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SUMMARY

The use of an adjoint technique for goal-based error estmadescribed by Harket al. (this journal,
volume 47, pages 1069-1074) is extended to the numericati@olof free boundary problems that arise in
elastohydrodynamic lubrication (EHL). EHL systems arénhignonlinear and consist of a thin-film approximation
of the flow of a non-Newtonian lubricant which separates twdibs that are forced together by an applied load,
coupled with a linear elastic model for the deformation & thodies. A finite difference discretization of the
line contact flow problem is presented, along with the nuca¢révaluation of an exact solution for the elastic
deformation, and a moving grid representation of the fraenbary that models cavitation at the outflow in this
one dimensional case. The application of a goal-based estimate for this problem is then described. This
estimate relies on the solution of an adjoint problem; its@iveness is demonstrated for the physically important
goal of the total friction through the contact. Finally, tapplication of this error estimate to drive local mesh
refinement is demonstrated. Copyrigdt2009 John Wiley & Sons, Ltd.
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1. Introduction

Elastohydrodynamic lubrication (EHL) describes the flonadtibricating fluid which separates two
solid bodies that are being forced together by a large eatdoad. In particular, EHL represents
the case where this load, and the resulting pressures inutik #re sufficiently high as to lead
the solid bodies to deform. The purpose of separating théebaaglith a thin lubricating film is to
reduce the friction in the contact, thus increasing theiefiicy of energy transfer through the contact,
and reducing the wear on the contacting elements. Constgushen modelling an EHL contact
numerically, whilst flow field properties such as the presdlistribution or the thickness of the film
are significant, it is often quantities such as the frictibiat are of most interest, [5, 6].

The purpose of this paper is to demonstrate how goal-based estimates may be developed
that specifically target derived quantities such as frictim order to provide reliable information
on the accuracy of such EHL solutions, and to guide local meBhement for these problems. Our
approach is to build upon an earlier, exploratory study],[bich applied the techniques used here
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2 D.E. HART, M. BERZINS, C.E. GOODYER & P.K. JIMACK

(based upon [18-20]) to a simple model problem. The cortidhwof this paper is to show that this
methodology can be extended successfully to the full EHLblerm with a realistic model of film
thickness and the application of adaptive meshes.

Solution times for numerical models of EHL problems con¢inna decrease as the algorithms used
improve and the computers on which they are solved become pmwrerful. For example as with
the authors'Carmehl software that is used by Shell, [8], EHL solvers are used lolsiry within
optimisation processes to match known experimental catioms of friction across a wide range
of operating conditions in order to estimate the many modehmeters that describe the lubricant.
This leads to thousands of different computational cadesf which need very accurate calculations
of the friction. Furthermore, as the lubricant used by infdubecome more complex, the demands
for robustness, accuracy and speed of the software continuecrease. Often research into error
estimation and control has tended to assume that it is thelbeecuracy of the computed solution
which is of interest. In many practical situations howetee, solution field is used to calculate some
derived quantity, such as friction, drag, lift, etc, [18}:20

Investigations into friction have been mainly confined tpesmental work such as Blenceial. [3]
and Workelet al. [21]. An important feature of typical EHL solutions is a alyadefined spike in the
pressure field near the outflow of the contact region, anchasitig the friction reliably appears to be
closely related to accurately capturing the profile of thissgure spike. Work by Bisset and Glander [1]
showed that when more mesh points are used in the region eptke then it is no longer seen as a
singularity in the solution, but a smooth profile. This wonkiyresolved the spike using up to 1000
points, however it did still highlight the importance ofdharea of the solution. More recent results
in [7,11] used over a million mesh points and illustratedidbe smoothness of the pressure spike and
the need for appropriate levels of mesh refinement. Consélguealculating the friction accurately
depends on achieving the necessary resolution of the peessafile.

The approach taken here to estimate the error in the comfuttidn is to make use of adjoint
methods to calculate the sensitivity of the output quartftinterest to other computable quantities.
This involves formulating and solving an adjoint systenmirthe original “forward” problem. There
are two distinct but related approaches to formulating sackystem: continuous and discrete,
see Nadarajah and Jameson [14]. The approach followed $ehati developed by Darmofal and
Venditti [18—20]. This is a discrete adjoint formulation ieh, as stated in [19], “is a discrete analogue
of the Pierce and Giles [15] technique”. The main reasontorchoice of this method over the
approach of [15] is that, for a complex EHL problem, formingtthe continuous adjoint problem
(including appropriate boundary conditions) would be miavial. Through the use of the discrete
approach however, adjoint error estimation becomes sstiegtirospect for application to EHL.

