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Abstract. In this paper we present a novel Bayesian approach for frac-
tional segmentation of white matter tracts and simultaneous estimation
of a multi-tensor diffusion model. Our model consists of several white
matter tracts, each with a corresponding weight and tensor compartment
in each voxel. By incorporating a prior that assumes the tensor fields in-
side each tract are spatially correlated, we are able to reliably estimate
multiple tensor compartments in fiber crossing regions, even with low
angular diffusion-weighted imaging (DWI). Our model distinguishes the
diffusion compartment associated with each tract, which reduces the ef-
fects of partial voluming and achieves more reliable statistics of diffusion
measurements. We test our method on synthetic data with known ground
truth and show that we can recover the correct volume fractions and
tensor compartments. We also demonstrate that the proposed method
results in improved segmentation and diffusion measurement statistics
on real data in the presence of crossing tracts and partial voluming.

1 Introduction

Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) modal-
ity that can measure the directional diffusion of water in tissue. In diffusion
tensor imaging (DTI) a second-order model of diffusion within a voxel is esti-
mated from the DWI data. While the diffusion tensor is an elegant description
of anisotropic diffusion in white matter, it is limited to representing only one
tract in each imaging voxel. At several regions of the brain, two or more white
matter tracts are passing through each other, such as the intersection of the
corona radiata and the corpus callosum. In addition, some white matter tracts
are mixed with gray matter or cerebrospinal fluid (CSF) at the boundary, such
as the corpus callosum and lateral ventricles. In these cases, a single diffusion
tensor is incapable of distinguishing between multiple diffusion compartments.

It has been shown that partial volume effects and underestimation of dif-
fusion measurements occur in crossing areas [1, 9, 8]. For example, Alexander
et al. [1] show that the trace of the diffusion tensor will tend to be underes-
timated in presence of partial voluming, and Metzler-Baddeley et al. [8] show
that CSF-based partial volume artifacts have a larger impact for tensors with
smaller fractional anisotropy (FA). What’s more, underestimation of diffusion
tensor measurements could bias statistics of diffusion measurements, providing
misleading results in clinical studies. Although the partial volume effects might
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be detected during the DTI analysis [13], it cannot resolve the partial volume
effects completely, and other methods that can correct the partial volume ef-
fects are needed. High-angular resolution diffusion imaging (HARDI) (see [2] for
a review) has been introduced as a means of distinguishing multiple diffusion
compartments. Several multi-compartment models of diffusion have been intro-
duced, such as the multi-tensor [12] and ball-and-stick [3] models. However, one
drawback to HARDI is the increased imaging time required, which has been a
barrier to its introduction in clinical studies.

Several works have proposed correcting the partial volume effects using low-
angular resolution images (approximately 30 gradient directions). Pasternak et
al [10] used a smooth regularization to reduce partial volume effects using multi-
tensor fitting and showed that the regularization can help solve ill-posedness,
but they only test their methods on two fiber crossings. Landman et al [7] used
a multi-tensor model and compressed sensing to solve the fiber crossing using
low angular DWI, but they use a set of basis directions to map the multiple
tensor model to lower dimensionality, which could bias the estimated tensors.

None of these methods combine multiple compartment estimation with white
matter tract segmentation, which is often a primary goal of DWI analysis. In
this paper, we propose a method that jointly solves the tract segmentation and
multi-tensor model estimation problem. In each voxel our model assigns a frac-
tional weight to each fiber tract indicating the proportion of that voxel that
belongs to the given tract. These weights also serve as the volume fractions in
the multi-tensor model for that voxel, linking the segmentation to the diffusion
estimation problem. We impose a Markov random field (MRF) spatial prior to
take advantage of spatial redundancy during the estimation and to regularize the
multi-tensor field. To the best of our knowledge, ours is the first model that com-
bines fractional segmentation of white matter with multi-tensor estimation. We
compare our method with state-of-the-art binary segmentations of white matter
tracts, which sometimes under- or over-segment tracts. We demonstrate that
the fractional weights can improve statistical analysis of derived measurements,
such as fractional anisotropy (FA), by appropriately weighting the data associ-
ated with a particular tract. Using synthetic data with known ground truth, as
well as real DWI brain data, we show that our method improves tract segmenta-
tions, distinguishes multiple tissue compartments, and provides better diffusion
estimates even when using only 12 gradient directions.

