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We present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imag-
ing (DTI). Compared to deterministic and stochastic tractography, geodesic approaches treat the geome-
try of the brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric.
The white matter pathways are then inferred from the resulting geodesics, which have the desirable
property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to devi-
ate from these directions when it results in lower costs. While this makes such methods more robust to
noise, the choice of Riemannian metric in these methods is ad hoc. A serious drawback of current geode-
sic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in
order to achieve the shortest path. In this paper we propose a method for learning an adaptive Riemann-
ian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector
of the diffusion tensors even in high-curvature regions. We also develop a way to automatically segment
the white matter tracts based on the computed geodesics. We show the robustness of our method on sim-
ulated data with different noise levels. We also compare our method with tractography methods and geo-
desic approaches using other Riemannian metrics and demonstrate that the proposed method results in
improved geodesics and segmentations using both synthetic and real DTI data.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In order to study normal brain development, as well as neuro-
psychiatric disorders such as autism, it is crucial to understand
how different functional regions of the brain are connected by
white matter pathways. One approach to studying white matter
in vivo is diffusion tensor imaging (DTI), a magnetic resonance
imaging (MRI) modality that measures the diffusion of water in tis-
sue. These diffusion measurements provide a means for inferring
the microstructural properties of the white matter and analyzing
fiber tracts. Three approaches to DTI analysis are: whole-brain con-
nectivity analysis; localizing white matter regions by registration
to an atlas; and segmenting individual white matter tracts from
specified regions of interest (ROI). In whole-brain connectivity
analysis, the goal is to explore the connectivity among many ana-
tomical regions over the whole brain, typically using tractography
and graph statistics (Hagmann et al., 2007). In atlas-based meth-
ods, the white matter is analyzed at the voxel level (Barnea-Goraly
et al., 2005) or the atlas is used to segment the white matter into
several anatomical tracts (Bazin et al., 2011). In this paper, we
focus on segmentation of individual white matter tracts connecting
two specified ROIs.

Several works have developed segmentation methods for white
matter tracts from DTI data. Zhukov et al. (2003) employ level-sets
to create geometric models of brain structures. Rousson et al.
(2004) extend region-based surface evolution to DTI. Lenglet
et al. (2005) model DTI data as multivariate Gaussian distributions
and employ a level variational approach to segment the white mat-
ter structures. Wang and Vemuri (2005) use the square root of the
J-divergence as the distance of tensors in a region-based active
contour model for DTI segmentation. Ziyan et al. (2006) propose
a modified spectral clustering method to segment thalamic nuclei.
Awate et al. (2007) use a non-parametric model to get a fuzzy seg-
mentation of the white matter tracts. Melonakos et al. (2007b) pro-
pose a locally constrained Bayesian region growing approach based
on a pre-computed anchor path inside the white matter tract. Niet-
hammer et al. (2009) develop a segmentation framework for near-
tubular white matter tracts through global statistical modeling and
local reorienting of the diffusion orientation. These methods focus
on segmenting the white matter tracts of interest from the tensor
field and they do not compute parameterized fiber pathways con-
necting the two end regions of the tracts. Tractography (Mori et al.,
1999b; Conturo et al., 1999; Basser et al., 2000; Koch et al., 2002;
Behrens et al., 2003; Parker et al., 2003; Lazar and Alexander,
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2005; Friman et al., 2006; Jones, 2008) and front-propagation
(Parker et al., 2002; O’Donnell et al., 2002; Jackowski et al., 2005;
Melonakos et al., 2007a; Pichon et al., 2005; Fletcher et al., 2007;
Jbabdi et al., 2008; Hao et al., 2011) approaches, however, provide
both a volumetric segmentation of the tract suitable for region-
based analysis and a parameterization suitable for along-tract
statistics (Corouge et al., 2006). In this paper, we extend the
front-propagation approaches and compare our approach to previ-
ous methods for front propagation and tractography.

1.1. Properties of tractography

Deterministic tractography (Mori et al., 1999b; Conturo et al.,
1999; Basser et al., 2000) computes streamlines (sometimes
called fibers) by forward integration of the principal eigenvector
of the diffusion tensors from one region. One major problem with
tractography is that imaging noise causes errors in the principal
eigenvector direction, and these errors accumulate in the integra-
tion of the streamlines. Another disadvantage to tractography is
that it has difficulty in cases where the goal is to find pathways
between two regions. In this scenario, streamlines begin in one
of the regions and are accepted only if they eventually pass
through the desired ending region. However, several factors con-
spire to often result in only a small fraction of fibers being ac-
cepted. For example, accumulated errors in the streamlines can
throw them off the final destination. Also, noise and partial vol-
ume effects in the tensor field can cause stopping criteria to be
prematurely triggered, either by low anisotropy tensors or sudden
direction changes. The Brute-Force (BF) approach proposed by
Conturo et al. (1999) can increase the number of accepted fibers
by initiating fiber tracking from every voxel in the brain. How-
ever, this approach still suffers from the same factors mentioned
above and can often segment only the main core of the white
matter tracts.

Stochastic tractography (Koch et al., 2002; Behrens et al., 2003;
Parker et al., 2003; Lazar and Alexander, 2005; Friman et al., 2006;
Jones, 2008) is an approach that deals with the problems arising
from image noise. In these methods, large numbers of streamlines
are initiated from each seed voxel and are integrated along direc-
tions determined stochastically at each point. However, this is a
computationally-intensive procedure (typically requiring several
hours). Also, stochastic tractography suffers from the same prob-
lems with streamlines stopping in noisy or low-anisotropy regions,
leading to artificially low (or even zero) probabilities of connection.
Although Barbieri et al. (2012) combine tensor clustering tech-
nique with stochastic tractography in order to improve the accu-
racy of the segmentation results, this method introduces more
parameters and strongly depends on the quality of the connectivity
map.

1.2. Properties of front-propagation

In the DTI literature, front-propagation approaches are one class
of methods to analyze the white matter pathways. These methods
infer the pathways of white matter by first evolving a level set
representing the time-of-arrival of paths emanating from some
starting region. Then the pathways are computed by integrating
the characteristics vectors of the level set backward from any tar-
get point to the starting region (Jackowski et al., 2005). The direc-
tion and speed of this evolving front at each point is determined by
some cost function derived from the diffusion tensor data. One
such method, first proposed by O’Donnell et al. (2002), is to treat
the inverse of the diffusion tensor as a Riemannian metric, and
the paths in the propagating front as geodesics, i.e., shortest paths,
under this metric. This makes intuitive sense: traveling along the
large axis of the diffusion tensor results in shorter distances, while
traveling in the direction of the small axes results in longer
distances. Therefore, the shortest paths will tend to remain tangen-
tial to the principal eigenvector of the diffusion tensor.

Front-propagation approaches for analyzing white matter
pathways are attractive for at least three reasons. First, the
front-propagation algorithms are more robust to noise than both
deterministic tractography and stochastic tractography. This is
because front-propagation methods compute fibers by optimizing
a global criterion over the whole brain, so the wavefront is not
constrained to exactly follow the principal eigenvector of the ten-
sors. Although the principal eigenvector of the tensor is the pre-
ferred direction for paths to travel, the minimal-cost paths may
deviate from these directions if the deviation decreases the over-
all cost, and hence are less sensitive to noise or partial voluming.
Second, front-propagation methods can compute a large number
of fibers using a short computational time. Efficient implementa-
tions of front-propagation solvers are much faster (typically
requiring several seconds) than stochastic tractography. The
graphics processing unit (GPU) implementation by Jeong et al.
(2007) even runs at near real-time speeds. Finally, as shown by
Fletcher et al., 2007, front-propagation methods can be used to
segment white matter tracts by solving the geodesic flow from
two ROIs and combining the resulting cost functions. This ap-
proach has the advantage that the solution will not get stuck in
regions of noisy data or low anisotropy, in contrast to tractogra-
phy methods. However, it also has the disadvantage that it re-
quires the user to predefine two ROIs at the endpoints of the
white matter tract of interest. Consequently, this approach is only
appropriate when the anatomy of the white matter pathway is
well-known, i.e., its endpoint regions can be reasonably identified,
because a white matter path will always be found. Although, if a
‘‘false positive’’ connection is found, this can be detected using
heuristic connectivity metrics as introduced by Parker et al.
(2002) and Jackowski et al. (2005).

