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SUMMARY

The use of an adjoint technique for goal-based error estimation described by Hartet al. (this journal,
volume 47, pages 1069–1074) is extended to the numerical solution of free boundary problems that arise in
elastohydrodynamic lubrication (EHL). EHL systems are highly nonlinear and consist of a thin-film approximation
of the flow of a non-Newtonian lubricant which separates two bodies that are forced together by an applied load,
coupled with a linear elastic model for the deformation of the bodies. A finite difference discretization of the
line contact flow problem is presented, along with the numerical evaluation of an exact solution for the elastic
deformation, and a moving grid representation of the free boundary that models cavitation at the outflow in this
one dimensional case. The application of a goal-based errorestimate for this problem is then described. This
estimate relies on the solution of an adjoint problem; its effectiveness is demonstrated for the physically important
goal of the total friction through the contact. Finally, theapplication of this error estimate to drive local mesh
refinement is demonstrated. Copyrightc© 2009 John Wiley & Sons, Ltd.
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1. Introduction

Elastohydrodynamic lubrication (EHL) describes the flow ofa lubricating fluid which separates two
solid bodies that are being forced together by a large external load. In particular, EHL represents
the case where this load, and the resulting pressures in the fluid, are sufficiently high as to lead
the solid bodies to deform. The purpose of separating the bodies with a thin lubricating film is to
reduce the friction in the contact, thus increasing the efficiency of energy transfer through the contact,
and reducing the wear on the contacting elements. Consequently, when modelling an EHL contact
numerically, whilst flow field properties such as the pressure distribution or the thickness of the film
are significant, it is often quantities such as the friction,that are of most interest, [5,6].

The purpose of this paper is to demonstrate how goal-based error estimates may be developed
that specifically target derived quantities such as friction, in order to provide reliable information
on the accuracy of such EHL solutions, and to guide local meshrefinement for these problems. Our
approach is to build upon an earlier, exploratory study, [10], which applied the techniques used here
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(based upon [18–20]) to a simple model problem. The contribution of this paper is to show that this
methodology can be extended successfully to the full EHL problem with a realistic model of film
thickness and the application of adaptive meshes.

Solution times for numerical models of EHL problems continue to decrease as the algorithms used
improve and the computers on which they are solved become more powerful. For example as with
the authors’Carmehl software that is used by Shell, [8], EHL solvers are used by industry within
optimisation processes to match known experimental calculations of friction across a wide range
of operating conditions in order to estimate the many model parameters that describe the lubricant.
This leads to thousands of different computational cases, all of which need very accurate calculations
of the friction. Furthermore, as the lubricant used by industry become more complex, the demands
for robustness, accuracy and speed of the software continueto increase. Often research into error
estimation and control has tended to assume that it is the overall accuracy of the computed solution
which is of interest. In many practical situations however,the solution field is used to calculate some
derived quantity, such as friction, drag, lift, etc, [18–20].

Investigations into friction have been mainly confined to experimental work such as Blencoeet al. [3]
and Workelet al. [21]. An important feature of typical EHL solutions is a clearly defined spike in the
pressure field near the outflow of the contact region, and estimating the friction reliably appears to be
closely related to accurately capturing the profile of this pressure spike. Work by Bisset and Glander [1]
showed that when more mesh points are used in the region of thespike then it is no longer seen as a
singularity in the solution, but a smooth profile. This work only resolved the spike using up to 1000
points, however it did still highlight the importance of this area of the solution. More recent results
in [7,11] used over a million mesh points and illustrated both the smoothness of the pressure spike and
the need for appropriate levels of mesh refinement. Consequently, calculating the friction accurately
depends on achieving the necessary resolution of the pressure profile.

The approach taken here to estimate the error in the computedfriction is to make use of adjoint
methods to calculate the sensitivity of the output quantityof interest to other computable quantities.
This involves formulating and solving an adjoint system from the original “forward” problem. There
are two distinct but related approaches to formulating sucha system: continuous and discrete,
see Nadarajah and Jameson [14]. The approach followed here is that developed by Darmofal and
Venditti [18–20]. This is a discrete adjoint formulation which, as stated in [19], “is a discrete analogue
of the Pierce and Giles [15] technique”. The main reasons forour choice of this method over the
approach of [15] is that, for a complex EHL problem, formulating the continuous adjoint problem
(including appropriate boundary conditions) would be non-trivial. Through the use of the discrete
approach however, adjoint error estimation becomes a realistic prospect for application to EHL.