2 Fractional Segmentation and Multi-Tensor Estimation

In this section we propose a Bayesian approach to simultaneously estimate both
the fractional segmentation of white matter tracts and the multi-tensor diffusion
model. Our goal is to estimate the volume fractions and diffusion tensors in such
a way that the DWI signal from the estimated multi-tensor model matches the
measured DWI signal and the estimated tensor compartments in each tract
are spatially smooth. This leads to a maximum a posteriori (MAP) estimation
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approach, in which the log posterior is

log p(θ|S) ∝ log p(S|θ) + log p(θ),

where θ represents the parameters of the model, namely, the multi-tensor field
and volume fractions, and S is the original DWI signal. The likelihood, p(S|θ),
models the fit of the multi-tensor model in each voxel to the DWI signal, and
the prior, p(θ), is a Markov Random Field (MRF) smoothness prior on the
multi-tensor field. We now describe both the likelihood and prior in detail.

2.1 Likelihood - The Data Attachment Term

To model multiple diffusion compartments within a voxel, whether from crossing
white matter fiber tracts or mixtures of white matter with CSF or gray matter,
we use a multi-tensor model of the given DWI signals. The multi-tensor model
uses n tensor compartments, Di, and each tensor compartment is associated
with a nonnegative volume fraction fi to model the DWI signals Sj as

Sj(x) = S0(x)

n∑
i=1

fi(x)e−bg
T
j Di(x)gj , with

n∑
i

fi = 1, (1)

where b is the b-value, S0 is the baseline image, gj is the j-th gradient encoding
direction. In contrast to the usual multi-tensor model, we also associate each
volume fraction fi to a white matter tract segmentation. That is, we want to
segment the DWI image into n white matter tracts, where fi(x) represents the
fraction of the voxel at position x that is occupied by fibers in the ith tract.

Now, assuming the DWI signal is corrupted by additive, i.i.d. Gaussian noise,
our log-likelihood is the following DWI signal matching term:

log p(Sj |fi, Di) ∝ −
∫
Ω

m∑
j=1

(
S0(x)

n∑
i=1

fi(x)e−bg
T
j Di(x)gj − Sj(x)

)2

dx.

This noise model could be replaced with a Rician noise likelihood or a non-central
chi-distribution for multichannel MRI. Conceptually this would not change the
underlying methodology, but rather make the estimation procedure slightly more
complicated. The Gaussian likelihood is a simplifying approximation.

2.2 The Markov Random Field Prior

Inside a white matter tract, it is reasonable to think that the tensors field should
be spatially correlated, i.e., the tensor field flows smoothly inside a white matter
tract. Thus we incorporate a MRF prior on the tensor fields inside each tract,
given by

p(Di) =
1

Z
e−U(Di), and U(Di) = λ

∫
Ω

n∑
i

φ(Di(x))dx,
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where Z is a normalization constant, λ is a weighting parameter, and φ(Di(x))
is a function that measures the correlation of tensors in the ith tract, around x.

With a uniform prior on the fractions, fi, and by combining the log-likelihood
term with the prior, we end up minimizing the energy

E(fi, Di) =

∫
Ω

( m∑
j=1

(
S0(x)

n∑
i=1

fi(x)e−bg
T
j Di(x)gj−Sj(x)

)2
+λ

n∑
i

φ(Di(x))

)
dx.

We use the full six-component tensor model to represent Di, but we want to
emphasize that Di could be any other diffusion model, such as the ball-and-stick
model. In addition, we use φ(Di(x)) = ‖∇Di(x)‖2 =

∑
p,q

∑
y∈N(x)(D

pq
i (y) −

Dpq
i (x))2, where N(x) is a neighborhood around x, and Dpq

i represents com-
ponent in the pth row and the qth column of the matrix Di, but it could be
generalized to other functions for measuring the smoothness of Di.