1.3. High curvature tract deviation

While front-propagation is a powerful framework for comput-
ing white matter pathways and despite the advantages that
front-propagation methods have over tractography, there is one
severe drawback. These geodesics have the serious deficiency that
in high-curvature tracts they tend to deviate from the eigenvector
directions and take straighter trajectories than is desired. That is, in
high-curvature regions, the incremental cost of following the ten-
sor field is overcome by the cost associated with the longer (more
curved) path. The top image of Fig. 1 is a diagram illustrating the
problem. In a curved tensor field, one would typically prefer a path
that follows, to whatever extent possible, the major eigenvectors of
the tensors (shown in blue). The shortest path, using a Euclidean
metric (i.e., ignoring the tensors), follows a straight line except at
constraints (shown in red). The typical geodesic with a local, aniso-
tropic metric (e.g., using the inverse tensors as metric) will find a
compromise between these two (shown in magenta). Although
the magenta geodesic is taking infinitesimally higher-cost steps
than the blue curve, its overall length under the inverse-tensor
metric is shorter.

Fletcher et al. (2007) have addressed this issue previously by
‘‘sharpening’’ the tensor, i.e., increasing the anisotropy by taking
the eigenvalues to some power and renormalizing them, which in-
creases the cost of moving in directions other than the principal
eigenvector. Actually, the first front-propagation algorithm pro-
posed by Parker et al. (2002) essentially takes this sharpening
strategy to its limit, which results in a cost function that is the
dot product of the level set velocity with the principal eigenvector,
and Jbabdi et al. (2008) show that the geodesics more closely fol-
low the principal eigenvectors as the anisotropy of the noiseless



Fig. 1. Top: diagram of various pathways between two points in a curved tensor
field: the desired path following the principal eigenvectors (blue), the shortest path
under the Euclidean metric (red), and the compromise path taken when using the
inverse tensor field as metric (magenta). Bottom: a slice of our a(x) solution for the
synthetic data in Section 5.1. (Voxels are color coded from red (low value) to yellow
(high value).) (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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tensor increases. However, first of all, the sharpening is applied
equally across the image, rather than taking the curvature of the
tract into account, and sharpening that increases with the curva-
ture of the tract could be more effective. Secondly, another down-
side of sharpening is that it changes the shape of the tensor and
reduces the ability to deviate from the principal direction, thus
decreasing the desired robustness to noise. Lastly, the amount of
sharpening is an ad hoc parameter, and it is not clear how to set
the amount of sharpening to find the best balance between robust-
ness to noise versus faithful following of the eigenvectors.

In this paper we develop a new Riemannian metric that is a
modulated version of the inverse diffusion tensor field. This metric
is able to adaptively correct the geometry of geodesic curves in
high-curvature regions so that they more closely follow the princi-
pal eigenvectors of the tensors. The resulting algorithm requires
solving for an unknown scalar field (one example is shown in the
bottom image of Fig. 1), which we compute by solving a Poisson
equation on the Riemannian manifold—however, it does not re-
quire any arbitrary choice of parameters. Based on the computed
geodesics from the two end regions of a white matter tract, we
develop an automatic segmentation framework resulting in seg-
mentations that better delineate the white matter tracts and does
not require parameters tuning or other kinds of user intervention.
A preliminary version of this work has been introduced previously
in Hao et al. (2011). In this paper, we provide additional details
about the derivations of the geodesic equation and Poisson equa-
tion (in Section 2), discuss the numerical methods for solving the
Poisson equation (in Section 3), and develop a new segmentation
framework based on the computed geodesics (in Section 4). In
the end, we show that our adaptive metric is sufficient to eliminate
the problem with geodesics in high-curvature regions described
above and illustrated in Fig. 1, and we demonstrate the corrected
behavior of geodesics, robustness of our adaptive metric, and the
improvements of segmentations of the white matter tracts on both
synthetic and real data (in Section 5).
2. Adaptive Riemannian metrics

In this section we derive a procedure for computing geodesic
flows in diffusion tensor data that resolves the major drawback
of front-propagation approaches outlined above. Namely, the
geodesics generated by our method more closely conform to the
principal eigenvector field. Rather than directly using the inverse
of the diffusion tensor as the Riemannian metric, as is typically
done, we compute a spatially-varying scalar function that modu-
lates the inverse tensor field at each point and use this as our met-
ric. We show that this scalar field can be chosen in such a way that
the resulting geodesic flows have the desired property of following
the eigenvector directions. This entails solving the classical varia-
tional problem for geodesic curves, with the exception that the
Riemannian metric is scaled by a positive function. In the resulting
Euler–Lagrange equation, we then solve for the particular scaling
function that causes geodesics to follow the desired directions. In
the end, we see that the appropriate function is computed by solv-
ing a Poisson equation on the Riemannian manifold.
2.1. The metric modulating function

On a Riemannian manifold, M, the geodesic between two points
p, q 2M is defined by the minimization of the energy functional

EðcÞ ¼
Z 1

0
hTðtÞ; TðtÞidt;

where c: [0, 1] ? M is a curve with fixed endpoints, c(0) = p,
c(1) = q, T = dc/dt, and the inner product is given by the Riemannian
metric. In our case the manifold M � R3 is the image domain, and
the Riemannian metric can be equated with a smoothly-varying,
positive-definite matrix g(x) defined at each point x 2M. Letting
TxM denote the tangent space at a point x 2M, the inner product
between two tangent vectors u, v 2 TxM is given by hu, vi = utg(x)v.
As mentioned above, previous front-propagation approaches to
DTI have used the inverse of the diffusion tensor field as a metric,
i.e., g(x) = D(x)�1 (or a sharpened or modified version), and this
choice of metric leads to geodesics that bend inwards around
curves. To rectify this problem, we will scale the Riemannian metric
by a positive function ea(x), which results in the new geodesic
energy functional

EaðcÞ ¼
Z 1

0
eaðcðtÞÞhTðtÞ; TðtÞidt: ð1Þ

We call the function ea the metric modulating function because it
scales the Riemannian metric at each point. The exponentiation of
a is to ensure that this scaling factor is positive and to make the
solution to the variational problem come out simpler in the end.
While it is possible to envision more complicated modifications
of the metric tensor, we choose to modify the metric in this fashion
for three reasons. First, the shape of the diffusion tensor provides
information about the relative preference in diffusion directions,
and a scaling operation allows us to keep this information intact.
Second, the modification in (1) is sufficient to correct for the effects
of curvature. In other words, if the tensors are following a curved
path, but not changing shape, the metric modulating function
can be chosen in such a way that the resulting geodesics perfectly
follow the principal eigenvector. We demonstrate this property
empirically using a synthetic example in Section 5. Third, on a
Riemannian manifold M, if there exist two Riemannian metrics
g1, g2 satisfying g1 = fg2 for some positive function f on M, we call
these two metrics conformally equivalent and the function f a con-
formal factor. So, our modulated Riemannian metric is a conformal
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transformation of inverse-tensor metric and the computed ea can
be seen as a conformal factor.

2.2. Computing the geodesic equation

To minimize the new geodesic energy functional given in (1),
we use two tools of Riemannian geometry. The first is the affine
connection rXY, which is the derivative of a vector field Y in the
direction of a vector field X. We will write the vector fields X, Y
in terms of a coordinate system (x1, x2, . . ., xn); note that super-
scripts here are indices, not exponentiation. We write X ¼

P
aiEi

and Y ¼
P

bjEj, where Ei ¼ @
@xi are the coordinate basis vectors,

and ai and bj are smooth coefficients functions. Then the affine con-
nection is given by

rXY ¼
X

k

X
i

ai @bk

@xi
þ
X

i;j

Ck
ija

ibj

 !
Ek:

The terms Ck
ij are the Christoffel symbols, which are defined as

Ck
ij ¼

1
2

Xn

l¼1

gkl @gjl

@xi
þ @gil

@xj
�
@gij

@xl

� �
;

where gij denotes the entries of the Riemannian metric, g, and gij de-
notes the entries of the inverse metric, g�1. Again, the intuition be-
hind this affine connection is that it is like a directional derivative of
vector fields. In the special case of Y = X,rXX measures how the vec-
tor field X bends along its integral curves.

