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ABSTRACT
We propose a novel difference metric, called the graph diffusion dis-
tance (GDD), for quantifying the difference between two weighted
graphs with the same number of vertices. Our approach is based
on measuring the average similarity of heat diffusion on each graph.
We compute the graph Laplacian exponential kernel matrices, corre-
sponding to repeatedly solving the heat diffusion problem with ini-
tial conditions localized to single vertices. The GDD is then given
by the Frobenius norm of the difference of the kernels, at the diffu-
sion time yielding the maximum difference. We study properties of
the proposed distance on both synthetic examples, and on real-data
graphs representing human anatomical brain connectivity.

Keywords : Graph Laplacian, Graph diffusion, connectome ma-
trix

1. INTRODUCTION

Many interesting modern scientific problems involve the study of
connectivity networks, where the relevant data to be analysed con-
sist of the connection strengths between objects of interest. In many
cases, these connection strengths represent the propensity for some
quantity (e.g. neural activation level, information, opinions) to be
transmitted from one graph vertex to another. In some cases, varying
experimental conditions and/or methodologies of graph construc-
tion may produce multiple sets of estimated or observed connection
strengths for a fixed set of vertices. One example of this is the study
of estimating brain anatomical connectivity, where one may vary the
subject and/or algorithm parameters for the brain graph construc-
tion. In such a setting, one may view each such network produced
as a single observation, and it is natural to seek quantitative mea-
sures of how similar two networks are. Such a measure may also be
used for “dissimilarity embedding”, a technique for extracting fea-
tures relevant for machine learning by measuring distances to a set
of prototype exemplar graphs [1].

In this paper, we study the problem of how to quantify the differ-
ences between two sets of connectivity strengths for a set of network
vertices. We assume that the connectivity relationship is symmetric,
so the networks may be represented as symmetric weighted graphs.
We also assume that the two graphs vertices are already in corre-
spondence, and thus in this work do not address the graph-matching
problem [2]. For example, graphs with vertices already in corre-
spondance are produced when varying algorithm parameters for es-
timating brain connection graphs, when the underlying anatomical
regions defining vertices are held constant.
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We propose a novel technique for comparing weighted graphs
that is related to the diffusion maps framework [3]. Our approach
is motivated by the desire to measure how changes in the graph
structure affect transmission (of activation level, information, etc.)
throughout the graph. We model such transmission in a very general
way by heat diffusion, in particular we consider the diffusion pat-
tern graph-signals generated by solving the heat equation with initial
conditions isolated to single vertices. The graph diffusion distance is
given by averaging the norms of the difference of these diffusion pat-
terns for the two graphs. In addition to providing a difference metric
between graphs, the graph diffusion distance can be used to analyse
the relative importance of edges upon the overall diffusion structure
of a single graph, by examining perturbations due to edge deletion.
We explore several properties of both the graph diffusion distance
and this edge deletion perturbation, on both synthetic examples and
actual anatomical brain connectivity graphs.

Other authors have explored related approaches for computing
distances between graphs, notably [4] who construct distances by ex-
amining random walks at multiple timescales. Conceptually, our ap-
proach is similar to [4], however our approach is simpler, and avoids
using an explicit hierarchical graph partition employed to compress
the random-walk operators.

2. GRAPH DIFFUSION DISTANCE

The motivating principle behind our approach is the idea that two
weighted graphs are similar if they enable similar patterns of infor-
mation transmission. There are many systems in various scientific
applications that may be viewed as a network supporting some trans-
mission process, the details of which may depend heavily on the spe-
cific application. As an example, for anatomical brain connectivity
graphs, one can view neural excitation as a quantity that can be trans-
mitted. Exactly modeling the transmission of information across the
brain in a biophysically plausible manner would require a detailed
model of coupled populations of neural networks.

In this work we seek to employ a simple, universal model for
network transmission that roughly approximates a wider variety of
application specific networks. We will model generic transmission
in graphs by heat diffusion. For each vertex i in the graph, given a
set of edge weights, we generate a diffusion pattern centered around
i by initializing with a localized delta impulse at that vertex, and al-
lowing diffusion to proceed for some time t. Different adjacency ma-
trices will generate different diffusion patterns; the graph diffusion
distance is based on measuring the average norm of the differences
between such patterns for any two adjacency matrices.

