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ABSTRACT 
 
We use multi-figure m-reps to represent anatomical 
objects, such as human livers, with named components. 
Each component is represented as a single figure m-rep. 
These figures of the object are connected via hinge 
geometry. A smooth object surface is then computed 
using our technique based on the subdivision method 
applied to a single figure m-rep. This novel representation 
allows us to represent and analyze a complex anatomical 
object by its individual components, by relations among 
its components, and by the object itself as a whole entity. 
Using our representation, some preliminary results on 
statistical analysis of multi-figure anatomical objects are 
presented. 

 

1. INTRODUCTION 
 
Single figure m-reps (Fig. 1) have been successfully used 
to represent anatomical objects and the ensembles of 
them [1, 2]. This representation has also proved to be 
powerful in deformable model segmentation. M-reps also 
allow statistical analysis on various kinds of objects [3]. 
However, many anatomical objects have multiple named 
components, e.g., livers have left and right lobes, and the 
first cerebral ventricle has three horns and an atrium. 
Also, the hand can be modeled as five tube-shaped fingers 
connected to a slab-shaped palm. Being able to represent 
not only the overall object but also its components will 
help us to understand those complex objects. 

We use the multi-figure m-rep to represent an object 
with multiple components. Each object component is 
geometrically represented by a single figure m-rep, and 
the figures of the object are connected by the hinge 
geometry defined in section 3. As with the single figure 
case, the multi-figure m-rep describes an object at 
successively smaller scales following a coarse-to-fine 
hierarchy, from the object, to each individual figure, to 
medial atoms of each figure, and finally to the boundary 
of the entire object with a displacements field applied to 
it. This representation per component enables us to 

analyze efficiently the complex object as a whole. 
Furthermore, we can talk about component properties, 
such as shapes and volumes. Statistically, variation of the 
object within a population can be also measured in a 
multi-scale fashion. For example, we can investigate the 
variation of livers as well as of the left liver lobes only. 
We will describe a segmentation scheme based on m-reps 
for such a multi-figure representation. Segmentation 
requires the calculation of the object surface implied by 
the multi-figure m-rep, by a means we will also discuss. 

The rest of this paper is organized as follows. We 
briefly review the single figure m-rep in section 2. Section 
3 develops the technique to represent multi-figure objects 
by m-reps, and section 4 discusses how we calculate the 
implied object surface. Section 5 describes image analysis 
applications based on our multi-figure representation. We 
show some results on statistical liver analysis using our 
method in section 6, followed by discussion and 
concluding remarks in section 7. 
 

2. SINGLE FIGURE M-REP 
 
An m-rep [1] is an extension of the medial axis of Blum 
[4]. The simplest geometric object is represented by a 
single continuous medial manifold with boundary (Fig. 1, 
left & middle) at every point on the manifold. A discrete 
m-rep is formed by sampling the medial manifold over a 
spatially regular lattice to form a mesh of medial atoms 
(Fig. 1 right), where each atom consists of a hub x, on the 
medial sheet, and two equal length spokes. An internal 
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Fig. 1. Left: an internal medial atom. Middle: an end atom. The 
local implied boundary is incident to and orthogonal to the 
spoke ends. Right: a single figure m-rep for a kidney and the 
object boundary implied by it. 
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medial atom is defined as a 4-tuple },,,{ θFrxm =  

consisting of the hub position x, the spoke length r, a local 
frame F including the normal to the medial sheet and the 
direction along the sheet in which the object narrows most 
strongly, and the object angle θ  between either spoke and 
the inter-spoke bisector (Fig. 1 left). The medial atoms on 
the edge of the medial sheet correspond to crests of the 
object boundary. Such an end atom adds a bisector spoke 
and a corresponding sharpness parameter (Fig. 1 middle) 
to control the shape of the crest. 

Given an m-rep figure, a smooth object surface is 
generated to interpolate the boundary positions and 
normals implied by the atom spokes using Thall’s 
subdivision method [5]. If ) ,( vu parametrizes the medial 

sheet, we parametrize the implied boundary by ) , ,( tvu , 

where t designates the sides of the figure from the top 
)1( +=t  to the bottom )1( −=t  across the crests 

))1 ,1(( −∈t  (Fig. 1 middle). 

Because each medial atom carries an origin, a width, 
a local frame, and an object angle, we can write any 
medial atom as a transformation of translation, rotation, 
magnification, and object angle change from any other 
medial atom. Thus, an atom can be written in the 
coordinate system of a neighboring atom. Extending this 
to the multi-figure m-rep, any atom of a figure can be 
written in the coordinate system of another. 