The second tool that we employ is the Riemannian gradient of a
smooth function f, which we denote grad f. The gradient of a function
on a Riemannian manifold looks like the standard Euclidean gradi-
ent, except with a multiplication by the inverse of the metric, i.e.,

grad f ¼ g�1 @f
@x1 ;

@f
@x2 ; . . . ;

@f
@xn

� �
:

The gradient is defined in this way so that the inner product
with a unit vector u results in the usual directional derivative,
ruf = hgrad f, ui.

Using the affine connection and Riemannian gradient, we take
the variation of the energy (1). Let W be a vector field defined along
the curve c that represents an arbitrary perturbation of c, keeping
the endpoints fixed, i.e., W(0) = W(1) = 0. Notice that W and T are
partial derivatives of the variation of c, and therefore they com-
mute, i.e., rWT =rTW. To simplify the notation, we will suppress
the parameter t in most of the following equations. Then the vari-
ational of the energy functional is

rW EaðcÞ

¼ rW

Z 1

0
eahT; Tidt

¼
Z 1

0
rW eahT; Tidt

¼
Z 1

0
rW ea � hT; Ti þ earW T; Th idt

¼
Z 1

0
hW; grad eai � T; Th i þ 2ea rW T; Th idt

¼
Z 1

0
hW; grad eai � kTk2 þ 2 rW T; eaTh idt

¼
Z 1

0
hW; grad eai � kTk2 þ 2 rT W; eaTh idt

¼
Z 1

0
W; eakTk2grad a
D E

� 2 W;rT eaTð Þh idt

¼
Z 1

0
W; eakTk2grad a� 2eadaðTÞ � T � 2earT T
D E

dt:
Now, setting this last line to zero and dividing through by ea results
in the geodesic equation

grad a � kTk2 ¼ 2rT T þ 2daðTÞ � T: ð2Þ

If we assume, without loss of generality, that geodesics have unit-
speed parameterization, i.e., kTk = 1, then rTT will be normal to T.
Now, assuming this parameterization and taking the inner product
with T on both sides of (2), we obtain

hgrad a; Ti ¼ 2daðTÞ ¼ 2hgrad a; Ti:

This can hold only if the tangential component, hgrada, Ti = 0.
Therefore, the last term in (2) must vanish, and we get the final,
simplified geodesic equation

grad a ¼ 2rT T: ð3Þ
2.3. Computing the metric modulating function

Now that we have the geodesic equation for the modulated Rie-
mannian metric, we introduce the property that we would like to
enforce: that the tangent vectors, T, follow the unit principal eigen-
vector directions, V. Satisfying this property directly would result
in the equation grada = 2rVV, which we would need to solve for
a. However, given an arbitrary unit vector field V, there may not
exist such a function with the desired gradient field.

Instead we minimize the squared error between the two vector
fields, i.e., we minimize the functional

FðaÞ ¼
Z

M
grad a� 2rV Vk k2dx: ð4Þ

As before, the norm here is given by the Riemannian metric. The
Euler–Lagrange solution to this problem is derived in the following
derivation similarly to the classical Poisson equation,

dFðaþ�hÞ
d�

����
�¼0

¼ d
d�

Z
M
kgradðaþ�hÞ�2rV Vk2dxj�¼0

¼ d
d�

Z
M
hgradðaþ�hÞ�2rV V ;gradðaþ�hÞ�2rV Vidxj�¼0

¼2
Z

M
h d
d�

gradðaþ�hÞ;gradðaþ�hÞ�2rV Vidxj�¼0

¼2
Z

M
hgrad h;grad a�2rV Vidx

¼�2
Z

M
hh;divðgrad aÞ�2divðrV VÞidxþ

Z
M

divðh � ðgrad a�2rV VÞÞdx

¼�2
Z

M
hh;Da�2divðrV VÞidxþ

Z
@M

h � hgrad a�2rV V ; n!idx:

The div operator used above is the Riemannian divergence, and
the divergence of X on M is defined in coordinates as

divðXÞ ¼ 1ffiffiffiffiffiffi
jgj

p X
i

@

@xi

ffiffiffiffiffiffi
jgj

p
ai

� �
;

where jgj is the determinant of the Riemannian metric, which rep-
resents the appropriate volume element. Finally, the equation of the
metric modulating function that minimizes (4) is given by

Da ¼ 2divðrV VÞ; ð5Þ

where Da = div (grada) is the Laplace–Beltrami operator on M, de-
fined as

DðaÞ ¼ 1ffiffiffiffiffiffi
jgj

p X
i

@

@xi

ffiffiffiffiffiffi
jgj

p X
j

gij @a
@xj

 !



X. Hao et al. / Medical Image Analysis 18 (2014) 161–175 165
in coordinates. From the boundary integral in the last step of the
above derivation, the appropriate boundary conditions for this
problem are the Neumann conditions,

@a
@ n!
¼ hgrad a; n!i ¼ h2rV V ; n!i:

Finally, we solve (5) with the above boundary conditions to
compute a for a data set, and the detailed implementation is dis-
cussed in Section 3. In the bottom image of Fig. 1, we show a slice
of our a solution for the synthetic torus in Section 5.1. The voxels
are color coded from red (low value) to yellow (high value), and
we can see that the interior of the a field has a higher value than
the exterior. Scaling the inverse tensor metric with ea makes the
geodesics follow the desired directions. This is because it has a
higher cost for a pathway to travel along the interior of the torus
than the exterior. In addition, the a field is consistent with equa-
tion grada = 2rVV. As we mentioned earlier, rVV measures how
V is bending along its integral curve. Since V is rotating only in this
case, the grada points inward to the torus center, which means a
should increase as we move from the exterior of the torus to the
interior. In another perspective, since the curvature is higher in
the interior of the torus than the exterior, the a also penalizes high-
er curvature. The higher the curvature, the higher the a. This also
happens on real data. For example, in the axial slice of the brain
as shown in Fig. 2, we can see that the a is higher in the interior
of the genu because the curvature is higher in the interior.
3. Numerical implementation

A closer look at (5) reveals that it is nothing but an anisotropic
Poisson equation on the image domain. The right-hand side is con-
stant in a, and the Laplace–Beltrami operator on the left-hand side
can be expressed as r � (Gra), where G is a symmetric positive-
definite matrix, r� is the usual Euclidean divergence operator,
andr is the gradient operator in the image domain. Since the Pois-
son equation is on the image grid, we approximate both sides of
the Poisson equation using a finite-difference approach.

It is common to use central, forward, or backward differences to
approximate the first derivative. These techniques perform well on
noiseless data, but they do not give adequate results on noisy data.
So instead of using these differences, we use the noise-robust
differentiator (Holoborodko, 2008) as our finite-difference approx-
imation of the first derivative, which suppresses the high frequen-
cies of the noise signal, is precise on low frequencies, and is
particularly beneficial for noisy data.

Care must be taken to handle the sign ambiguity of the eigen-
vectors V when computing rVV. When we compute rVV at a node,
we need to make the eigenvectors around the node consistent. Our
approach selects the eigenvector at the current node as a reference
eigenvector and then chooses the directions that have smaller
angle with the reference eigenvector of the eigenvectors in the
neighborhood. Remember that since rVV =r(�V)(�V), it does not
matter which direction the reference eigenvector points to of the
two possible directions.