We fix our notation as follows. Let A1 and A2 be weighted
adjacency matrices forN vertices, so bothA1 andA2 are symmetric,
non-negative, N × N real matrices with zeros along the principle



diagonal. Note that we are not restricting ourselves to unweighted
(binary) graphs. We will make frequent use of the (unnormalized)
graph Laplacian operator [5] , defined by Ln = Dn − An (for n =
1, 2) , where Dn is a diagonal degree matrix for the adjacency An,
i.e. (Dn)i,i =

∑N
j=1(An)i,j .

To describe the diffusion process on a graph with adjacency A
(for convenience, we suppress the subscript), we let v(t) ∈ RN be
a time-varying vector representing the value of the quantity that is
undergoing diffusion at each vertex. The edge weights ai,j describe
the conductivity between vertices, so that for two vertices i and j,
the quantity ai,j(vi(t) − vj(t)) represents the flux from vertex i
to vertex j across the edge connecting them. Summing over these
fluxes for each vertex yields v′j(t) =

∑
i ai,j(vi(t) − vj(t)). It is

straightforward to verify that this may be written as

v′(t) = −Lv(t) (1)

where L is the graph Laplacian corresponding to A. With initial
conditions v(0) at time t = 0, equation 1 has the analytic solution
v(t) = exp(−tL)v(0). Here exp(−tL) is an N ×N matrix-valued
function of t, known as the Laplacian exponential diffusion kernel
[6]. We now consider letting v(0) = ej , where ej ∈ RN is the
unit vector with all zeros except in the j th component. Running the
diffusion up to time t gives the diffusion pattern exp(−tL)ej , which
is precisely the j th column of exp(−tL).

We are now ready to define the graph diffusion distance. The
columns of the Laplacian exponential kernels, exp(−tL1) and
exp(−tL2), describe the different diffusion patterns centered at
each vertex generated by diffusion up to time t under the two
different sets of weighted edges. Computing the sum of squared
differences between these patterns, summed over all the vertices,
yields

ξ(A1, A2; t) =
∑
i,j

((exp(−tL1))i,j − (exp(−tL2))i,j)
2

= || exp(−tL1)− exp(−tL2)||2F (2)

where || · ||F is the matrix Frobenius norm. This defines a family
of distance measures depending on the diffusion time t. The graph
diffusion distance is given by

√
ξ at the time of maximal difference,

i.e. dgdd(A1, A2) = maxt

√
ξ(A1, A2; t).

Given the spectral decomposition L = V ΛV ′, the Laplacian
exponential may be computed by

exp(−tL) = V exp(−tΛ)V ′, (3)

where for Λ, exp(−tΛ) is diagonal with ith entry given by e−tΛi,i .
We compute dgdd(A1, A2) by first diagonalizing L1 and L2, then,
a straightforward application of (3) and (2) allows computation of
ξ(A1, A2; t) for any fixed t. Finally, we optimize over t by a line
search to give dgdd(A1, A2).

For completeness, we mention here that later we will be compar-
ing the GDD to the simpler edge difference distance, dedd, defined
for two adjacency matrices by

dedd(A1, A2) = |A1 −A2|F . (4)

2.1. Properties of GDD

The GDD is a metric, in the strict mathematical sense, i.e.

Proposition 2.1 For any N ×N adjacency matrices A,B,C
i) dgdd(A,B) ≥ 0, and dgdd(A,B) = 0 iff A = B
ii) dgdd(A,B) = dgdd(B,A)
iii) dgdd(A,C) ≤ dgdd(A,B) + dgdd(B,C)
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Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgdd(GN,2, GN,2

br )/dgdd(GN,2, GN,2
cc ) vs

N . (c) Plot of ξ(t) for A1 = G5,2, A2 = G5,2
cc , red dot indicates

maximum, corresponding to dgdd(A1, A2)2. (d) Values of normal-
ized edge deletion perturbation, on edges of G5,2.

Proof Consider the mapping φ : A → e−tA taking A into
C([0,∞),RN×N ), the space of continuous functions from non-
negative real numbers to N × N matrices. First note that φ is
one-to-one, as follows : φ(A) = φ(B) implies e−tA = e−tB for all
t ≥ 0, then differentiating gives −Ae−tA = −Be−tB , and letting
t→ 0 shows A = B.