2.3 Optimizing fi and Di

We use a gradient descent algorithm to compute fi and Di. The partial derivative
of E respect to fi is

∂E

∂fi
= 2S0(x)

m∑
j=1

(
e−bg

T
j Di(x)gj ·

(
S0(x)

n∑
i=1

fi(x)e−bg
T
j Di(x)gj − Sj(x)

))
,

and the partial derivative of E respect to Dpq
i is

∂E

∂Dpq
i

=

( m∑
j=1

2
(

(S0(x)

n∑
i=1

fi(x)e−bg
T
j Di(x)gj − Sj(x))fie

−bgTj Di(x)gjS0(x)

· (−bgpj g
q
j )
)

+ 4 · λ
∑

y∈N(x)

(Dpq
i (x)−Dpq

i (y))

)
· ψ(p, q),

where gpj represents the pth element of the vector gj , and ψ(p, q) = 1 if p = q
and ψ(p, q) = 2 if p 6= q. Special care is required in the update of fi. In every
iteration of our gradient descent algorithm, we project the computed gradient
of E with respect to fi onto the constraint hyperplane defined by

∑n
i=1 fi = 1.

To ensure that the fi remain positive, we also need to project the gradient on
the simplex boundary defined by the constraints fi ≥ 0 when necessary. Then
we do a line search to compute the optimal step size for updating fi.

To initialize our gradient descent, we first compute binary segmentations for
each of n − 1 tracts of interest. The nth label is reserved as a “background”
label that does not belong to any of the tracts. The binary segmentations just
need to roughly capture the tracts, which could be done by several methods. We
use a front-propagation geodesic segmentation [5, 6], which uses a Riemannian
metric derived from the diffusion tensor field and constructs white matter tracts
as geodesics connecting two regions-of-interest (ROI) on the resulting manifold.
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These geodesics have the desirable property that they tend to follow the main
eigenvectors of the tensors, yet still have the flexibility to deviate from these di-
rections when it results in lower costs. This makes such methods more robust to
noise and also allows them to pass through crossing regions. After segmenting the
n−1 tracts of interest, for each voxel inside the predefined image mask, if no seg-
mentations include the voxel, we initialize fn as 1, and Dn as the weighted least
squares estimate of a single-tensor model. Otherwise, we initialize the fractions
fi equally amongst all segmentations that intersect at the voxel, and we initialize
all corresponding tensors Di in that voxel with the same weighted least-squares
estimate of a single-tensor model at that voxel.

2.4 Path Regression Along the Segmented Tracts

Our estimated fraction fi can also be used to improve statistical summaries of
the diffusion data along segmented tracts. Here we demonstrate an example of
the use of these fractions in nonparametric regression along a tract. Let {xi}
be the collection of voxel locations within a segmented tract. Each voxel has an
associated parameter, si = s(xi) ∈ [0, 1], which denotes the arc-length parameter
along the pathway at the spatial location xi [5]. Denote by di a data value at the
location xi. This data may be a full diffusion tensor, or a derived measure, such
as FA or MD. We compute a continuous description of the data as a function of
s using a nonparametric kernel regression,

y(s) =

∑N
i difiG(s− si, σ)∑N
i fiG(s− si, σ)

,

where G(µ, σ) denotes a Gaussian kernel with mean µ and standard deviation
σ. In the kernel regression, in addition to the Gaussian kernel, each data value is
weighted by the fraction fi, which makes our regression more robust to partial
voluming since our fractional segmentation will appropriately assign small fi to
data values influenced by partial voluming. The function y defined above gives a
continuous average of the data along the pathway, which can be used to quantify
the diffusion measurement along a pathway as shown in Figure 2.

3 Results

In this section we demonstrate the advantages of the fractional segmentations
and improvements in multi-tensor estimations computed by our method on both
synthetic and real data. On synthetic data with ground truth, we test our method
on both low and high angular DWI and compare it with the multi-tensor model
estimation implemented in Camino [4] using HARDI. Our measure of quality
is the root mean square error (RMSE) between the estimated volume frac-
tions/tensors and true volume fractions/tensors. In addition, we also show that
our method improves the diffusion measurement statistics. On real data, we
demonstrate that the proposed method results in improved segmentation and
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Fig. 1. Left: synthetic white matter tract with partial volume effects at the boundary
(shown in white). Middle: our estimated tensors. Right: our fractional segmentation.
We subsample the tensor field by a factor of two both horizontally and vertically in
order to visualize it.

diffusion measurement statistics in crossing tracts and in the presence of partial
voluming. To visualize the fractional segmentation, we convert our fractional
segmentation to a color-coded RGB image, where each color component is set to
a corresponding volume fraction. For visualization purposes, tensors with weight
lower than 0.2 are not shown.