After the discretization of the Poisson equation with the Neu-
mann boundary condition, we will get a sparse linear system
A � a = b to solve. For sparse linear systems, there are many efficient
iterative solvers, such as conjugate gradient (Hestenes and Stiefel,
1952) (CG). However, CG can apply only to symmetric and posi-
tive-definite matrices or at least positive-semidefinite matrices.
In our discretization, the Laplace–Beltrami operator A on the left-
hand side is asymmetric due to the asymmetric interaction be-
tween g�1 and the computation of ra in different neighborhoods,
so we have to use other solvers that can be applied to asymmetric
linear systems, such as the generalized minimal residual method
(Saad and Schultz, 1986) (GMRES) and biconjugate gradient meth-
od (Fletcher, 1976) (BICG). For BICG, we need to compute AT, which
is not trivial, so we use GMRES as implemented in PETSc (Balay
et al., 2013a,b,1997) in our implementation.

GMRES solves a linear system by constructing a vector space
with an orthonormal basis, and the solution can be written as
the linear combination of the basis vectors. However, one draw-
back of the GMRES is that it also needs to save a certain number
of basis vectors. In our real data study, to get a good solution, the
GMRES usually runs hundreds of iterations and we need to save
several hundreds of basis vectors. Each basis vector usually
requires tens of megabytes of memory, which means we need at
least several gigabytes of memory. However, the amount of mem-
ory usage and computing time depends on the number of itera-
tions, and we can reduce the number of iterations by using a
good initialization of a. Our initialization of a is computed by min-
imizing the L2 norm of the difference between ra and 2rVV, i.e.,
we will minimizeZ
ra� 2rV Vk k2dx

by solving the Euclidean Poisson equation

Da ¼ 2divðrV VÞ;

where Da = div(ra) is the Laplace operator and div is just the
Euclidean divergence. The reason we choose this initialization is
that the Euclidean Poisson equation with Neumann conditions
can be easily discretized to a symmetric positive definite linear
system, which can be solved using CG efficiently in terms of both
memory requirements and computing time. With the good initial-
ization, we usually need tens of iterations instead of hundreds of
iterations till the GMRES converges, and we have to save only tens
of basis vectors. In our real data study, if we use the GMRES with
the good initialization, the total cost is about two gigabytes of
memory and five minutes instead of more than ten gigabytes of
memory and forty minutes while using the GMRES with zero
initialization.
4. Segmentation of white matter tracts using adaptive geodesics

Front-propagation methods do not explicitly compute the geo-
desic curves, but instead compute a cost function u(x), which is the
time-of-arrival of the geodesic flow at the point x. The characteris-
tic vectors of u(x) give the tangent vectors along the geodesic, and
the characteristic vectors are given by T(x) = g(x)�1ru(x), where
g(x) is the Riemannian metric and ru(x) indicates the Euclidean
gradient.

To segment a white matter tract, Fletcher et al. (2007) propose
the idea of first defining two ROIs at each end of the tract and then
thresholding the addition u(x) = u1(x) + u2(x), where u1(x) and u2(x)
are the two cost functions from the two ROIs. This threshold, how-
ever, is preset and the segmentations of white matter tracts vary
hugely with the changes of the threshold value. Thus, users often
need to manually adjust the threshold value, which is not only
time-consuming but also may reduce the reliability and repeatabil-
ity of the segmentations. This issue is critical especially for longitu-
dinal studies where we need to analyze the changes of a white
matter tract over time and we want the segmentations of the white
matter tract to be consistent for different time points.

To overcome this drawback, we propose to segment a white
matter tract based on the angles of the two characteristic vector
fields from the two ROIs. Intuitively, the characteristic vectors from
the two ROIs would tend to point against each other inside the
white matter tract, and tend to point to similar directions outside



Fig. 2. Top: slices of the a solution for a read data in different views (Voxels are color coded from red (low value) to yellow (high value).). Bottom: corresponding color-coded
principal eigenvector image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the tract as shown in the second image of Fig. 3. In theory, for each
point on the Riemannian manifold, there must exist a geodesic
from each ROI to the point, which means we have two characteris-
tic vectors at each point. If the point is on a geodesic from one ROI
to the other ROI, the two characteristic vectors must point to oppo-
site directions, though, in practice, we do not require that the two
characteristic vectors be exactly opposite but have a large angle.
When we compute the angle image of the two characteristic vector
fields, since some characteristic vectors are pointing outwards at
the boundary of the white matter boundary (Hao et al., 2011),
we apply a median filter to the angle image to fix this artifact.

In order to segment the tract, we propose to threshold the angle
image of the two characteristic vector fields. In addition, we do not
want to manually set this threshold, as this may introduce reliabil-
ity issues across different subjects or time points. Rather, we want
to use an algorithm for automatically finding the optimal threshold
for the angle image. Since the boundary of the tract of interest is
very clear in the angle image (one example is shown in the second
image of Fig. 3), we propose to use Otsu’s method (Otsu, 1979) to
automatically segment the tract from the white matter.

Otsu’s method automatically thresholds a gray-level image to a
binary image by calculating the optimal threshold that minimizes
the within-class variance

r2
wðtÞ ¼ x1ðtÞr2

1ðtÞ þx2ðtÞr2
2ðtÞ;

where x1(t) and x2(t) are the probabilities of the two classes thres-
holded by t, which are computed from the histogram, and r2

1ðtÞ and
r2

2ðtÞ are the variance of the two classes. When the image to be
thresholded contains two classes of voxels with well-separated
intensity distributions, which holds for our angle images, Otsu’s
method performs well.

With Otsu’s thresholding, we can segment the white matter
tract of interest pretty well in most cases, but there is still an issue:
the two characteristic vector fields sometimes could also meet at
some white matter tracts other than the one of interest, and the
segmented image would contains parts of some other white matter
tracts (one example is shown in the third image of Fig. 3). In the
case that these extra parts are not connected to the tract of inter-
est, we can exclude these parts by choosing only the component
containing the two ROIs using the connected component method.
If these extra parts, however, are connected to the tract of interest,
the connected component method does not help.

To resolve this issue, we introduce a step before the Otsu’s
thresholding. We propose to threshold the cost image u(x) to the
limit where all the voxels inside the ROIs are included in the thres-
holded region. We do this because more and more voxels inside the
ROIs are included in the thresholded region as the threshold in-
creases, and once all the voxels inside the ROIs are included, voxels
that do not belong to the tracts will be included if we continue
increasing the threshold. This threshold could be the max cost of
all the voxels inside the two ROIs, but in case there are some out-
lier voxels inside the ROIs, we use the 95% largest cost of the voxels
inside the two ROIs instead. Usually this thresholding of the cost
image results in a region that is slightly larger than the tract of
interest. One example is shown in the fourth image of Fig. 3.
Though the choice of 95% threshold seems ad hoc and the increase
of the threshold over-segments the tract of interest even more, our
method is not sensitive to this specific threshold value. The reason
is that the following Otsus thresholding of the angle image from
the thresholded region reduces the amount of over-segmentation
as shown in the last image of Fig. 3. Moreover, this thresholding
strategy can be replaced with some outlier detection algorithms.

To summarize, our segmentation algorithm has two steps:

1. Segment a relatively small region containing the tract of inter-
est by automatically thresholding the cost image u(x) as
described above.

2. Based on the angle image, use Otsu’s method to automatically
segment the tract of interest from the thresholded region from
step 1.

5. Results

In this section, we demonstrate the improvement of geodesic
flows generated by our metric modulating method compared to
flows computed with the inverse-tensor metric and the sharp-
ened-tensor metric (Fletcher et al., 2007) using both synthetic
and real DTI data. Our measure of quality is how well the geodesics
from the three methods follow the principal eigenvectors of the



Fig. 3. From left to right: a slice of the cost image u(x); the angle image between two characteristic vector fields, voxels colors are from white (small angle) to red (large
angle); result of Otsu’s thresholding directly on the angle image (shown in white); result of 95% thresholding of the cost image u(x) (shown in red); and result of Otsu’s
thresholding of the angle image from the 95% thresholded region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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noise free tensors. However, as mentioned in Section 4, front-prop-
agation methods do not explicitly compute the geodesic curves,
but instead compute a function u(x), which is the time-of-arrival
of the geodesic flow at point x. The characteristic vectors of u(x)
give the tangent vectors along the geodesic. In the case of the in-
verse-tensor metric, D(x)�1, the characteristic vectors are given
by T(x) = D(x)ru(x). In the case of the sharpened-tensor metric,
the characteristic vectors are given by T(x) = M(x)ru(x), where

MðxÞ ¼ jDðxÞj
1
3

DðxÞ
jDðxÞj

1
3

 !b

; ð6Þ

and we use b = 3 in all our experiments. In the case of our adaptive
metric, the characteristic vectors are given by T(x) = e�a(x)D(x)ru(x).
Hereru(x) indicates the Euclidean gradient, which we approximate
with finite differences, as described in Jackowski et al. (2005).