2. Governing equations and their discretization

The governing equations for EHL are based upon a long-wgweajmation to the flow in the contact,
which simplifies the Navier-Stokes equations by assumimg ithhertial terms and the variation in
the normal direction are both negligible, coupled with a krelastic deformation for the contacting
elements. The former approximation leads to the Reynoldatemn (see below) whilst the latter leads
to an analytic solution which requires the evaluation oha integral (also shown below). Additional
features of the model include a force balance constrainddrese boundary condition, which represents
the fact that the model is only valid for positive pressurettige location at which the pressure becomes
negative (the cavitation position) is unknoatpriori.
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For this work we consider line contact problems in which twbraers are aligned with their axes

Figure 1. lllustration of an idealized line contact.
of rotation parallel and are in close contact separated bprdating film. Such a case is illustrated in
Figure 1 and provides an idealised model for numerous coninteractions. By ignoring end effects,
it is only necessary to model the behaviour at a single csestion of the line contact with a single
independent variable, which represents the distance satiescontact. All of the equations presented
are the standard non-dimensionalized form [9].

2.1. Elastohydrodynamic lubrication line contact

The Reynolds equation for the full line contact is given by

7} oP d(pH)
ax (gﬁ) “Tox 0 @
with the film thickness equation, based upon the linearielassumption, given by
X2 1o B Ay’
H:H0+7+7_T In|X —X'|P(X")dX". 2

In these equationB(X) is the pressure field{ (X) is the film thickness fieldt is the central offset
3_
distancep(X) is the density (see (3) below) ard= j—ﬁ’", whereA is a known constant (depending

upon the relative motion of the contacting elements)@(X) is the viscosity. For this work we make
use of the viscosity and density models of [16] and [4] retpely:

= apo [ Ppn]* _ 0.59x10°+1.34Ppy,
n_EXp{( z )( 1+{1+ po] )} and P = o< 1P+ Ppy 3)

In each of these expressions, is the representative pressure that has been used in the non-
dimensionalization of the equations. The examples in theafethis paper use the paramet&rs60.7,
a=1.43x10"8, pp=1.96x10° and z=068. Finally, we state the force-balance equation whichiregu

that the sum of the pressure is equal to the applied load:

/_:de:’—;. (@)

In equations (1) to (4) it is possible to treat judtX) andHp as unknowns since, once these have
been found, all of the other quantities may be determinedirthér unknown must also be introduced
however, to capture the position of the free boundary, atlwhbavitation occurs. We will denote this
position asXc, which must be found such that the boundary condition

P'(Xe) =0 (5)
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4 D.E. HART, M. BERZINS, C.E. GOODYER & P.K. JIMACK

holds, reflecting the fact that the pressure should not bevall to go negative. If we also approximate
the domain by a finite interval of lengfh and impose zero Dirichlet boundary conditions for pressure
then we must also satisfy

P(X;—D) =P(X) =0. (6)

2.2. Friction

Friction is a force which opposes motion and in an EHL contagiven by the shear stress generated
within the lubricant. This comes about through two mechasigolling friction and kinetic (sliding)
friction. Within the contact, a pressure gradient is getegtaThis is because the deformation of the
contact is largest in the centre, requiring the greatesoire to maintain it. As the two surfaces move
through the contact, lubricant is pulled with them (enteain However, it is also squeezed out by the
pressure generated in the contact region, and so the labiitghe middle is moving at a different
speed to the surfaces, causing it to shear. The resistatius tootion is called the rolling friction and
forms the first term of each expression in (7) below. The séecoechanism for the generation of shear
stress only happens when the surfaces are in relative maigmee sliding friction. Now, the lubricant
is sheared at the rate of the difference in speed of the twiaces per unit thickness. It is therefore
possible to derive the shear stress on each surface [17]:

_hdp n
_§&+H(Ub_ua)’ (7)

~hdp n
Tza(X) = ~5ax + h (Up—Ua) and Tup(X)
for the lower and upper surfaces moving at spagdanduy, respectively. Note that, following [17],

we express (7) in dimensional form here. Hence, from thepeessions, it is possible to work out the

total dimensional friction through a line contaktas either
F:/ Tyxza(X)dx or F:/ —Tyzp(X)dX, (8)

depending on which surface is required. In this work, thetifsh on the lower surface will be used,
i.e. the first equality in equation (8), although this chd&arbitrary. This is a key quantity of interest
as it gives a measure of the force opposing the shear in thiedui, e.g. [2].