2. Governing equations and their discretization

The governing equations for EHL are based upon a long-wave approximation to the flow in the contact,
which simplifies the Navier-Stokes equations by assuming that inertial terms and the variation in
the normal direction are both negligible, coupled with a small elastic deformation for the contacting
elements. The former approximation leads to the Reynolds equation (see below) whilst the latter leads
to an analytic solution which requires the evaluation of a line integral (also shown below). Additional
features of the model include a force balance constraint anda free boundary condition, which represents
the fact that the model is only valid for positive pressures yet the location at which the pressure becomes
negative (the cavitation position) is unknowna priori.
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Figure 1. Illustration of an idealized line contact.

For this work we consider line contact problems in which two cylinders are aligned with their axes
of rotation parallel and are in close contact separated by a lubricating film. Such a case is illustrated in
Figure 1 and provides an idealised model for numerous commoninteractions. By ignoring end effects,
it is only necessary to model the behaviour at a single cross-section of the line contact with a single
independent variable, which represents the distance across the contact. All of the equations presented
are the standard non-dimensionalized form [9].

2.1. Elastohydrodynamic lubrication line contact

The Reynolds equation for the full line contact is given by

∂
∂X

(

ε
∂P
∂X

)

−
∂ (ρH)

∂X
= 0, (1)

with the film thickness equation, based upon the linear elastic assumption, given by

H = H0 +
X2

2
+

1
π

∫ ∞

−∞
ln |X −X ′|P(X ′)dX ′. (2)

In these equationsP(X) is the pressure field,H(X) is the film thickness field,H0 is the central offset

distance,ρ(X) is the density (see (3) below) andε = H3ρ
λ η , whereλ is a known constant (depending

upon the relative motion of the contacting elements) andη(X) is the viscosity. For this work we make
use of the viscosity and density models of [16] and [4] respectively:

η = exp

{(

α p0

z

)(

−1+

[

1+
Pph

p0

]z)}

and ρ =
0.59×109+1.34Pph

0.59×109+ Pph
. (3)

In each of these expressionsph is the representative pressure that has been used in the non-
dimensionalization of the equations. The examples in the rest of this paper use the parametersλ=60.7,
α=1.43×10−8, p0=1.96×108 and z=0.68. Finally, we state the force-balance equation which requires
that the sum of the pressure is equal to the applied load:

∫ ∞

−∞
P dX =

π
2

. (4)

In equations (1) to (4) it is possible to treat justP(X) andH0 as unknowns since, once these have
been found, all of the other quantities may be determined. A further unknown must also be introduced
however, to capture the position of the free boundary, at which cavitation occurs. We will denote this
position asXc, which must be found such that the boundary condition

P′(Xc) = 0 (5)
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holds, reflecting the fact that the pressure should not be allowed to go negative. If we also approximate
the domain by a finite interval of lengthD and impose zero Dirichlet boundary conditions for pressure,
then we must also satisfy

P(Xc −D) = P(Xc) = 0 . (6)

2.2. Friction

Friction is a force which opposes motion and in an EHL contactis given by the shear stress generated
within the lubricant. This comes about through two mechanisms, rolling friction and kinetic (sliding)
friction. Within the contact, a pressure gradient is generated. This is because the deformation of the
contact is largest in the centre, requiring the greatest pressure to maintain it. As the two surfaces move
through the contact, lubricant is pulled with them (entrained). However, it is also squeezed out by the
pressure generated in the contact region, and so the lubricant in the middle is moving at a different
speed to the surfaces, causing it to shear. The resistance tothis motion is called the rolling friction and
forms the first term of each expression in (7) below. The second mechanism for the generation of shear
stress only happens when the surfaces are in relative motion, hence sliding friction. Now, the lubricant
is sheared at the rate of the difference in speed of the two surfaces per unit thickness. It is therefore
possible to derive the shear stress on each surface [17]:

τxz;a(x) = −
h
2

∂ p
∂x

+
η
h

(ub −ua) and τxz;b(x) =
h
2

∂ p
∂x

+
η
h

(ub −ua) , (7)

for the lower and upper surfaces moving at speedsua andub respectively. Note that, following [17],
we express (7) in dimensional form here. Hence, from these expressions, it is possible to work out the
total dimensional friction through a line contact,F as either

F =

∫ ∞

−∞
τxz;a(x)dx or F =

∫ ∞

−∞
−τxz;b(x)dx , (8)

depending on which surface is required. In this work, the friction on the lower surface will be used,
i.e. the first equality in equation (8), although this choiceis arbitrary. This is a key quantity of interest
as it gives a measure of the force opposing the shear in the lubricant, e.g. [2].