We compute u(x) by solving a Hamilton–Jacobi equation using
the Fast Iterative Method, as described in Fletcher et al. (2007).
For visualization purposes, we compute the geodesics from both
methods by integrating their characteristic vectors. Because these
vectors always point away from the source region, we compute
geodesic curves by integrating the characteristic vectors backward
from any target point in the tensor field. These integral curves of
the negative characteristic vectors are guaranteed to end up in
the source region.

In addition, we also demonstrate the improvement of segmen-
tations generated based on our metric modulating method com-
pared to those computed with the inverse-tensor metric, the
sharpened-tensor metric, the BF and multi-ROI approach, and sto-
chastic tractography (Friman et al., 2006) using both synthetic and
real data. The segmentation algorithms based on geodesic tracking
are mentioned in Section 4. We also test the BF and multi-ROI ap-
proach because it increases the validity of tractography as shown
in Huang et al. (2004). In this approach, a fiber is traced for all pix-
els in the image, but only those fibers that penetrate the predefined
ROIs are selected. Also, for a fair comparison with other segmenta-
tions, we truncate the selected fibers if they pass beyond the ROIs.
For the deterministic tractography algorithm used in the BF + two-
ROI approach, we test continuous tracking (FACT) (Mori et al.,
1999a) and tensor line (Weinstein et al., 1999) methods for both
synthetic and real data. In addition, since we use a two-tensor
model (7) to simulate several fiber crossing data in Section 5.3,
we also do two-tensor estimation in the crossing regions and test
two-tensor FACT and two-tensor tensor line methods for the gen-
erated fiber crossing data. In the tractography algorithms used in
our experiments, our step size is 0.1 of the slice thickness, and
for the deterministic tractography algorithms, the streamline stops
when the change of angle is larger than 75� during tracking. The
stochastic tractography algorithm we used in our experiment is
Bayesian tractography with 10,000 tracts initiated from each seed
point. To compare with other two ROIs approaches, we select only
those fibers starting from one ROI passing through the other ROI,
and the connectivity map is computed from the selected fibers.
In addition, for quantitative validation purposes, we also truncate
the selected fibers as mentioned earlier, and threshold the connec-
tivity maps with threshold value zero to get binary segmentations
of the tracts. We use the implementation in CAMINO (Cook et al.,
2006) for the two-tensor estimation, deterministic tractography,
and stochastic tractography.

In the following sections, we first validate our adaptive Rie-
mannian metric on clean synthetic data in Section 5.1 and on noisy
synthetic data in Section 5.2. Then, we compare our segmentation
method with other approaches and perform quantitative evalua-
tion of the segmentations both on synthetic data in Section 5.3
and on real data in Section 5.4.

5.1. Clean synthetic curved tensor data

To test our method, we generate a synthetic curved tensor field
that has similar properties to many white matter tracts in the
brain. The synthetic data is the top half of a solid torus, where
the tensors rotate along the large circle of the torus. The torus
has a minor radius of 8 voxels and a major radius of 40 voxels. Each
tensor in the tensor field has the same eigenvalues (16, 4,
4) � 10�4 mm2/s. A middle slice of the tensor field is shown in
the first column of Fig. 4. The source region for the front-propaga-
tion method is shown in white.

In the third column of Fig. 4, we compare the characteristic vec-
tor field (shown in blue) of the generated noise free data with the
principal eigenvector field (shown in red). Comparing the three
images, we can clearly see the characteristic vectors T follow the
principal eigenvectors V much better in the middle and bottom
images. We do not show the vectors at the boundary of the white
matter, for some characteristic vectors are pointing outwards be-
cause of the aliasing artifacts (Hao et al., 2011), and we will use this
convention in the following descriptions.

In this synthetic example, we can compute the analytic solution
of a(x), which is a(x) = �2lnr(x) + C, where r(x) is the distance from
x to the center of the torus, and C is some constant. We computed
the difference between our numerical solution and the analytic
a(x), and the result was within numerical error. We also computed
the root mean square error (RMSE) of the angles between the geo-
desic tangent vectors and principal eigenvectors. The RMSE for our
adaptive metric is 1.62� compared to 12.21� for the inverse-tensor
metric and 0.84� for the sharpened-tensor metric. Again, we did
not count the angles at the boundary when we computed RMSE,
and we will use this convention in the following descriptions.

In the first column of Fig. 4, we visualize the integrated geode-
sics of the generated noise free data between some target points
(on the right side of the torus) and the source region (shown in
white). Under the sharpened-tensor metric and adaptive metric,
the geodesics follow the principal eigenvectors of the tensor field
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and arrive at a point inside the source region. In contrast, the
geodesics under the inverse-tensor metric without modulation,
starting from the same target points, take a shortcut and end up
at the closest point inside the source region by closely following
the boundary constraints.

As shown in Fig. 4, the sharpened-tensor metric and our adap-
tive metric have better characteristic vector fields and geodesics
than the inverse-tensor metric. The sharpened-tensor metric is
even better than our adaptive metric in terms of RMSE of the
angles as shown in Table 1. This makes sense as we make the ten-
sor sharper by increasing b in (6), the cost of moving in directions
other than the principal eigenvector will increase, and the geode-
sics will tend to follow the principal eigenvectors more closely.
In the limit case, the geodesics will follow the principal eigenvec-
tors perfectly. However, we do not want to let the geodesics follow
the principal eigenvectors too closely on noisy data, for this would
decrease the robustness of the front-propagation method to noise
as we demonstrate in Section 5.2. Besides, the amount of sharpen-
ing is an ad hoc parameter and even if there exists an optimal
amount of sharpening, it is not clear how to compute this optimal
value.

5.2. Noisy synthetic curved tensor data

To test the robustness of our method, we simulate Rician noise
on the clean synthetic data we generated in Section 5.1, with sig-
nal-to-noise ratio (SNR) of 10, 15, and 20. To simulate Rician noise,
we use the Stejskal-Tanner equation to generate 12 ‘‘clean’’
diffusion weighted images (DWIs) with b = 1000 s/mm2 and one
non-diffusion-weighted image. We then simulate Rician noise on
each DWI and estimate the noisy synthetic tensor data.

We do the same comparison for the noisy synthetic data as we
did for clean synthetic data. In the fourth column of Fig. 4, we com-
pare the characteristic vector field (shown in blue) of the generated
noisy data at an SNR of 15 with the principal eigenvector field
(shown in red) of the clean synthetic data. We can clearly see the
characteristic vectors T follow the principal eigenvectors V much
better for the sharpened-tensor metric and adaptive metric
compared to inverse-tensor metric, but we can also see some char-
acteristic vectors T have a relative large angle with the principal
Fig. 4. First and second columns: geodesics of the generated noise free data (first column
(right side of the torus) to the source region (white). Third and fourth columns: tangent
noisy data at an SNR of 15 (fourth column) under the inverse-tensor metric without mod
(bottom row). The red vectors are the principal eigenvectors of the diffusion tensors. We s
visualize it. (For interpretation of the references to colour in this figure legend, the read
eigenvectors V for the sharpened-tensor metric. Again, we compute
the RMSE of the angles between the geodesic tangent vectors and
clean principal eigenvectors. The RMSE for our adaptive metric is
5.94� compared to 16.35� for the inverse-tensor metric and 6.97�
for the sharpened-tensor metric.

In addition, in Table 1, we can see that the RMSE of the angles
between the geodesic tangent vectors and clean principal eigenvec-
tors increases as the SNR decreases for all three metrics. Though
our modulating metric has a somewhat larger RMSE than the
sharpened-tensor metric on the clean data, our modulating metric
always has the lowest RMSE on the noisy data.