2.3. Discretization

In discretizing equations (1) to (6) the computational dom#. — D < X < X, is divided inton— 1
intervals, to form a grid witin nodes located at poind§ = X; — D +iAX, fori =0,...,n— 1, where
AX = D/(n—1). This assumption of equally spaced nodes is made here pisin@rsimplify the
exposition in this section, the straightforward extengmnon-uniform grids being used for the local
mesh refinement results presented below. As indicated itidde2.1, the primary unknowns for the
EHL problem areéP(X), Hp andX; and are represented by the- 2 unknownsp, ..., P,—_1, Hp andX.

In order to determine these unknowns, a system-6f2 nonlinear equations is defined, based upon
the discretization of equations (1) to (6). These may beesgted as the residual equatioRs= 0
(i=0,...,n—1),Rg, =0 andRy, = 0. The Dirichlet boundary conditions (6) allow the resicur

the two end points of the domain to be given simply by

Ro=—R and Ry_1=-Py1. 9
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ADJOINT ERROR ESTIMATION TECHNIQUES 5

Application of a standard finite difference scheme to theri®éys equation (1) yields the next- 2 of
the residual expressions, for poifits 1...n—2:

R ax[(PH=Piatia (R PE, - A7R W6
- AX o
(Ri1—P)g, 1 — (R—P_1)g_1
i mHi_ﬁilHi_l)_( X — (10)
& 1P|+1_($- 1+s'—1)Pl+s'71P|,l
i mHi_ﬁilHi_l)_( - ) (12)
35
whereg = H'—f' &.1=(&+¢&+1)/2, and the discrete form &f;, 17;, andp; are given respectively by
AT i3 : :
2 1n—1
Hi=Ho+ 2> +2 ) KiPy, (12)
2 T[J;J

= _ apo\ [ Rpnl® _ 0.59x10°+1.34Ppy
n,—exp{( z )( T {14_ po})} and p; = 059x 10°+Pp, ’ (13)

the matrixK in (12) depending upon the quadrature rule that is selectethé evaluation of (2). In
this work the following standard equation is used:

Kiji = (i—j+3)aX(n(fi—j+3aX)-1)—(i—j-)axX(n|i—j-i|ax—1). (14)
The residual equation from discretizing equation (4) isrezped as

n-2
P+PR
o=~ 3 -5 & (15)
=

whilst discretization of (5) is gained through the secordeomupwind finite difference approximation,
P(%) ~ 2812 By evaluating this at the boundary point n— 1, and noting thab, 1 = 0,
this residual can be expressed as
4P, 2—Ph 3
2AX ’
This scheme, involving a first order upwind discretizatien in the Reynolds equation, is typical for
stable finite difference and low-order finite element diszegions. Recently, higher order alternatives
have been proposed, e.g. [12], however these have yet todedywised in practice.

Ry, = — (16)

2.4. Solution of the discrete system

In solving equations (9), (11), (15) and (16), our goal isliain a simple and robust algorithm which
will allow our error estimates to be assessed and so we dmnosfon matters associated with tuning
the speed and efficiency of the solver in this section. Algfothe system could be solved with a
black-box quasi-Newton nonlinear solver, this is not asusblior EHL problems as using the nested
iteration described here. Hence we use a nested iteratsadhgon a nonlinear solver for equations
(9), (11) and (15), coupled together usiGgrmehl, [8], as the inner part of the nest. Outside this,
another iteration is used to updateas shown:
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6 D.E. HART, M. BERZINS, C.E. GOODYER & P.K. JIMACK

@)P(X) >0 (b)P'(X) <0 ©P'(X)=0

Figure 2. The three cases for the right-hand boundary. Whkeitdithg how to move this boundary position, cases
(a) and (b) result in the mesh moving either left or right sxgjvely.

0. Provide an initial guess faty, X; andP, ..., Py_1.

1. Solve the nonlinear system (9), (11) and (15)Rgr.., P,—1 andHp.
2. Find the correcX; for the current,_3 andP,_» (using (16)).