2.3. Discretization

In discretizing equations (1) to (6) the computational domain, Xc −D 6 X 6 Xc, is divided inton−1
intervals, to form a grid withn nodes located at pointsXi = Xc −D + i∆X , for i = 0, ...,n−1, where
∆X = D/(n− 1). This assumption of equally spaced nodes is made here primarily to simplify the
exposition in this section, the straightforward extensionto non-uniform grids being used for the local
mesh refinement results presented below. As indicated in Section 2.1, the primary unknowns for the
EHL problem areP(X), H0 andXc and are represented by then+2 unknowns:P0, ...,Pn−1, H0 andXc.
In order to determine these unknowns, a system ofn + 2 nonlinear equations is defined, based upon
the discretization of equations (1) to (6). These may be represented as the residual equations:Ri = 0
(i = 0, ...,n−1), RXc = 0 andRH0 = 0. The Dirichlet boundary conditions (6) allow the residuals for
the two end points of the domain to be given simply by

R0 = −P0 and Rn−1 = −Pn−1 . (9)
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Application of a standard finite difference scheme to the Reynolds equation (1) yields the nextn−2 of
the residual expressions, for pointsi = 1. . .n−2:

Ri = ∆X

(

(

ρ iHi −ρ i−1Hi−1

∆X

)

−

(

(Pi+1−Pi)εi+ 1
2
− (Pi −Pi−1)εi− 1

2

(∆X)2

))

=
(

ρ iHi −ρ i−1Hi−1
)

−

(

(Pi+1−Pi)εi+ 1
2
− (Pi−Pi−1)εi− 1

2

∆X

)

(10)

=
(

ρ iHi −ρ i−1Hi−1
)

−

(

εi+ 1
2
Pi+1− (εi+ 1

2
+ εi− 1

2
)Pi + εi− 1

2
Pi−1

∆X

)

, (11)

whereεi =
H3

i ρ i
λ η i

, εi± 1
2

= (εi +εi±1)/2, and the discrete form ofHi, η i, andρ i are given respectively by

Hi = H0 +
X2

i

2
+

1
π

n−1

∑
j=0

Ki jPj, (12)

η i = exp

{(

α p0

z

)(

−1+

[

1+
Pi ph

p0

]z)}

and ρ i =
0.59×109+1.34Piph

0.59×109+ Piph
, (13)

the matrixK in (12) depending upon the quadrature rule that is selected for the evaluation of (2). In
this work the following standard equation is used:

Ki j =
(

i− j + 1
2

)

∆X
(

ln
(∣

∣i− j + 1
2

∣

∣∆X
)

−1
)

−
(

i− j− 1
2)∆X(ln

∣

∣i− j− 1
2

∣

∣∆X −1
)

. (14)

The residual equation from discretizing equation (4) is expressed as

RH0 =
π
2
−

n−2

∑
i=0

Pi + Pi+1

2
∆X , (15)

whilst discretization of (5) is gained through the second order upwind finite difference approximation,
P′(Xi) ≈

3Pi−4Pi−1+Pi−2
2∆X . By evaluating this at the boundary pointi = n−1, and noting thatPn−1 = 0,

this residual can be expressed as

RXc = −
4Pn−2−Pn−3

2∆X
. (16)

This scheme, involving a first order upwind discretization term in the Reynolds equation, is typical for
stable finite difference and low-order finite element discretizations. Recently, higher order alternatives
have been proposed, e.g. [12], however these have yet to be widely used in practice.