 In [1] a method of multi-scale deformable m-rep 
segmentation of anatomical objects using a single figure 
m-rep model was described. In [2] the single figure m-rep 
segmentation scheme was extended to handle the 
ensemble of non-overlapping, single figure objects. In this 
paper we extend the method to multi-figure m-reps. 

 
3. MULTI-FIGURE M-REP GEOMETRY 

 
3.1. Hinge geometry 
 
A multi-figure object is represented by a tree of figures, 
each represented by a single figure m-rep. For example, a 
liver can be modeled as a tree with the right lobe as the 
host figure to the left lobe as a subfigure. The subfigure is 
attached to its host by a 1D curve of hinge atoms, which, 
when sampled, form an end row or column of the 
subfigure atom mesh. Each hinge atom rides on the 
medially implied boundary of the host at a position and an 
orientation determined by the host’s figural coordinate 

) , ,( tvu . The host/subfigure arrangement is demonstrated 

in Fig. 2 left. We recursively attach subfigures to their 
hosts to form any desired object tree. This allows 
representation of arbitrarily complex objects, although 
most anatomical objects are adequately represented by a 
tree of 2 to 3 levels. The single hinge geometry allows 
both additive and subtractive subfigures: additive, 

forming a protrusion growing out of the host figure; and 
subtractive, forming an indentation into the host (Fig. 2 
right). Subfigures can deform as a consequence of 
changes in the host figure (section 3.2), or they can 
transform at the hinge, relative to the host (section 3.3). 

Without loss of generality we designate the direction 
from a subfigure’s hinge row to the other end of its 
medial sheet as parameterized by u. 
 
3.2. Host figure implied subfigure transformation 
 
The hinge geometry implies that as the host figure 
deforms, the positions and normals of its boundary 
change and correspondingly each hinge and non-hinge 
atom of the subfigure must change. The entire subfigure 
must deform accordingly. 

Each subfigure atom can be represented as 
transformations of its neighboring atoms. Within each 
chain of atoms from a hinge atom to the other end of the 
subfigure, each non-hinge atom can be updated to be at an 
average of the predictions from its already placed 
immediate neighboring atoms, by maintaining the same 
transformations between neighbors. This propagation 
starts from the hinge and is applied to atoms row by 
successive row. The propagation operates by applying 
small proportion of the required transformation at a time, 
followed by regularization, to avoid improper shape 
changes, such as folding. 

 
3.3. Host-relative subfigure hinge transformations 
 
The subfigure can also translate, rotate, hinge, scale, and 
elongate on the host figure boundary while the host stays 
put. In particular, it can translate on the host implied 
boundary, rotate either on the boundary or about the hinge 
atoms, widen or shrink, and elongate along the u 
direction. These basic transformations at the subfigure 
scale levels form a key component of the coarse-to-fine 

 

 
 

 
 
Fig. 2. Left: the host figure/subfigure arrangement, with the 
subfigure (6 medial atoms appearing) on top, the host figure (4 
medial atoms showing) below, and the blend region shown 
darker. Right: protrusion and indentation subfigures. 
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hierarchy. All the transformations but elongation change 
the subfigure hinge atoms. The other atoms are updated 
by the propagation process described in section 3.2.  

The four hinge-changing transformations all take place 
in the host’s figural coordinates (Fig. 3), as an unfolded 
cyclic 2D diagram. Hinge atoms are treated as a discrete 
curve in the diagram. Hinge-relative subfigure 
transformations may take the following actions. 

• Translate. The hinge atoms are translated in the 
2D diagram. 

• Rotate. The hinge atoms are rotated by the same 
amount around the center of the hinge curve in the 
2D diagram. 

• Hinge. The positions of the hinge atoms stay put. 
Each hinge atom rotates the same angle about the 
tangent to the hinge curve in the tangent plane to 
the host figure boundary. 

• Scale. Each hinge atom scales its spoke length r 
and its relative distance to the center of the hinge 
curve by the same factor. 

• Elongate. The hinge atoms stay put, while each 
non-hinge atom in the subfigure scales its relative 
distance to its hinge atom by the same proportion. 

With the two types of subfigure transformations, we 
are able to represent and describe multi-figure objects 
with variant inter-figure relations. Next, we show how to 
generate the overall smooth boundary for such objects. 
  

4. INTER-FIGURAL BLENDING 
 
Thall’s subdivision method [4] is used to generate the 
implied boundary of each single figure in a multi-figure 
object, as a quad-mesh from a quad-mesh of medial 
atoms. Each host figure and its attached subfigure then 
meet and merge into each other. In the merging, 
designated sections from both figures must be removed 
and replaced by a shared smooth region called the blend 
(Fig. 2 left). The blending algorithm we have developed 
uses figural coordinates to guide the blend and proceeds 
in the following steps. 
1. The intersection curve between the two meshes is 

calculated and re-sampled. 