3. If X; has not converged go to step 1.

The initial guess used for the nonlinear solver in step 1 getaipon the previous solution that has
been obtained; with the very initial guess coming from ste@ifen a solution foP andHg from step

1, the cavitation boundary position may be updated so agtigfysél6). For the latest value of, if

the gradient oP is sufficiently close to zero (i. % < 1078, say), then cavitation point;

has been found and the algorithm is complete. If not #eis updated by repeated use of the bisection
algorithm. Figure 2, case (a), shows that the gradient igipe@at X., and the boundary is too far to the
right (soX. should be decreased); in case (b), the gradient is negatigga@nd the boundary is too far
left (soX; should be increased). An initial bracket is easily obtaibased upon the sign of the slope
at the initialX; and then selecting a sufficiently large or small value to iotR& X)) with the opposite
sign. Figure 2(c) shows a converged solution vigttiX;) = 0. Note that each tim¥; is updated it is
necessary to return to step 1 in order to updsmdHo.

2.5. Typical line contact solutions

An important, and typical, feature of EHL line contact saus is the “spike” that appears in the
pressure field towards the outflow region of the contact. fig){as of this, for different applied loads,
are clearly visible in the pressure solutions given in Fégdir below, for example.) An illustration of
the level of mesh resolution that is required to capturepghéssure spike very accurately is provided
in [7], where the mesh density is repeatedly doubled andgb@ting changes in the pressure solution,
and also in the derived friction, are observed. As the meséfised the pressure profiles are almost
coincidental apart from around the pressure spike, howtixgecomputed friction is not identical in
each case. This change in the friction is illustrated in @&Jrlong with specific features of the pressure
(its maximum value at the spike) and the film thickness (iteimum value). It is the derivatives of
pressure in equations (7) and (8) that are especially immpbm friction calculations. If the pressure
spike is not captured well enough then these derivativdswilrepresent the true friction through the
contact. Figure 3 illustrates convergence of the sheassstiith uniform mesh refinement: it is clear
from this figure and Table | that grid levels for which quaestsuch as film thickness appear to have
converged are still not sufficiently fine to capture the ststi@ss to the same accuracy.
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ADJOINT ERROR ESTIMATION TECHNIQUES 7

Mesh Level 8 9 10 11 12 13
Spike Height 0.816 | 0.827 | 0.857 | 0.891 | 0.919 | 0.938
Min. Film Thickness| 0.1458| 0.1443| 0.1429| 0.1420| 0.1415| 0.1413
Friction (x10~%) 9.485 | 9.066 | 8.889 | 8.797 | 8.749 | 8.718
Mesh Level 14 15 16 17 18 19
Spike Height 0.951 | 0.958 | 0.961 | 0.963 | 0.964 | 0.965
Min Film Thickness| 0.1411| 0.1410| 0.1410| 0.1410| 0.1410| 0.1410
Friction (x10~%) 8.700 | 8.690 | 8.685 | 8.682 | 8.681 | 8.680

Table I. Value of Pressure Spike Height, Minimum Film Thieks and Friction for mesh levietorresponding to

2 +1 points.
0.06 T — T T
257 points ——
0.05 1025 points ———
2049 points ———
0.04 -

16385 points ———
0.03 32769 points ———

65539 points ———
0.02 131076 points ———

524304 points

0.01

0

Non-dimensional shear stress - 1

-0.01

-0.02

_0'03 1 1 1 1 1 1 1
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Non-dimensional distance through contact - X

Figure 3. Shear stress profiles with increasing grid regwidor a line contact case.

3. Adjoint error estimation

This section describes the goal-based error estimaticceduoe that we apply to the line contact EHL
problem outlined above. The descriptions provided ardodeditely very general, so as to illustrate the
full versatility of the approach. However, [9] illustratesme of the specific implementation details for
the discrete adjoint of the system of equations given iniSe&.3.