In the second column of Fig. 4, we visualize the integrated geo-
desics of the generated noisy data at an SNR of 15 between a target
region (on the right side of the torus) and a source region (shown
in white). Under our adaptive metric, the geodesics follow the prin-
cipal eigenvectors of the tensor field closely and arrive at a point
inside the source region. In contrast, the geodesics under the
inverse-tensor metric take a shortcut and end up at the closest
point inside the source region by closely following the boundary
constraints. The geodesics under the sharpened-tensor metric are
better than the ones under the inverse-tensor metric, but are
slightly worse than the ones under our adaptive metric.

5.3. Fiber crossing tensor data

To test the effectiveness of our segmentation algorithm pre-
sented in Section 4 on crossing tracts, we generate three fiber
crossing tensor fields with similar properties to many white matter
tracts in the brain. One goal of this experiment was to test the
influence of oblate tensors, where the principal eigenvectors that
our adaptive metric attempts to follow are not well-defined. The
synthetic images are two bars crossing at the center of the image
at an angle of 60� and 90�, and a curved torus crossing with a
cylinder. The bar has width 8 voxels, the cylinder has radius of 8
voxels, and the torus has minor radius of 8 voxels and major radius
of 40 voxels. We show a center slice of each tensor field along with
the ROIs we use in this experiment in the first column of Fig. 5.

The tensors in each tract of the two crossing tracts have eigen-
values (16, 4, 4) � 10�4 mm2/s. Each voxel of the generated DWI in
the crossing area was computed based on the two-tensor model,
) and noisy data at an SNR of 15 (second column) emanating from the targets points
vectors of the geodesics (blue) of the generated noise free data (third column) and
ulation (top row), sharpened tensor metric (middle row), and with our modulation
ubsample the tensor field by a factor of 4 both horizontally and vertically in order to
er is referred to the web version of this article.)



Table 1
The RMSE of the angles (in degree) between the geodesic tangent vectors and clean
principal eigenvectors under different metrics and different noise level.

No noise SNR 20 SNR 15 SNR 10

Inverse-tensor 12.21 15.76 16.35 18.35
Sharpened-tensor 0.84 5.31 6.97 10.70
Our adaptive 1.62 4.85 5.94 8.36

Table 2
Quantitative evaluation (Dice, sensitivity and specificity) of the segmentations on the
generated noisy data at an SNR of 10 based on 1: inverse-tensor metric, 2: sharpened-
tensor metric, 3: our modulating metric, 4: single-tensor FACT BF + two-ROI, 5:
single-tensor tensor line BF + two-ROI, 6: stochastic tractography, 7: two-tensor FACT
BF + two-ROI, 8: two-tensor tensor line BF + two-ROI.

60� Crossing 90� Crossing Curved crossing

Dice SENS SPEC Dice SENS SPEC Dice SENS SPEC

1 0.997 1 0.992 0.996 1 0.991 0.977 0.960 0.989
2 0.997 1 0.993 0.996 1 0.991 0.978 0.960 0.993
3 0.997 1 0.993 0.997 1 0.991 0.993 0.990 0.991
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S ¼ S0ðfe�bgt D1g þ ð1� f Þe�bgt D2gÞ; ð7Þ

4 0.044 0.023 0.994 0.143 0.078 0.991 0.665 0.500 0.989
5 0.189 0.105 0.999 0.991 0.989 0.991 0.958 0.919 0.999
6 0.327 0.195 1 0.269 0.155 1 0.860 0.754 0.999
7 0.810 0.681 0.998 0.901 0.821 0.998 0.950 0.905 0.997
8 0.777 0.637 0.996 0.973 0.954 0.991 0.958 0.921 0.994

The highest dice coefficients are shown in bold.
where S0 is the baseline image, g is the gradient direction, and D1

and D2 are the crossing tensors at a voxel. In this case, we use 64
gradient directions with b = 1000 s/mm2 and f = 0.5. In addition,
the DWI was corrupted by Rician noise to simulate SNR of 10, 15,
and 20.

In Tables 2 and 3, we compare the sensitivity, specificity, and
Dice coefficient of the segmentations computed by eight methods.
While the sensitivity and specificity represent only the true
positive rate and the true negative rate of the segmentations,
respectively, the Dice coefficient measures how similar the seg-
mentations and the ground truth are overall. A segmentation with
either a higher sensitivity or a higher specificity does not mean this
segmentation is better. For example, on one hand, if a segmenta-
tion has every pixel, it will have sensitivity 1 and specificity 0;
on the other hand, if a segmentation has no voxel, it will have sen-
sitivity 0 and specificity 1, which is the case for the single-tensor
FACT method in Table 3. So the Dice coefficient is of most interest
and a high Dice coefficient should have both high sensitivity and
high specificity.

From the two tables, we can see that it is very difficult for the
single-tensor FACT and tensor line methods to pass the 60�
Fig. 5. A slice of the fiber crossing data at an SNR of 20, and the corresponding conne
eigenvector images). First column: the simulated fiber crossing tensor fields with two RO
and vertically in order to visualize it. Second column: the connectivity map (voxels ar
tractography. The background image is the fractional anisotropy (FA) image. Third colum
are two-tensor FACT BF + two-ROI method, single-tensor tensor line BF + two-ROI metho
(fifth) column show the segmentation results based on the sharpened-tensor metric (o
legend, the reader is referred to the web version of this article.)
crossing area. The stochastic tractography method works some-
what better, but its Dice coefficients are still low compared to
our method. The major reason is that for these three methods,
most of the fibers from one tract enter the wrong tract by following
the ill-defined principal eigenvectors in the crossing region. The
two-tensor methods perform much better than the single-tensor
methods. For the 90� crossing data, most of the fibers of the sin-
gle-tensor FACT method cannot pass though the crossing region
because the principal eigenvectors are random at the crossing
region, but the tensor line method works well because the tensors
in the crossing region looks like pancakes and the fibers tend to go
straight. The two two-tensor methods work better compared to the
60� crossing case, for the crossing angle is larger, which is easier for
the two-tensor estimation algorithm to separate the two tensors.
For the image containing a curved tract crossing with a cylinder,
ctivity map and segmentations (shown white on top of the color-coded principal
Is (White and Gray). We subsample the tensor field by a factor of 3 both horizontally
e color coded from red (low intensity) to yellow (high intensity)) from stochastic
n: the best tractography segmentation results in terms of the Dice coefficient, which
d, and two-tensor tensor line BF + two-ROI method from top to bottom. The fourth

ur modulating metric). (For interpretation of the references to colour in this figure



Table 3
Quantitative evaluation (Dice, sensitivity and specificity) of the segmentations on the
generated noisy data at an SNR of 20 based on 1: inverse-tensor metric, 2: sharpened-
tensor metric, 3: our modulating metric, 4: single-tensor FACT BF + two-ROI, 5:
single-tensor tensor line BF + two-ROI, 6: stochastic tractography, 7: two-tensor FACT
BF + two-ROI, 8: two-tensor tensor line BF + two-ROI.

60� Crossing 90� Crossing Curved crossing

Dice SENS SPEC Dice SENS SPEC Dice SENS SPEC

1 0.998 1 0.996 0.996 1 0.991 0.977 0.958 0.992
2 0.998 1 0.996 0.996 1 0.991 0.977 0.959 0.992
3 0.997 1 0.992 0.996 1 0.991 0.993 0.990 0.992
4 0 0 1 0.030 0.015 1 0.705 0.544 0.999
5 0.053 0.027 1 0.991 0.991 0.989 0.952 0.908 0.998
6 0.204 0.124 1 0.536 0.366 1 0.882 0.790 0.997
7 0.929 0.872 0.993 0.949 0.907 0.995 0.967 0.939 0.992
8 0.845 0.749 0.995 0.982 0.974 0.987 0.968 0.941 0.992

The highest dice coefficients are shown in bold.
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the single-tensor FACT and stochastic tractography methods work
better compared to the other two cases because the principal
eigenvectors are not random except in the center slice of the cross-
ing region, and most of the fibers do not go to the wrong tract by
following the principal eigenvectors.