Next note that dgdd(A,B) = supt≥0||φ(A)(t) − φ(B)(t)||F ,
so the GDD can be written in terms of the supremum norm, using
the fact the || · ||F is a proper norm. That dgdd is a metric follows
from the properties of the supremum norm.

We note some simple properties of ξ. First, at t = 0, the dif-
fusion patterns are still equal to their initial conditions for both A1

and A2, and are thus all equal, which implies ξ(A1, A2; 0) = 0.
Secondly, for any connected graph, i.e. a graph where any two ver-
tices can be connected by some path with nonzero edge weights, as
t → ∞ each diffusion pattern will converge to the constant vec-
tor (1/N, 1/N..., 1/N)T . This implies that if A1 and A2 are both
connected, then limt→∞ ξ(A1, A2; t) = 0 (see Figure 1(c) ).

Finally, we note an interesting connection between the GDD and
|L1−L2|F , the Frobenius norm of the difference of the graph Lapla-
cians. This quantity is closely related to the edge difference distance,
specifically |L1 − L2|2F = dedd(A1, A2) +

∑
i((d1)i − (d2)i)

2,
where (dn)i = (Dn)i,i is the weighted degree of vertex i for graph
n (for n = 1, 2). We have seen that ξ(t) grows from zero at the
origin before decaying, and that the GDD is determined by its maxi-
mum value. Interestingly, ||L1 − L2||F is related to the growth of ξ
at the origin, in particular

Proposition 2.2 ξ(t) satisfies ξ(0) = 0, ξ′(0) = 0, and ξ′′(0) =
2||L1 − L2||2F , where the derivatives are understood as the right-
hand limits limt→0+ξ′(t), limt→0+ξ′′(t).

Proof ξ(0) = 0 was shown previously. Using the matrix relation
||X||2F = tr(XTX), and that e−tL is symmetric for symmetric L,



we express ξ(t) = tr((e−tL1−e−tL2)2). Differentiating w.r.t t and
simplifying yields

ξ′(t) = tr[−2L1e
−2L1t − 2L2e

−2L2t + e−L2tL1e
−L1t

+L2e
−L2te−L1t + L1e

−L1te−L2t + e−L1tL2e
−L2t]

ξ′′(t) = tr[4L2
1e
−2L1t + 4L2

2e
−2L2t − 2L2e

−L2te−L1tL1

−2L1e−L1te−L2t − e−L2te−L1tL2
1 − L2

2e
−L2te−L1t

−L2
1e
−L1te−L2t − e−L1te−L2tL2

2]

Evaluating at t = 0 shows ξ′(0) = 0, and ξ′′(0) = 2tr[(L1 −
L2)2] = 2||L1 − L2||2F

2.2. Edge Deletion Perturbation

In addition to comparing two graphs, the GDD may be used to study
the relative importance of edges within a single graph by examin-
ing the effects of deleting edges. Given an adjacency matrix A,
we set Ā(m,n) to be the adjacency matrix with the edge from ver-
tex m to n deleted, i.e. Ā(m,n)

i,j = Ai,j unless (i, j) = (m,n) or
(i, j) = (n,m), in which case the entry is zero. We then define
the normalized edge deletion perturbation (EDP) to be χ(m,n) =
dgdd(A, Ām,n)/Am,n if (m,n) is a nonzero edge in the original
graph, otherwise setting χ(m,n) = 0 when Am,n = 0.

We emphasize that the fact that the edge deletion perturbation
shows non-trivial behavior is intimately connected with the prop-
erty that the GDD is constructed from diffusion patterns probing the
global structure of the graph. In contrast, consider the edge differ-
ence distance dedd defined in equation (4). It is easy to see that delet-
ing a single edge with weight w results in dedd(A, Ām,n) =

√
2w,

independent of any other properties of the graph. Therefore, the
equivalent normalized EDP would be constant for every edge, and
would not reveal any information about structure within the graph.

3. EXAMPLES

As a demonstration of both the GDD and the edge deletion pertur-
bation, we explore their behavior on both a class of simple example
graphs, and on real-data derived weighted graphs that represent hu-
man brain anatomical connectivity.