3.1. Adjoint formulation
This formulation is that of Vendetti and Darmofal [18—20héiir starting point is to define two meshes
with spacingh = Ax andH = AX = mx Ax, {me€ N | m> 1} (i.e. H is some multiple of the mesh
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8 D.E. HART, M. BERZINS, C.E. GOODYER & P.K. JIMACK

space sizd). The idea is that mesh sit¢is fine enough to capture the features of the problem being
solved, and coarse enough to be solved in a reasonable timie,the fine mesh size would give the
solution to a greater accuracy but in an unacceptable tintélstthe coarser of the two meshes need
not necessarily be very coarse, nor necessarily the finen pagsicularly fine, for ease of terminology
these two meshes will be referred to as the coarse mesh afidglreesh hereafter.

Consider an arbitrary nonlinear problem whose discreta foiy be represented Ag(un) = fr On
the fine mesh anfAy (uy) = fu on the coarse mesh, where in each o&8¢ is a nonlinear operator.
Let uﬁ be an approximation ta,, obtained by interpolation of the coarse mesh solutijﬁh:: Ir'juH.
Throughout this paper the solutiorwill be referred to as the forward solution and the interfiota
for both the forward and the adjoint solution will be througlbic splines. The discrete fine grid and
coarse grid residuals are given by

Rn(un) = fn—An(un) and Ry (uy) = fy — Ax(un)

respectively. The approach used is described in detail8 flhe goal being to estimate a quantity of
interestH,(up) but only using information computed on the coarse mesh. didaepetition of the
argument presented in [18], we simply note the conclusianttie following estimate may be used:

Fi(Un) & Fn(un) = Fn(uf) = (W) TRa(uR). (17)
HereLlJE = IEWH, where the adjoint variably satisfies the linear equation
ARy 1T OF\ "
oy, === 1
[(9UH :| H ((9UH ( 8)

on the coarse grid. An approximation to the fine grid funaiidmas therefore been obtained simply
by solving a linear adjoint problem on the coarse grid, iniéald to solving the primary problem
on the coarse grid. The expressi¢#!)TR,(ull) in (17) will be referred to as the “correction” to the
functionaIFh(uE ). Afinal important point s that, as noted by in [19], “A typidmite difference stencil
would need to be scaled by an appropriate volume term (oresntarm in two dimensions) so that the
residual became analogous to an integral expression” lEsi®een done for equation (11) and is also
key in applying the procedure correctly with non-uniformitérdifference meshes, see Section 4.2.

3.2. Using adjoint-based error estimates to control grid adaptation

The a posteriori technique outlined in the previous subsection allows egts of the error in the
gquantity of interest to be made at a relatively modest anlukiti cost and may then be used to decide
whether or not this quantity is sufficiently accurate. In thee where the error is unacceptable further
refinement of the mesh may be undertaken and the solutionremestimation steps repeated on the
new grid.

Using global mesh refinementinvolves doubling the meshitemgerywhere to yield a new discrete
problem with approximately twice the number of degreeseéfiom. The error estimates may be used
to improve the computed quantity of interest on each of tiesghes. This is an accurate and robust,
if expensive, procedure as uniform mesh refinement is naieffi in those regions of the domain that
do not contribute greatly to the error in the quantity of rest. Local mesh refinement algorithms can
be more efficient but lead to a sequence of non-uniform mesttash requires minor modifications
to the discretization and error estimation algorithms dbed above. Such modifications are relatively
straightforward, see [9]. Note that the one place whereiqudar care does need to be taken is in
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ADJOINT ERROR ESTIMATION TECHNIQUES 9

the evaluation of the film thickness, given by (2) and apprated by (12), so as to ensure that the
non-uniform mesh is accounted for appropriately, [9].

Results below show that the reliability of the error estiesafre maintained in the case of non-
uniform meshes, however it should be noted that the erromast in the total friction is just a single
number. In order to determine which regions of the domaikhioe locally refined requires estimating
where the computed error is most sensitive to local mesheramt. Here we follow the usual practice
of using the regions with the greatest contribution to th@reas a surrogate for this. That is, we
compute(lvﬁ)i X (Rh(uﬁ))i at pointi, [19], locally. The local adaptation results in the follogisection
are based upon comparing this quantity with a prescribedenfient tolerance, as described in the
following algorithm.

1. Solve forward and adjoint problems on the current norieam mesh (the coarse mesh).

2. Interpolate solutions onto a uniformly refined versiortted coarse mesh (the fine mesh) and
evaluate residuals.

3. Calculate the error correction value, defined as thedast of equation (17)

4. Define an error correction vectgy such thaty; = ri.a;, wherer; is the residual and is the
adjoint solution at mesh poiint

5. Refine the coarse mesh where the corresponding entriearef above a prescribed tolerance
(10°9).

6. Add additional refinement immediately next to refined oegi (“safety layers”), in any short
unrefined areas and also to ensure graded changes in theefinlevel.