3.1 Correcting Partial Volume Effect

To test the ability of our method to correct partial volume effects, we gener-
ated one white matter tract whose boundary is mixed with isotropic tensors
as shown in Figure 1. The ground truth is a straight white matter tract with
width 8 voxels and length 38 voxels, mixed with isotropic diffusion tensors at
the boundary (shown in white in Figure 1) with equal volume fractions in the
multi-tensor model (1). The sphere tensors used to simulate CSF have eigen-
value (3,3,3)×10−3mm2/s. The tensors in the white matter tract have eigenvalue
(1.6,0.4,0.4)×10−3mm2/s. Using the mixed tensor field, we generate DWIs with
12 gradient directions and slightly blur the DWIs to simulate the point spread
function (PSF) arising from imaging. We corrupt the DWIs with Rician noise to
get a SNR of 20 (left picture of Figure 1).

Our estimated white matter tensor field is in the middle picture of Figure 1.
As we can see, the estimated tensor field can recover the true white matter tensor
from the mixed tensors at the boundary. In addition, our estimation algorithm
denoises tensors in the interior. Our color-coded fractional segmentation is shown
in the right panel of Figure 1. In this example, the segmented white matter
tract is the blue channel and the exterior is the green channel. The boundary
is correctly assigned a 50% mixture of both compartments. The RMSE of our
fractional segmentation of the white matter tract is 7.74× 10−2, and the RMSE
of our estimated tensors is 5.22× 10−5.

In the left two pictures of Figure 2, we do a regression analysis of the FA
in the segmented tracts with σ = 0.1 as mentioned in Section 2.4, where the
x-axis is the arc-length position along the tract. We first plot the FA values as
points. The color is coded by the volume fractions: solid blue denotes 0, and solid
red denotes 1, so the binary segmentation values are always shown in red. The
regression along the tract is shown in black and the ground truth is shown as a
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Fig. 2. Left two pictures: FA regression of simulated straight tract using binary and
fractional segmentations, respectively. Ground truth is shown in green and the regres-
sion is shown in black. Right two pictures: FA regression of arcuate fasciculus from
binary and fractional segmentations, respectively.

Fig. 3. Generated fiber crossing data. Left: 45◦ crossing. Middle: a curved tract crossing
with a straight tract. Right: three orthogonal tracts crossing. We subsample the tensor
field by a factor of three both horizontally and vertically in order to visualize it.

dashed green line. It is clear that the partial volume effects bias the regression
in the binary segmentations. In our method, the FA values are more tightly
distributed around the ground truth, due to the reduction of the partial volume
effects and the denoising from our spatial prior.

3.2 Fiber Crossing White Matter Tracts

To test the performance of the our method in the presence of multiple white
matter tracts crossing, we generate three fiber crossing tensor fields that have
similar properties to many white matter tracts in the brain. They are 1) two
bars crossing at the center of the image at an angle of 45◦, 2) a curved tract
crossing with a bar, and 3) three orthogonal bars crossing at the center of the
image. We show a center slice of each tensor field in Figure 3.

The tensors in each white matter tract have eigenvalues (1.6,0.4,0.4)×10−3mm2/s.
We generate two sets of DWI datasets, one with 12 gradient directions and the
other with 64 gradient directions. Each voxel of the generated crossing DWI at
the crossing area was computed based on the multi-tensor model (1), and we use
b = 1000s/mm2 for both datasets. The true fractions in the crossing regions for
the three data sets are (0.4, 0.6), (0.4, 0.6), and (0.3, 0.3, 0.4), respectively. In
addition, the DWI was corrupted by Rician noise to simulate SNR of 20.
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Fig. 4. Estimated tensors of the crossing region for the three crossing datasets: Top
row is for the 45◦ crossing, Middle row is for the curved tract crossing, and the Bottom
row is for the three orthogonal tracts crossing. 1st column: our estimated tensors from
noiseless 12-direction DWI. 2nd column: our estimated tensors from noisy 64-direction
DWI. 3rd column: our estimated tensors from noisy 12-direction DWI. Last column:
estimated tensors from Camino using noisy 64-direction DWI.