2.4. Solution of the discrete system

In solving equations (9), (11), (15) and (16), our goal is to obtain a simple and robust algorithm which
will allow our error estimates to be assessed and so we do not focus on matters associated with tuning
the speed and efficiency of the solver in this section. Although the system could be solved with a
black-box quasi-Newton nonlinear solver, this is not as robust for EHL problems as using the nested
iteration described here. Hence we use a nested iteration based upon a nonlinear solver for equations
(9), (11) and (15), coupled together usingCarmehl, [8], as the inner part of the nest. Outside this,
another iteration is used to updateXc as shown:
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(a) P′(Xc) > 0 (b)P′(Xc) < 0 (c) P′(Xc) = 0

Figure 2. The three cases for the right-hand boundary. When deciding how to move this boundary position, cases
(a) and (b) result in the mesh moving either left or right respectively.

0. Provide an initial guess forH0, Xc andP0, ...,Pn−1.
1. Solve the nonlinear system (9), (11) and (15) forP0, ...,Pn−1 andH0.
2. Find the correctXc for the currentPn−3 andPn−2 (using (16)).
3. If Xc has not converged go to step 1.

The initial guess used for the nonlinear solver in step 1 is based upon the previous solution that has
been obtained; with the very initial guess coming from step 0. Given a solution forP andH0 from step
1, the cavitation boundary position may be updated so as to satisfy (16). For the latest value ofXc, if

the gradient ofP is sufficiently close to zero (i.e.
∣

∣

∣

−4Pn−2+Pn−3
2∆X

∣

∣

∣
< 10−8, say), then cavitation pointXc

has been found and the algorithm is complete. If not thenXc is updated by repeated use of the bisection
algorithm. Figure 2, case (a), shows that the gradient is positive atXc, and the boundary is too far to the
right (soXc should be decreased); in case (b), the gradient is negative at Xc, and the boundary is too far
left (soXc should be increased). An initial bracket is easily obtainedbased upon the sign of the slope
at the initialXc and then selecting a sufficiently large or small value to obtain P′(Xc) with the opposite
sign. Figure 2(c) shows a converged solution withP′(Xc) = 0. Note that each timeXc is updated it is
necessary to return to step 1 in order to updateP andH0.

2.5. Typical line contact solutions

An important, and typical, feature of EHL line contact solutions is the “spike” that appears in the
pressure field towards the outflow region of the contact. (Examples of this, for different applied loads,
are clearly visible in the pressure solutions given in Figure 4, below, for example.) An illustration of
the level of mesh resolution that is required to capture thispressure spike very accurately is provided
in [7], where the mesh density is repeatedly doubled and the resulting changes in the pressure solution,
and also in the derived friction, are observed. As the mesh isrefined the pressure profiles are almost
coincidental apart from around the pressure spike, howeverthe computed friction is not identical in
each case. This change in the friction is illustrated in Table I, along with specific features of the pressure
(its maximum value at the spike) and the film thickness (its minimum value). It is the derivatives of
pressure in equations (7) and (8) that are especially important in friction calculations. If the pressure
spike is not captured well enough then these derivatives will not represent the true friction through the
contact. Figure 3 illustrates convergence of the shear stress with uniform mesh refinement: it is clear
from this figure and Table I that grid levels for which quantities such as film thickness appear to have
converged are still not sufficiently fine to capture the shearstress to the same accuracy.
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ADJOINT ERROR ESTIMATION TECHNIQUES 7

Mesh Level 8 9 10 11 12 13
Spike Height 0.816 0.827 0.857 0.891 0.919 0.938
Min. Film Thickness 0.1458 0.1443 0.1429 0.1420 0.1415 0.1413
Friction (×10−4) 9.485 9.066 8.889 8.797 8.749 8.718
Mesh Level 14 15 16 17 18 19
Spike Height 0.951 0.958 0.961 0.963 0.964 0.965
Min Film Thickness 0.1411 0.1410 0.1410 0.1410 0.1410 0.1410
Friction (×10−4) 8.700 8.690 8.685 8.682 8.681 8.680

Table I. Value of Pressure Spike Height, Minimum Film Thickness and Friction for mesh leveli corresponding to
2i +1 points.
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Figure 3. Shear stress profiles with increasing grid resolution for a line contact case.

3. Adjoint error estimation

This section describes the goal-based error estimation procedure that we apply to the line contact EHL
problem outlined above. The descriptions provided are deliberately very general, so as to illustrate the
full versatility of the approach. However, [9] illustratessome of the specific implementation details for
the discrete adjoint of the system of equations given in Section 2.3.