For the segmentations based on the geodesic tracking with
three metrics, we can see that these three methods outperform
the other five tractography algorithms and that the three methods
have very similar Dice coefficients, which are all above 99%, for
both 60� and 90� crossing. For the data where a curved tract
crosses with a cylinder, although these three methods still outper-
form the other five tractography algorithms, the segmentations
Fig. 6. Left column: tangent vectors of the geodesics (blue) under the inverse-tensor me
part of the corpus callosum. The red vectors are the principal eigenvectors of the diffusion
in the corpus callosum from the target points (in the left frontal forcep) to the source re
diffusion tensor field. (For interpretation of the references to colour in this figure legend
based on our modulating metric have the best Dice coefficient,
and their differences from the Dice coefficients of the segmenta-
tions based on the other two metrics are greater.

Besides, the geodesic methods have very stable segmentations
as the noise level changes, but the tractography methods are rela-
tively more sensitive to noise. In addition, for different crossing
data, the best tractography algorithm changes, so it is unclear
how to choose the most appropriate tractography algorithm if
we want to use tractography to segment tracts.

In the last three columns of Fig. 5, we show a slice of the seg-
mentations using the best tractography methods (third column)
in terms of the Dice coefficient, using the sharpened-tensor metric
(fourth column), and using our adaptive metric (fifth column). We
can see that the segmentations based on our adaptive metric are
favorable in all three cases. In the second column of Fig. 5, we show
the connectivity maps of the stochastic tractography. We can see
that the stochastic results miss numerous voxels that are inside
the tract of interest.

5.4. Real data

We now show the results of our method applied to DTI of 10
healthy volunteers. DTI data were acquired on a Siemens Trio 3.0
Tesla Scanner with an eight-channel, receive-only head coil. DTI
was performed using a single-shot, spin-echo, EPI pulse sequence
and SENSE parallel imaging (undersampling factor of 2). Diffu-
sion-weighted images were acquired in 12 non-collinear diffusion
encoding directions with diffusion weighting factor b = 1000 s/
mm2 in addition to a single reference image (b = 0). Data
tric (top), sharpened-tensor metric (middle) and our adaptive metric (bottom) for a
tensors. The FA image is shown in the background. Right column: the geodesic flow

gion (in the right frontal forcep). The background images are the FA image and the
, the reader is referred to the web version of this article.)



Table 4
Mean and standard deviation of segmentation metrics (Dice, sensitivity and specificity) for the uncinate fasciculus, genu, arcuate fasciculus and corticospinal tract from 10
subjects. Methods shown are 1: inverse-tensor metric, 2: sharpened-tensor metric, 3: our modulating metric, 4: single-tensor FACT BF + two-ROI, 5: single-tensor tensor line
BF + two-ROI, 6: stochastic tractography.

Uncinate Genu Arcuate fasciculus Corticospinal tract

Dice SENS SPEC Dice SENS SPEC Dice SENS SPEC Dice SENS SPEC

1 .793 ± .054 .720 ± .087 .999 ± 0 .706 ± .132 .625 ± .163 .993 ± .004 .729 ± .052 .621 ± .074 .999 ± .001 .778 ± .050 .752 ± .089 .997 ± .001
2 .829 ± .047 .800 ± .099 .999 ± 0 .726 ± .078 .637 ± .114 .993 ± .003 .733 ± .045 .650 ± .080 .999 ± .001 .758 ± .050 .733 ± .088 .996 ± .001
3 .845 ± .036 .841 ± .044 .999 ± .001 .745 ± .046 .709 ± .111 .988 ± .006 .750 ± .034 .687 ± .054 .998 ± .001 .782 ± .041 .866 ± .049 .994 ± .002
4 .460 ± .121 .401 ± .119 .998 ± .001 .628 ± .091 .511 ± .117 .994 ± .004 .429 ± .107 .322 ± .094 .998 ± .001 .373 ± .120 .260 ± .098 .998 ± .001
5 .545 ± .096 .506 ± .126 .998 ± .001 .698 ± .046 .599 ± .075 .993 ± .003 .530 ± .110 .410 ± .112 .999 ± .001 .367 ± .095 .246 ± .083 .999 ± .001
6 .469 ± .158 .341 ± .136 .999 ± .001 .613 ± .074 .474 ± .103 .996 ± .004 .568 ± .123 .474 ± .122 .997 ± .003 .462 ± .098 .341 ± .095 .997 ± .002

The highest dice coefficients are shown in bold.

Fig. 7. A slice of segmentations (shown in white) and connectivity map of the genu
of the corpus callosum. Left column (from top to bottom): ground-truth segmen-
tation, segmentation from single-tensor tensor line BF + two-ROI method, connec-
tivity map from stochastic tractography; right column (from top to bottom):
segmentations based on geodesic tracking with inverse-tensor metric, sharpened-
tensor metric and our adaptive metric.

Fig. 8. Fibers generated from single-tensor tensor line BF + two-ROI method for the
genu of the corpus callosum.
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acquisition parameters included the following: contiguous (no-
gap) fifty 2.5 mm thick axial slices with an acquisition matrix of
128 � 128 over a FOV of 256 mm (2 � 2 mm2 in-plane resolution),
four averages, repetition time (TR) = 7000 ms, and echo time
(TE) = 84 ms. Eddy current distortion and head motion of each data
set were corrected using an automatic image registration program
(Rohde et al., 2004). Distortion-corrected DW images were interpo-
lated to 1 � 1 � 1 mm3 voxels, and six tensor elements were calcu-
lated using weighted least squares. The tensor upsampling is done
only for the purposes of numerical computations on the voxel grid;
a finer grid results in higher numerical accuracy.

5.4.1. Comparison of characteristic fields and geodesics
In the left column of Fig. 6, we compare the characteristic vector

field T (shown in blue) with the principal eigenvector field V
(shown in red) of the corpus callosum. Both sharpened tensor
and adaptive metrics result in characteristic vectors that tend to
follow the main eigendirections better. We computed the RMSE
of the angles between the geodesic tangent vectors and principal
eigenvectors. The RMSE with our modulation is 9.31� compared
to 17.74� without modulation and 7.28� with sharpened modula-
tion. Note here that there is no ground truth, so a lower RMSE just
gives a sense of how closely the characteristic vectors follow the
noisy eigenvectors. As discussed earlier, following the principal
eigenvectors too closely results in a decrease in robustness to
noise.

In the right column of Fig. 6, as in the synthetic example, we
track backward from target points (in the upper right side of the
image) to a source region (upper left). Again, the geodesics under
the inverse-tensor metric take a shortcut and merge into the clos-
est point in the source region. In contrast, the geodesics under the
sharpened-tensor metric and our adaptive metric more faithfully
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follow the tensor directions. Geodesics from our adaptive metric
are drawn together slightly because the tensor field is thinner
around the corner of the corpus callosum. The main paths of the
adaptive metric and sharpened-tensor metric are similar, which
is consistent with our Section 5.1 experiments on the synthetic
torus without noise.

5.4.2. Comparison of white matter tract segmentations
We selected four white matter tracts—the uncinate fasciculus,

genu, arcuate fasciculus, and corticospinal tract—to validate our
segmentation algorithm on the real DTI from 10 subjects. We
compare the segmentations of different algorithms as we did in
Section 5.3, except that we do not test the two-tensor methods,
for the diffusion-weighted images were acquired in only 12 diffu-
sion encoding directions. To get a quantitative validation, we
need the ground-truth segmentation on these real data, and for
this we use the Johns Hopkins University DTI-based white matter
atlases (Mori et al., 2005; Wakana et al., 2007; Hua et al., 2008).
There are both a white matter labels atlas, created by hand seg-
mentation, and a white matter tractography atlas, created by
averaging the results of deterministic tractography. We first
transform both labels to each of the 10 subject’s anatomy by reg-
istering the atlas to each subject’s anatomy using diffeomorphic
registration. We then use these registered labels as a starting
Fig. 9. A slice of segmentations (shown in white) and connectivity map of the direct
segmentation from single-tensor tensor line BF + two-ROI method, connectivity map from
on geodesic tracking with inverse-tensor metric, sharpened-tensor metric and our adap
point for manual segmentations of the 10 images. This allowed
for manual correction of segmentations due to anatomical vari-
ability and registration errors.