7. Use the interpolated solution as continuation input &ortéxt iteration.

8. Returnto step 1 if error is still too large.

This algorithm provides a means of identifying which partha current solution contributes the most
to the error in the functional of interest.

4. Computational results

In this section we assess the performance of this error atjrand the corresponding approaches to
mesh refinement, on a number of EHL test problems. Refer&jqerdvides specific details of the
application of the adjoint method to these EHL equatione@leith further examples.

4.1. Uniform mesh results

Results have been computed for five different loadibgand a sliding case for which there is relative
motion between the contacting elemenig=€ 0.1 andu, = 0.9). The non-dimensional solution profiles
for pressure are shown in Figure 4. These results were eddclsing a uniform mesh of 257 points
and the solutions range from being almost entirely hydradyic through to a relatively highly loaded

EHL. Figure 4 clearly illustrates the pressure spike mouwards the outlet with increasing load,
with the main pressure bump becoming increasingly rountleelnon-dimensional viscosity therefore
increases dramatically with load, as a result of the exptialgarm in the first equation of (3).

Based upon equations (7) and (8) the dimensional frictioy beeseen to take the form

F= / ( mlWEJFmZZ(ub_Ua)) dX, (19)
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Figure 4. EHL pressure profiles for a series of loadirigs; 20000, 40000, 60000, 80000 and 100000.

Grid | Interpolated| Calculated| Corrected| Friction | Measured| Effectiv. | ] 1.0 -

(9) Fric. () correction | Fric. () (9+1) Error Index | effct. |
5 75942.4 1514.1 74428.4 | 74961.6 980.8 0.6478 | 0.3522
6 74829.4 -1429.8 76259.1 | 75076.2| -246.8 0.1726 | 0.8274

7 75062.3 -447.5 75509.9 | 76036.2| -973.9 2.1760 | 1.1760
8 76005.0 -884.2 76889.2 | 76898.7| -893.7 1.0108 | 0.0108
9 76888.4 -662.5 77550.9 | 77645.7| -757.4 1.1431 | 0.1432
10 77643.2 -468.4 78111.6 | 78188.4| -545.2 1.1639 | 0.1639
11 78187.9 -309.4 78497.2 | 78529.4| -3415 1.1039 | 0.1039
12 78529.3 -182.7 78711.9 | 78722.3| -193.0 1.0567 | 0.0567

Table Il. Adjoint based inter-grid friction error on uniformeshesL = 100000,u; = 0.1, u, = 0.9, slide-roll
ratio = 0.8 (sliding).

where the re-dimensionalizing factars andm, are known constants (dependent upon values used for
the non-dimensionalization), see [9]. In the case consitleere the non-dimensional surface speeds
areua = 0.1 andu, = 0.9. Figure 5 shows the adjoint solutions for the same five lpdelsionstrating
that there is significant activity in and around the pressyige region. Table Il shows the quality
of the error estimate for the heaviest loaded (and the madtertging) case. We see that once the
mesh becomes sufficiently refined the inter-grid error estéd® are very good, as indicated by the
convergence of the effectivity index (the ratio of the cédéed correction to the measured error once
the solution is found on the next mesh) to one. The error eséimare even better for the more lightly
loaded cases, [9].
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ADJOINT ERROR ESTIMATION TECHNIQUES 11

250000

Load = 20000 ——
Load = 40000
200000 F  Load= 60000 —— 1
Load = 80000 ——
Load = 100000
150000 | -
100000 | 1
= 50000 A 1
S v,‘
® ok , — 4
: A7
S
@ 50000 | 1
(]
£
S .100000 | 1
-150000 -
-200000 | 1
-250000 | 1
_300000 'l 'l 'l 'l 'l 'l
5 -4 -3 2 1 0 1 2

non-dimensional distance through the contact

Figure 5. Adjoint solutions for EHL cases with sliding;= 20000, 40000, 60000, 80000 and 100000~ 0.1,
up =0.9.