3.1. Adjoint formulation

This formulation is that of Vendetti and Darmofal [18–20]. Their starting point is to define two meshes
with spacingh = ∆x andH = ∆X = m×∆x, {m ∈ N | m > 1} (i.e. H is some multiple of the mesh
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8 D.E. HART, M. BERZINS, C.E. GOODYER & P.K. JIMACK

space sizeh). The idea is that mesh sizeH is fine enough to capture the features of the problem being
solved, and coarse enough to be solved in a reasonable time, while the fine mesh sizeh would give the
solution to a greater accuracy but in an unacceptable time. Whilst the coarser of the two meshes need
not necessarily be very coarse, nor necessarily the finer mesh particularly fine, for ease of terminology
these two meshes will be referred to as the coarse mesh and thefine mesh hereafter.

Consider an arbitrary nonlinear problem whose discrete form may be represented asAh(uh) = fh on
the fine mesh andAH(uH) = fH on the coarse mesh, where in each caseA(u) is a nonlinear operator.
Let uH

h be an approximation touh obtained by interpolation of the coarse mesh solution:uH
h = IH

h uH .
Throughout this paper the solutionu will be referred to as the forward solution and the interpolation
for both the forward and the adjoint solution will be throughcubic splines. The discrete fine grid and
coarse grid residuals are given by

Rh(uh) = fh −Ah(uh) and RH(uH) = fH −AH(uH)

respectively. The approach used is described in detail in [18], the goal being to estimate a quantity of
interestFh(uh) but only using information computed on the coarse mesh. To avoid repetition of the
argument presented in [18], we simply note the conclusion that the following estimate may be used:

Fh(uh) ≈ F̃h(uH) = Fh(u
H
h )− (ΨH

h )T Rh(u
H
h ). (17)

HereΨH
h = IH

h ΨH , where the adjoint variableΨH satisfies the linear equation

[

∂RH

∂uH

]T

ΨH =

(

∂FH

∂uH

)T

(18)

on the coarse grid. An approximation to the fine grid functional has therefore been obtained simply
by solving a linear adjoint problem on the coarse grid, in addition to solving the primary problem
on the coarse grid. The expression(ΨH

h )T Rh(uH
h ) in (17) will be referred to as the “correction” to the

functionalFh(uH
h ). A final important point is that, as noted by in [19], “A typical finite difference stencil

would need to be scaled by an appropriate volume term (or an area term in two dimensions) so that the
residual became analogous to an integral expression”. Thishas been done for equation (11) and is also
key in applying the procedure correctly with non-uniform finite difference meshes, see Section 4.2.

3.2. Using adjoint-based error estimates to control grid adaptation

The a posteriori technique outlined in the previous subsection allows estimates of the error in the
quantity of interest to be made at a relatively modest additional cost and may then be used to decide
whether or not this quantity is sufficiently accurate. In thecase where the error is unacceptable further
refinement of the mesh may be undertaken and the solution and error estimation steps repeated on the
new grid.

Using global mesh refinement involves doubling the mesh density everywhere to yield a new discrete
problem with approximately twice the number of degrees of freedom. The error estimates may be used
to improve the computed quantity of interest on each of thesemeshes. This is an accurate and robust,
if expensive, procedure as uniform mesh refinement is not efficient in those regions of the domain that
do not contribute greatly to the error in the quantity of interest. Local mesh refinement algorithms can
be more efficient but lead to a sequence of non-uniform meshes, which requires minor modifications
to the discretization and error estimation algorithms described above. Such modifications are relatively
straightforward, see [9]. Note that the one place where particular care does need to be taken is in

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009;00:1–26
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ADJOINT ERROR ESTIMATION TECHNIQUES 9

the evaluation of the film thickness, given by (2) and approximated by (12), so as to ensure that the
non-uniform mesh is accounted for appropriately, [9].

Results below show that the reliability of the error estimates are maintained in the case of non-
uniform meshes, however it should be noted that the error estimate in the total friction is just a single
number. In order to determine which regions of the domain should be locally refined requires estimating
where the computed error is most sensitive to local mesh refinement. Here we follow the usual practice
of using the regions with the greatest contribution to the error as a surrogate for this. That is, we
compute(ΨH

h )i×(Rh(uH
h ))i at pointi, [19], locally. The local adaptation results in the following section

are based upon comparing this quantity with a prescribed refinement tolerance, as described in the
following algorithm.