Table 4 gives the Dice coefficients and specificity/sensitivity of
all methods, compared to the manual segmentation ground truth.
Here we see similar behavior as we found in the segmentation of
synthetic data in Section 5.3. First, we can see that the tractogra-
phy methods have difficulties in connecting two regions, especially
in the presence of partial voluming or fiber crossing. For example,
the Dice coefficients of the tractography methods are all below 0.6
for the uncinate fasciculus, arcuate fasciculus, and corticospinal
tract, where there is either fiber crossing or fiber kissing inside
each tract. The tractography methods work better on the genu, in
terms of Dice coefficients, because there are no fiber crossings in-
side this tract. In all four tracts, the front-propagation approaches
perform better than the tractography methods in terms of Dice
coefficients, with our adaptive metric performing the highest. For
the corticospinal tract, compared to the other three highly curved
tracts, the three different geodesic methods have very close Dice
coefficients, and the one with our modulated metric does not im-
prove the segmentation by much. This is consistent with what
we found on the synthetic data, where the geodesic methods have
similar Dice coefficients when the tracts are straight, and our
adaptive metric is better when the tracts are curved.
arcuate fasciculus. Left column (from top to bottom): ground-truth segmentation,
stochastic tractography; right column (from top to bottom): segmentations based

tive metric.
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In Figs. 7, 9, and 10, we show slices of the ground-truth segmen-
tations, the segmentations of the best tractography methods in
terms of the Dice coefficient, the connectivity map from stochastic
tractography, and the segmentations based on geodesic tracking.
We can see that in all cases, the BF + two-ROI methods tend to
under-segment the white matter tracts. They often miss numerous
voxels that are obvious inside the tracts of interest. This is espe-
cially obvious in the segmentations of uncinate fasciculus
(Fig. 10). These two methods can usually segment the central part
of the tracts, but often miss voxels around the boundary of the
tracts because the fibers passing these voxels are likely to stop at
the boundary of the white matter or enter into other tracts because
of partial voluming or fiber crossing. In addition, we can also see
that the BF + two-ROI approach sometimes includes some voxels
outside the tracts of interest. For example, in the segmentation of
the genu from the tensor line BF + two-ROI method in Fig. 7, we
can see that there is an isolated segment in the segmentation. This
is caused by some fibers that first went to other tracts of the brain
and then made a U-turn before they arrived at the ROI as shown in
Fig. 8. This problem might be solved by changing our stop criteria,
i.e., decreasing the stop angle threshold for tractography, but this
results in worse results by also decreasing the volume of the
segmentations.

The stochastic tractography has the same under-segmentation
problems, as shown by their resulting probability maps. First of
Fig. 10. A slice of segmentations (shown in white) and connectivity map of the unc
segmentation from single-tensor tensor line BF + two-ROI method, connectivity map from
on geodesic tracking with inverse-tensor metric, sharpened-tensor metric and our adap
all, they miss many voxels around the boundary of the tracts,
and we can also see that the central part of the tract has higher
probabilities than the voxels close to the boundary of the white
matter tracts. For the connectivity map of the uncinate (Fig. 10),
only a few voxels have intensity in the shown slice, and even in
the maximum intensity projection along the sagittal plan
(Fig. 11), the connectivity map still looks very thin. It is obvious
that it is very difficult to get a good segmentation based on the
probability map. This makes sense because if a fiber from deter-
ministic tractography stops at the boundary of the white matter,
even if we initiate a lot more fibers, there is still a big chance that
the fibers arrive at the boundary and stop there. Moreover, both
the BF method and stochastic tractography are computationally-
intensive approaches. Though the BF process is a preprocessing
step and it needs to be done only once, we usually need several
gigabytes of storage space to save the whole brain tractography
result.

On the other hand, for geodesic-based segmentation methods,
the segmentations based on the inverse-tensor metric and sharp-
ened-tensor metric are better than the BF + two-ROI approach in
terms of missing voxels. For example, they delineate the structure
of the uncinate fasciculus better, although they sometimes also
miss some voxels as shown in Fig. 10. However, they also clearly
under-segment the genu of the corpus callosum in Fig. 7. This is
from missing numerous voxels at the posterior side of the tract,
inate fasciculus. Left column (from top to bottom): ground-truth segmentation,
stochastic tractography; right column (from top to bottom): segmentations based

tive metric.



Fig. 11. Maximum intensity projection of the connectivity map along the sagittal
plane for the uncinate fasciculus.
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due to the same curvature effects and shortcutting seen in the
synthetic torus. Also, they over-segment the tracts as shown in
the segmentations of the arcuate fasciculus in Fig. 9. Here they
both over-segment the tract because they include many voxels be-
low the tract which should be inside the inferior longitudinal fas-
ciculus. However, our adaptive metric results in improved
segmentations of these tracts. In the segmentations of the genu
in Fig. 7, our method corrects the shortcutting and includes most
voxels of the genu. Our method’s segmentations of the direct arcu-
ate fasciculus are also improved, as seen in Fig. 9. While the
BF + two-ROI approach under-segments the tract, and the other
two geodesic-based methods over-segment the tract, our method
finds a good balance between the two (although it also includes
a few voxels inside the inferior longitudinal fasciculus).
6. Conclusion and future work

We presented a new geodesic-based algorithm for computing
white matter pathways and segmenting white matter tracts in
DTI. We formulate a simple scalar field modulation of the Rie-
mannian metric, and the appropriate variational problem results
in a Poisson’s equation on the Riemannian manifold. We also
develop a segmentation framework based on the computed geode-
sics. Since the modification and segmentation algorithm are
formulated on a general Riemannian manifold, our method can
also applied to problems for which there exist a Riemannian metric
(which is just the Euclidean metric in Euclidean space) and
preferred geodesics.

We have demonstrated the advantages of our method over the
state-of-the-art methods on both synthetic and real data. We have
shown that our adaptive Riemannian metric results in geodesics
that more faithfully follow the principal eigenvectors of the diffu-
sion tensor field, resulting in segmentations that better delineate
the white matter tracts, especially in tracts with high curvature.
In addition, there are almost no parameters in our entire frame-
work, and the only user intervention we need is identification of
ROIs. As such, our method can be very useful for large data clinical
studies, where fewer parameters and user intervention are pre-
ferred. Furthermore, our method is less sensitive to local perturba-
tions, such as noise, partial volume effects, or fiber crossing,
compared to tractography algorithms. First, our adaptive metric
is computed by minimizing functional (4), which makes our metric
less sensitive to the noise as shown in Section 5.2. Second, the
front-propagation method computes the pathways by optimizing
a global functional using the whole DTI data, and hence is less
influenced by noise, partial volume effects, or fiber crossing.

We have identified three areas as potential future work. First, as
the proposed method performs well on highly curved tracts, it
might be able to recover U-shaped tracts between neighboring
gyri, which are poorly recovered by classical tensor based tractog-
raphy (Conturo et al., 1999; Catani et al., 2012). Second, although
our method is based on a DTI model, it is possible to generalize
our method to high-angular resolution diffusion imaging (HARDI),
such as the multi-tensor model. Moreover, since the proposed
method computes binary segmentation of the tracts, which some-
times under- or over-segment tracts, it might help to incorporate
some anatomical prior, such as a white matter atlas, into our
segmentation framework. Another way to solve this problem is
to compute fractional segmentation of the tracts instead of binary
segmentation. Hao and Fletcher (2013) propose a fractional
segmentation method to jointly solve the tract segmentation and
multi-tensor model estimation in DWI. This method can both
reduce the partial volume effect and reliably estimate multiple
tensor compartments in fiber crossing regions even with low angu-
lar DWI, but this method needs more validation.
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