4.2. Non-uniform mesh results

Having demonstrated the accuracy and robustness of thebgeall error estimator across a range of
loading cases, we now consider the use of such an estimate/¢éoadiaptive refinement. A different
illustrative example is presented, again as represeatafithe full set of successful results that we
have obtained. The friction is in the same form as (19), wipluie rolling considered on this occasion,
with valuesu, = u, = 0.5 andmy = 2. Sinceu, = U, then the term involvingr, is zero.

The adaptive strategy described in subsection 3.2 is adofiee specific regions in which
refinement occurs are those for whithbH); x (Ry(ull))i| are the greatest: where the subscipt
runs through all nodes in a temporary grid (denoted with xnlkewhich is a uniform refinement
of the current computational grid (denoted with indéX In order to assess the effectiveness of this
strategy, compared to solutions obtained on a sequencefofmnglobally refined grids, the error is
computed by comparison against a numerical solution obtbim an excessively fine mesh is shown
in Figure 6. The top line on the graph shows the error in thetiém for a series of uniform grid
solutions. The bottom line shows the resulting error usimepl adaptivity based upon the adjoint
correction procedure applied to the coarse grid solutiorcethe solution has been obtained on the
coarse grid, it is interpolated onto a uniformly refined i@ns where an estimate of the friction is
calculated, as if it had been computed on that fine grid. Theegashown in this second graph are
these adjoint-corrected estimates. The middle graph sttwevsquivalent corrected friction estimates
when uniform refinement is used. Initially the error in thepiive scheme is reduced in line with the
uniform refinement solutions because only global refinerteds place at this stage. As the mesh is
further refined, the contribution to the error is primaribufhd to be in certain regions, consequently
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Figure 6. Comparison of predicted fine-grid errors in thetioh compared against a grid 14 “truth” solution.

Figure 6 shows the substantially improved efficiency of gsappropriately driven, local refinement.

In Figure 7 the level of mesh refinement, for this examplehsas throughout the domain. This
verifies that the first few levels of refinement are indeed gldiefore local refinement is seen to occur.
This is heaviest in the region around the pressure spikestalso significant near to the entry of the
contact, where the pressure first begins to grow signifigantere is also heavy refinement right up
against the free boundary due to the sensitivity of theificto the positionX;. Also included on
this graph is the refinement pattern that occurs when théuakis used to drive mesh refinement. This
results in much greater refinement away from the contacbnggvhere the pressure is almost constant,
as shown in Figure 4, hence contributing very little to thetiion), leading to a much larger number
of unknowns than arises from the adjoint-based method énargh the resulting friction calculations
are almost identical.

5. Conclusions and future work

In this work goal-base@ posteriori error estimates, based upon the techniques of Darmofal and
Venditti [18—20], have been developed for, and appliedte EHL line contact problem. The property
of primary interest when solving EHL problems is typicalhettotal friction through the contact, and
so this has been used as the goal in this presentation. Taeséxh to other quantities of interest is
straightforward however and is demonstrated for a variéfyrctionals in [9].

To the authors’ knowledge this is the first example of the essful application of the adjoint-based
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Figure 7. Local refinement levels shown for the adaptivetgmiwf an EHL casel( = 120000), with refinement
based on either the residual alone or the product of theradjolution and the residual.

error estimation approach for EHL problems. The quality fed tesulting error estimate is clearly
demonstrated for a variety of configurations, which rangenfalmost purely hydrodynamic contacts
through to very highly loaded EHL cases. Even on relativelgree meshes the correction terms are
remarkably accurate and, as the mesh becomes finer, théwtjeatio is clearly seen to tend to one
in all cases considered. The extension of the use of the estomate in order to control local mesh
refinement is also considered, and shown to yield improvedpedational efficiency alongside the
reliable error estimates.

Having demonstrated the feasibility of this approach forLEptoblems the way is now open to
exploit this across a wider range of applications. Perhlapsrtost obvious extension to consider is to
apply the technigue to more complex contact geometries, asicircular or elliptic point contacts for
example. This would require the introduction of a seconepehdent variable and would also need a
reformulation of the free boundary problem: which would nowolve an unknown curve (satisfying
% = 0) rather than an unknown poiKg (whereg—;’ =0). A possible approach to resolving this would
be to consider using a penalty method [13, 22] as part of therelization. However this would have
the effect of no longer representing the free boundary eitlglias part of the solution and so would
require the adjoint formulation to be modified accordingly.
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