential.  

While there have been some investigations to quantify the fiber architecture in mouse 

heart using serial sectioning methods, this study represents the first attempt to obtain this 

information using non-destructive diffusion tensor imaging. McLean and Prothero reported that 

the heart wall was like a "sandwich," in which the myofibers in the middle layer run mainly 

circumferentially, whereas those in the inner and outer layers run parallel or oblique to the apical-

basal axis, a variant of the classical model of the myofiber pattern [42]. While DTI imaging (albeit 

on only one heart) yielded similar patterns for the gross fiber directions as described by McLean 

and Prothero, the transmural rotation of the fibers in some portions of the LV free wall was 

smoother than that found using histology. The differences in findings could be attributed to the 

techniques themselves or to difference in hearts (e.g. age, strain, etc). More study is required to 

resolve this discrepancy. 

 It is important to emphasize that the data was obtained from an explanted heart fixed in 

formalin. Although there are challenges in appropriately pressure loading the heart to achieve a 

normal shape, the use of fixation allows longer imaging times, higher spatial resolution and better 

signal to noise than that obtained in vivo.  The use of fixation also eliminates the possible 

corruption of the signal from perfusion and does not appear to affect the estimates of fiber 

orientation [43].  While diffusion tensor imaging was used here to obtain the orientation of fibers 

along the long axis, there is some evidence to suggest that the method can also provide estimates 

of the sheet structure that has been hypothesized to exist based on histology. For the simulations 

presented, the fiber data was not interpolated from a small subsample of fiber measurements. 

Instead, the fiber estimates obtained from the DT images for each voxel was used. Because of the 

challenges of preparing a heart of this small size for scanning, some artifacts in the fiber estimates 

arose at the myocardial borders likely due to small shifts/deformations of the heart caused by 
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diffusion induced eddy currents in the scanner. Some of these artifacts may be corrected by 

registering the images acquired for different gradient directions before estimating the tensors or 

eliminating fiber estimate that fall below some threshold of anisotropy ratio. These schemes are 

currently being tested to improve the model construction process. 

 
Because of the small heart size, the computational grid that is generated after processing 

the MRI data is at a fine spatial resolution, but the surfaces of the grid are not smooth. The 

advantage of using a stairstep mesh rather than a boundary fitted mesh is that it can be created very 

rapidly and it avoids some of the numerical issues associated with adjacent element of different 

sizes. Using the FV scheme, a stiffness matrix can be created directly using the MRI voxels as 

elements.  This approach makes it possible to create preparation specific models for each heart 

used in a given study to help explain any possible heart to heart variation in the electrophysiology.  

 

The small heart size also enabled us, for the first time, to use a fully coupled bidomain 

formulation in a integrative model of the whole heart. With this model, both the transmembrane 

and extracellular potentials could be computed for an entire paced beat. While not yet completely 

experimentally validated, the patterns of transmembrane potential are qualitatively similar to those 

recorded optically by Nygren et al. [31] in the mouse heart and the extracellular potential patterns 

are consistent with those measured by Macchi et al. in the rat [32]. Perhaps more importantly, the 

patterns are similar to those observed in larger hearts, suggesting that the mouse heart and 

computer models based on the mouse geometry can be used to study both wavefront propagation 

and fundamental source-field relationships over a wide range of conditions that can be potentially 

achieved through genetic manipulation. 

 

The ability to experimentally manipulate the genome makes the mouse an excellent 

experimental system to probe the genetic aspects of electrical dysfunction. It is becoming 
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increasingly clear, however, that arrhythmogeneis is not simply explained by the presence of a 

certain gene or the individual proteins that the gene codes for, but rather how the proteins interact 

in some signaling pathway to create a substrate for propagation failure [44]. This arrhythmogenic 

substrate usually involves changes in both the structure (how the cells are connected) and the 

distribution and kinetics of the ion channels [45,46]. By using simulation, it will eventually be 

possible to compute these protein interactions first in an integrative model to test a hypothesis in 

silico and then design the appropriate experiment or transgenic mouse to investigate a clinically 

relevant condition.  