In Figure 4, we show the estimated tensors from our method and Camino.
We test Camino only on noisy 64-direction DWI (shown in the last column of
Figure 4) because Camino cannot estimate a multi-tensor model from only 12
gradient directions (it estimates each voxel independently). However, we can test
our method on both noisy 64-direction DWI and 12-direction DWI because our
spatial prior utilizes information from multiple neighboring voxels. On the first
column of Figure 4, we test our method on noiseless 12-direction DWI to show
that we can recover multiple tensors, even when the solution is underdetermined
at single voxels because of our spatial prior. On the second and third column,
we test our method on noisy 64-direction DWI and noisy 12-direction DWI.
The results are much improved over those from Camino, and our method works
slightly better on 64-direction DWI since it has more information. The results
from Camino are shown in the last column of Figure 4. We gave Camino the
advantage of a map of the correct number of tensor compartments in each voxel,
but did not provide this extra information to our algorithm.

We also show our fractional segmentation in Figure 5. Since the weights
computed from Camino do not correspond to segmentations, we solve a corre-
spondence problem by minimizing the angles between estimated tensors from
Camino and the true tensors. After the optimal order is found, we use the corre-
sponding weights as the fractional segmentation. Outside the crossing region, as
we mentioned earlier, we tell Camino the number of tensors, so Camino always
has the true weights outside. The finding is consistent with the case for tensor
estimation. On the noiseless data, the error between our solution and the true
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Fig. 5. Estimated fractional segmentations. The order is the same as Figure 4.

45◦ Crossing Curved Crossing Three Crossing

Weight Tensor Weight Tensor Weight Tensor

Clean 12-dir 1.16E−04 5.61E−07 1.44E−02 2.97E−05 1.33E−05 1.12E−07

Noisy 64-dir 7.38E−02 1.39E−04 4.89E−02 1.38E−04 5.16E−02 2.09E−04

Noisy 12-dir 8.37E−02 1.54E−04 6.18E−02 1.63E−04 5.71E−02 3.07E−04

Camino 2.6E−01 4.40E−03 2.34E−01 2.89E−03 1.45E−01 3.14E−03

Table 1. RMSE of the estimated volume fractions and tensor compartments of our
method (first three rows) and Camino using noisy DWI with 64 directions (last row).

solution is close to zero as shown is Table 1. On the noisy data, the solution of
our method is worse when we use the 12-direction DWI than the one using the
64-direction DWI, but generally our results are fairly good for all three cases,
and they look better than Camino inside the crossing regions.

In Table 1, we do a quantitative comparison of our method and Camino.
Since we give Camino the true weight outside the crossing regions, to do a
better comparison, we compute the RMSE of the estimated volume fractions
only inside the crossing region, but we compute the RMSE of tensors in the
whole white matter tracts. As shown in the Table, the RMSE of our method is
much smaller than the RMSE of Camino, and our method works best on the
noiseless data, but when there is noise, our method has smaller RMSE when
using DWI with more gradient directions.

3.3 Real Data

We now show the results of our method with λ = 109 applied on a DWI of a
volunteer. DWI data were acquired on a Siemens Trio 3.0 Tesla Scanner with
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Fig. 6. The binary segmentation is shown on the 1st and 3rd columns and our fractional
segmentation is shown on the 2nd and 4th columns. The overlay tensor fields are the
DTI tensor field except for the last one, where our estimated tensors are displayed.