2. The intersection curve is dilated along the host 
boundary. We convert the curve to a 2D curve in the 
figural 2D diagram and apply a smoothing flow 

ακ−=1F , where α  is a constant and κ  is the local 
curvature. The dilated curve is converted back to the 
host boundary. Then the host is cut by the dilated 
curve and re-meshed. 

3. The subfigure is cut by a uniform u value. The part 
below the cut curve is removed and the rest is re-
meshed.  

4. The space between the two remaining meshes is 
meshed together with triangles to form a single mesh, 
using the Delaunay triangulation criterion. The 
positions of the vertices are then adjusted according 
to the initial control meshes of both figures.  

5. Catmull-Clark subdivision is used to produce the 
limit subdivision surface of the adjusted mesh, to the 
required level of subdivision. 

6. The blending region between the two cut curves on 
the subfigure and host figure is parameterized by 

) , ,( tvw , where v and t are the same as the subfigure 

coordinates and w ranges from 1+ , at the subfigure 
cut curve, to 1− , at the host figure cut curve (Fig. 2 
left). 

We use two parameters to control the shape of the 
blend region (Fig. 4): the value of u where the subfigure is 
cut and the amount of dilation of the intersection curve on 
the host figure. 
 

5. IMAGE ANALYSIS APPLICATIONS 
 
The segmentation scheme for a multi-figure m-rep 
extends that for a single figure m-rep. This is a multi-
scale, multi-stage process with each stage optimizing the 
same objective function, composed of a geometric 
typicality measure plus a geometry-to-image match 
measure [1]. 
1. Object stage: the whole object is globally 

transformed, by a single similarity transform, plus 
possibly some principal global warps. 

2. Main figure stage: the main figure is transformed, by 
a single similarity transform, plus possibly some 
principal global warps. The attached subfigures 
deform accordingly. 

3. Main figure atom stage: as with a single figure, the 
component medial atoms are transformed. 

 

Fig. 3. Planar sheet unfolded from an m-rep figure surface. The 
two rectangle regions in the middle are the two sides with 

1±=t  and the others are the crests. The parameter α  relates 
distances on the slab faces to distances on the crest. 

  
 
Fig. 4. Different shape of the blend region controlled by 
two parameters. 
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4. Subfigure stages: in order from hosts to subfigures, 
each subfigure is transformed by the hinge 
transformations described in section 3.3. 

5. Subfigure atom stage: immediately after the 
subfigure hinge optimization, the hinge atoms of the 
subfigure are optimized on the host boundary, while 
the remaining atoms optimized in their own 
parameter space. 

6. Boundary stage: for the whole blended object, all 
boundary tile vertices are displaced along the surface 
normals. 

The statistical analysis of m-rep objects proceeds 
using principal geodesic analysis [3] of the union of the 
atoms in all figures. We anticipate following this by the 
statistical analysis on the individual figures of the 
deformations that form the residue from the full object.  
 

6. PRELIMINARY RESULTS OF 
STATISTICAL ANALYSIS 

 
To nine manually segmented binary liver images we fit a 
2-figure m-rep of 21 and 12 medial atoms, respectively 
for the right and left lobe. We applied Fletcher’s principal 
geodesic component analysis globally to the resulting m-
reps. The modes of variations show not only the shape of 
both figures, but also the varying relations between the 
figures. Fig. 5 shows the first three modes of the 

variations, where the 1st mode roughly corresponds to 
varying the size of the liver, the 2nd to the varying 
relations between two lobes, especially the sliding along 
the hinge, and the 3rd to the varying relative elongation of 
the left lobe and the right lobe. 
 

7. DISCUSSION & CONCLUSION 
 
With some preliminary results, we have shown that multi-
figure m-reps allow representation and analysis of 
complex anatomical objects by different scales from 
object to components, and by the inter-relations among 
components. We developed the geometry and algorithms 
for multi-figure m-reps representation and segmentation. 

We are now extending the multi-figure 
representation, statistics, and segmentation to multiple 
levels and applying them to cerebral ventricle 
segmentation. Also, we are extracting image profiles for 
multi-figure objects and applying it to gray-level image 
segmentations. Finally, we are extending multi-object 
analysis to multi-figure objects. 
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Fig. 5. The first three modes of deformation of two-figure liver 
models. Each column displays the models corresponding to the 
indicated # of standard deviations along that principal geodesic. 
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