As noted earlier, an important challenge to overcome in using the mouse heart is to relate 

the phenomena associated with certain protein interactions at the small scale to those expected in 

the larger human heart. While certain aspects are still beyond our reach, computer models will 

likely play a major role in providing the linkages at these disparate scales.  As always, 

investigators will need to find the right level of complexity of the model that will allow them to 

gain insight into the phenomena of interest and to determine the next avenue for feasible 

experimental inquiry. As demonstrated in this study, the models should be able to generate output 

in such a way that information that can be measured experimentally can be related to information 

that cannot. For example, it is possible to measure electrograms or fluorescence indicative of 

transmembrane potential at multiple sites in the heart, but not the individual ionic currents.  An 

integrative model that links these two pieces of data can help unmask the molecular basis of a 

certain arrhythmia. By combining optical imaging methods and MRI techniques, it may soon be 

possible to map the distribution of gene expression onto the three-dimensional geometry and 

incorporate this information into a computer model of transgenic mouse heart [47,48]. This type of 

information will be critical to fully understanding the kind of protein interactions that promote 

arrhythmogenicity. Finally, by adhering to the philosophy of modeling what can be measured, 

integrative three-dimensional models of the heart using realistic ion channel dynamics can be 

joined with models of the current flow in the torso to compute the ECG, providing a computational 
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framework to investigate electrophysiology of the heart from the level of the protein to routine 

clinical observation. 
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Figure Captions 
 
Figure 1:  Construction of the computational grid of the mouse ventricle from magnetic resonance 

(MR) images. A) Volume rendering of a region of the mouse ventricles from baseline MR image. 

B) Discrete, stair-step grid obtained from segmentation of MR image. Surface fiber directions 

estimated from diffusion tensor imaging (DTI) are shown as short white lines  

 

Figure 2: Two views of heart geometry showing smooth, transmural  fiber rotation in the mouse 

heart as estimated from DTI measurements. 

 

Figure 3: Epicardial transmembrane and extracellular potential distributions at four time steps arising 

from an epicardial extracellular stimulation. During the stimulus (top row), the transmembrane 

potential reveals a virtual cathode with a depolarized zone adjacent to two hyperpolarized zones (Vm 

colormap range: -81 mV to –79 mV, isolines at –80.7 mV, -80.3 mV, -80 mV; Φe colormap range: -

4 mV to 4 mV, isolines at –8 mV, –1 mV, and  0 mV). After the stimulus (bottom three rows), the 

wavefront propagates anisotropically from the stimulus site with a conduction velocity of xx cm/sec 

long fibers and xx cm/sec across fibers. The extracellular potential distribution is characterized by a 

central, elliptical negative region flanked by two regions of positivity that form along the epicardial 

fiber directions  (Vm colormap range: -80 mV to 40 mV, isolines at –80 mV, 60 mV, -20mV, 0 mV, 

20 mV; Φe colormap range: -2 mV to 1.8 mV, isolines at –8 mV, –2 mV, -1 mV, 0.3 mV, 0.5 mV 

and 1.0 mV). 

  

Figure 4: Isocontours of (A) activation time, (B) recovery time and (C) action potential duration 

(APD).  The activation time is determined by tracking the time at which the potential reaches xx 

mV on the upstroke while the recovery time is determined by tracking the time the potential 
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reaches xx mV after the peak. The activation isochrones move outward from the stimulus site. 

Ischrones are shown every 3 msec from the range 5 msec to 23 msec. The recovery proceeds in the 

same direction as activation except near the stimulus (bullseye region) , where it proceeds inward 

so that the stimulus site is the last to recover. Isochrones are shown at 62.5 msec, 63 msec, 64 

msec, 65 msec, 66 msec, 67 msec. Finally the APD is shown with the longest APD near the 

stimulus. Isochrones are shown every 2 msec from 43 msec to 63 msec. 

 

Figure 5: Representative timecourses of epicardial transmembrane and extracellular potentials for 

a single beat, along and across fibers. The amplitude and shape of the action potential is relatively 

independent of direction, while the electrograms are smaller and less symmetric across fibers than 

along fibers. The electrograms exhibit a J-wave, coinciding with the rapid early phase of 

repolarization, followed by a T-wave associated with the late phase of repolarization.   

 
Figure 6: Time course of transmembrane potentials and electrograms during depolarization, along 

and across fibers at 5 sites for propagation across the wall. As the front propagates from 

epicardium to endocardium, there is a shift of the time corresponding to the maximum negative 

deflection of the extracellular potential and the maximum rate of rise of the transmembrane 

potential. In addition to the time shift, there is a slight increase in amplitude of the extracellular 

potential as the front approaches the endocardial surface. 
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