an 8-channel, receive-only head coil. DWI was performed using a single-shot,
spin-echo, EPI pulse sequence and SENSE parallel imaging (undersampling fac-
tor of 2). Diffusion-weighted images were acquired in 12 non-collinear diffusion
encoding directions with diffusion weighting factor b=1000 s/mm2 in addition
to a single reference image (b=0). Data acquisition parameters included the fol-
lowing: contiguous (no-gap) fifty 2.5mm thick axial slices with an acquisition
matrix of 128 x 128 over a FOV of 256 mm (2 x 2 mm2 in-plane resolution), 4
averages, repetition time (TR) = 7000 ms, and echo time (TE) = 84 ms. Eddy
current distortion and head motion were corrected using an automatic image
registration program [11]. Distortion-corrected DW images were interpolated to
1 x 1 x 1 mm3 voxels, and six tensor elements were calculated using weighted
least squares. The tensor upsampling is done only for the purposes of numerical
computations on the voxel grid; a finer grid results in higher numerical accuracy.

In Figure 6, we test our method on the arcuate fasciculus of the brain. In
the 1st and 3rd pictures, we show the initial binary segmentation and the DTI
tensor field. As we can see, the binary segmentation over-segments the tract
since it includes many voxels (red arrow) below the tract which should be inside
the inferior longitudinal fasciculus. In addition, it also under-segments the tract,
missing the blue area on the lower right of image (black arrow), which should
be included in the segmentation. On the 2nd column, we overlay the DTI tensor
field on our fractional segmentation to demonstrate that our segmentation cor-
rects the errors from the binary segmentation. In the last picture, we overly our
estimated tensors on top of our segmentation. We can see that our segmentation
reduces partial voluming effect at the boundary of tract and has lower weights at
the border of the arcuate fasciculus and inferior longitudinal fasciculus, where
the tensors from the two different tracts are mixed together. In addition, our
segmentation also includes the blue area, which the binary segmentation missed.

In the right two pictures of Figure 2, we do a similar regression analysis as
mentioned in Section 3.1. We can see the FA values are more tightly distributed
on the right picture than the left one, which is a sign of possible reduction of
partial volume effects as shown in Section 3.1. What’s more, it may improve
statistical power in clinical studies by reducing the within-subject variance.

We also test our method on a brain region with complex white matter or-
ganization as shown in Figure 7. In this brain region, we segment three white
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Fig. 7. 1st row: the DTI field, our estimated multi-tensor field and their closer views
of the crossing region (inside the red box). 2nd row: our fractional segmentation.

matter tracts as our binary input of our method. These three tracts are one
branch from the corpus callosum, the corticospinal tract, and the superior lon-
gitudinal fasciculus. In the top row of Figure 7, we compare the DTI model with
the proposed method. In the 1st and 3rd pictures, we overlay DTI tensor field on
the FA background and its closer view of the crossing region. In the 2nd and 4th
pictures, we show our estimated tensors and a closer view of the same crossing
region. As we can see, the DTI model can not tell the different fibers inside a
voxel. However, it is clear that our method can estimate multiple tensor com-
partments in the crossing region and also reduce the isotropic partial voluming
of the estimated tensors in the corpus callosum (blue arrow). Our fractional seg-
mentation is shown in the 2nd row of Figure 7, where we overlay our color-coded
fractional segmentation on the top of FA background on the left two pictures
and we overlay the estimated tensor compartments on the corresponding frac-
tional segmentation on the right three pictures. We can see that the tensors in
each white matter tract are spatially consistent due to our spatial prior, and the
fractional segmentation is biologically reasonable.

4 Conclusion and Future Work

We present a Bayesian approach for joint fractional segmentation of white matter
tracts and multi-tensor estimation in DWI. Our method can reliably estimate
multiple tensor compartments in fiber crossing regions even with low angular
DWI. There are three areas we have identified as potential future work. First,
our noise model could be replaced with a Rician noise likelihood. Second, we
can use an anisotropic spatial prior [14] instead of the isotropic spatial prior to
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prevent blurring across the whiter matter tracts. Finally, we plan to investigate
the sensitivity of our current gradient-based optimization to the initial binary
segmentation and explore stochastic optimization schemes.
Acknowledgements. We would like to thank Dr. Janet Lainhart for providing
the image data, funded by NIH Grant R01 MH080826. This work was supported
by NIH Grant R01 MH084795.
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