1. Solve forward and adjoint problems on the current non-uniform mesh (the coarse mesh).
2. Interpolate solutions onto a uniformly refined version ofthe coarse mesh (the fine mesh) and

evaluate residuals.
3. Calculate the error correction value, defined as the last term of equation (17)
4. Define an error correction vectorv, such thatvi = ri.ai, whereri is the residual andai is the

adjoint solution at mesh pointi.
5. Refine the coarse mesh where the corresponding entries ofv are above a prescribed tolerance

(10−6).
6. Add additional refinement immediately next to refined regions (“safety layers”), in any short

unrefined areas and also to ensure graded changes in the refinement level.
7. Use the interpolated solution as continuation input to the next iteration.
8. Return to step 1 if error is still too large.

This algorithm provides a means of identifying which part ofthe current solution contributes the most
to the error in the functional of interest.

4. Computational results

In this section we assess the performance of this error estimate, and the corresponding approaches to
mesh refinement, on a number of EHL test problems. Reference [9] provides specific details of the
application of the adjoint method to these EHL equations along with further examples.

4.1. Uniform mesh results

Results have been computed for five different loadings,L, and a sliding case for which there is relative
motion between the contacting elements (ua = 0.1 andub = 0.9). The non-dimensional solution profiles
for pressure are shown in Figure 4. These results were calculated using a uniform mesh of 257 points
and the solutions range from being almost entirely hydrodynamic through to a relatively highly loaded
EHL. Figure 4 clearly illustrates the pressure spike movingtowards the outlet with increasing load,
with the main pressure bump becoming increasingly rounded.The non-dimensional viscosity therefore
increases dramatically with load, as a result of the exponential term in the first equation of (3).

Based upon equations (7) and (8) the dimensional friction may be seen to take the form

F =

∫ ∞

−∞

(

−m1
∂P
∂X

H
2

+ m2
η
H

(ub −ua)

)

dX , (19)
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Figure 4. EHL pressure profiles for a series of loadings;L = 20000, 40000, 60000, 80000 and 100000.

Grid Interpolated Calculated Corrected Friction Measured Effectiv. | 1.0 -
(g) Fric. (g) correction Fric. (g) (g+1) Error Index effct. |
5 75942.4 1514.1 74428.4 74961.6 980.8 0.6478 0.3522
6 74829.4 -1429.8 76259.1 75076.2 -246.8 0.1726 0.8274
7 75062.3 -447.5 75509.9 76036.2 -973.9 2.1760 1.1760
8 76005.0 -884.2 76889.2 76898.7 -893.7 1.0108 0.0108
9 76888.4 -662.5 77550.9 77645.7 -757.4 1.1431 0.1432
10 77643.2 -468.4 78111.6 78188.4 -545.2 1.1639 0.1639
11 78187.9 -309.4 78497.2 78529.4 -341.5 1.1039 0.1039
12 78529.3 -182.7 78711.9 78722.3 -193.0 1.0567 0.0567

Table II. Adjoint based inter-grid friction error on uniform meshes;L = 100000,ua = 0.1, ub = 0.9, slide-roll
ratio = 0.8 (sliding).

where the re-dimensionalizing factorsm1 andm2 are known constants (dependent upon values used for
the non-dimensionalization), see [9]. In the case considered here the non-dimensional surface speeds
areua = 0.1 andub = 0.9. Figure 5 shows the adjoint solutions for the same five loads, demonstrating
that there is significant activity in and around the pressurespike region. Table II shows the quality
of the error estimate for the heaviest loaded (and the most challenging) case. We see that once the
mesh becomes sufficiently refined the inter-grid error estimates are very good, as indicated by the
convergence of the effectivity index (the ratio of the calculated correction to the measured error once
the solution is found on the next mesh) to one. The error estimates are even better for the more lightly
loaded cases, [9].
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Figure 5. Adjoint solutions for EHL cases with sliding;L = 20000, 40000, 60000, 80000 and 100000,ua = 0.1,
ub = 0.9.

4.2. Non-uniform mesh results

Having demonstrated the accuracy and robustness of the goal-based error estimator across a range of
loading cases, we now consider the use of such an estimate to drive adaptive refinement. A different
illustrative example is presented, again as representative of the full set of successful results that we
have obtained. The friction is in the same form as (19), with apure rolling considered on this occasion,
with valuesua = ub = 0.5 andm1 = 2. Sinceua = ub then the term involvingm2 is zero.

The adaptive strategy described in subsection 3.2 is adopted. The specific regions in which
refinement occurs are those for which

∣

∣(ΨH
h )i × (Rh(uH

h ))i
∣

∣ are the greatest: where the subscripti
runs through all nodes in a temporary grid (denoted with index h) which is a uniform refinement
of the current computational grid (denoted with indexH). In order to assess the effectiveness of this
strategy, compared to solutions obtained on a sequence of uniform, globally refined grids, the error is
computed by comparison against a numerical solution obtained on an excessively fine mesh is shown
in Figure 6. The top line on the graph shows the error in the friction for a series of uniform grid
solutions. The bottom line shows the resulting error using local adaptivity based upon the adjoint
correction procedure applied to the coarse grid solution. Once the solution has been obtained on the
coarse grid, it is interpolated onto a uniformly refined version, where an estimate of the friction is
calculated, as if it had been computed on that fine grid. The values shown in this second graph are
these adjoint-corrected estimates. The middle graph showsthe equivalent corrected friction estimates
when uniform refinement is used. Initially the error in the adaptive scheme is reduced in line with the
uniform refinement solutions because only global refinementtakes place at this stage. As the mesh is
further refined, the contribution to the error is primarily found to be in certain regions, consequently
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Figure 6. Comparison of predicted fine-grid errors in the friction compared against a grid 14 “truth” solution.

Figure 6 shows the substantially improved efficiency of using, appropriately driven, local refinement.
In Figure 7 the level of mesh refinement, for this example, is shown throughout the domain. This

verifies that the first few levels of refinement are indeed global, before local refinement is seen to occur.
This is heaviest in the region around the pressure spike but is also significant near to the entry of the
contact, where the pressure first begins to grow significantly. There is also heavy refinement right up
against the free boundary due to the sensitivity of the friction to the positionXc. Also included on
this graph is the refinement pattern that occurs when the residual is used to drive mesh refinement. This
results in much greater refinement away from the contact region (where the pressure is almost constant,
as shown in Figure 4, hence contributing very little to the friction), leading to a much larger number
of unknowns than arises from the adjoint-based method even though the resulting friction calculations
are almost identical.

5. Conclusions and future work

In this work goal-baseda posteriori error estimates, based upon the techniques of Darmofal and
Venditti [18–20], have been developed for, and applied to, the EHL line contact problem. The property
of primary interest when solving EHL problems is typically the total friction through the contact, and
so this has been used as the goal in this presentation. The extension to other quantities of interest is
straightforward however and is demonstrated for a variety of functionals in [9].

To the authors’ knowledge this is the first example of the successful application of the adjoint-based
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Figure 7. Local refinement levels shown for the adaptive solution of an EHL case (L = 120000), with refinement
based on either the residual alone or the product of the adjoint solution and the residual.

error estimation approach for EHL problems. The quality of the resulting error estimate is clearly
demonstrated for a variety of configurations, which range from almost purely hydrodynamic contacts
through to very highly loaded EHL cases. Even on relatively coarse meshes the correction terms are
remarkably accurate and, as the mesh becomes finer, the effectivity ratio is clearly seen to tend to one
in all cases considered. The extension of the use of the errorestimate in order to control local mesh
refinement is also considered, and shown to yield improved computational efficiency alongside the
reliable error estimates.

Having demonstrated the feasibility of this approach for EHL problems the way is now open to
exploit this across a wider range of applications. Perhaps the most obvious extension to consider is to
apply the technique to more complex contact geometries, such as circular or elliptic point contacts for
example. This would require the introduction of a second independent variable and would also need a
reformulation of the free boundary problem: which would nowinvolve an unknown curve (satisfying
∂P
∂n = 0) rather than an unknown pointXc (wheredP

dX = 0). A possible approach to resolving this would
be to consider using a penalty method [13, 22] as part of the discretization. However this would have
the effect of no longer representing the free boundary explicitly as part of the solution and so would
require the adjoint formulation to be modified accordingly.
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