3.1. Synthetic graphs

We first construct a simple class of synthetic unweighted graphs we
call “barbell graphs” where the behavior of heat diffusion is intu-
itively easy to understand. We form the unweighted N −K barbell
graph GN,K (for k < N ) by taking the union of two completely
connected graphs on N vertices, and then joining K of the vertices
in one such component to K in the other component (see Fig. 1(a)).
We perturb GN,K by deleting either one of the K “bridge” edges
(yielding GN,K

br ), or one of the edges from one of the original com-
pletely connected N subgraphs (yielding GN,K

cc ) 2.
Diffusion on these barbell graphs is straightforward to under-

stand qualitatively. Heat will diffuse quickly within each of the two
completely connected N -subgraphs, and only more slowly between
these two N -subgraphs. Intuitively, we expect that if K is small
relative to N , deleting one of the bridge edges should have a larger

2Specifically, to form GN,K
cc we remove an edge connecting vertices that

are not incident to any of the bridge edges, which is possible if K < N − 1

(a) (b)

Fig. 2. (a) Normalized edge-deletion perturbation, for brain connec-
tivity graph (thresholded to show only top 10%). (b) Normalized
EDP averaged over all edges incident to each vertex, rendered on
cortical surface.

effect on the overall diffusion than deleting an edge within each N -
subgraph, as such a deletion will have a large effect on the coupling
between these two N -subgraphs. Examining the ratio ρ(N,K) =
dgdd(GN,K ,G

N,K
br

)

dgdd(GN,K ,G
N,K
cc )

allows quantitative study of this effect. These re-

sults are shown in Figure 1 (b), where the ratio ρ for fixed K in-
creases with increasing N , and in particular is greater than 1. In
contrast, the edge difference distance is completely blind to the dif-
ference between these two types of edges, as dedd(GN,K , GN,K

br ) =

dedd(GN,K , GN,K
cc ) =

√
2 independent of N,K.

The above ratios are formed from single values of the edge dele-
tion perturbation (for these binary weighted graphs, normalizing the
EDP by edge weight has no effect). We show an image of the EDP
rendered on the edges of G5,2 in Fig. 1(d). As can be seen, the
bridge edges, as well as edges within the connected components but
incident to vertices incident to the bridge edges, have elevated val-
ues for the EDP indicating their greater importance to the overall
diffusion structure of the graph.

3.2. Brain Connection Graphs

Brain tissue is organized into regions of grey matter, containing neu-
ron cell bodies, that are interconnected by white matter fibers con-
taining axonal projections. Using diffusion-weighted MRI imag-
ing, it is possible to estimate the directionality of these white mat-
ter fibers, and reconstruct white matter tract streamlines which es-
timate their spatial extent. By applying this process (tractography),
and counting the number of estimated fibers that connect different
segmented grey matter regions, one can estimate a weighted graph
which represents anatomical brain connectivity. The development of
tractography methods, as well as analysis of anatomical connectome
matrices, are very active current research areas [7].

We explore both the edge-deletion perturbation for a single brain
connectome, as well as use the GDD to study the degradation of the
connectome as the number of underlying diffusion weighted mea-
surements is reduced. Briefly, the tractography used in this work
relies on estimating a fiber orientation distribution (FOD) and ex-
tracting the dominant diffusion directions (fiber orientations) at each
voxel. We combine two approaches that complement each other
and have been proven to effectively achieve these tasks [8, 9]. To
reconstruct the FODs we use the CT-ODF formulation proposed
in [8], which enables the estimation of FODs as positive-definite
higher-order tensors by solving a non-negative least squares (NNLS)
problem. Second, since this estimation technique outputs the ten-
sor unique coefficients, the tensor decomposition approach proposed
in [9] can directly compute the fiber orientations using the tensor
coefficients. Fiber streamlines are then computed by integrating
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Fig. 3. (a) GDD between A60 and An, where n is the number of
diffusion weighted gradient directions used to compute the FODs.
(b) Similar, but using EDD.

those directions using the deterministic streamlining algorithm im-
plemented in the Camino software package [10].

The connectome matrix vertices correspond to patches of the
cortical surface. Briefly, we compute a mesh representation of the
outer cortical surface from a T1-weighted MRI image, partition it
into 150 roughly equal-area patches (75 per hemisphere), align the
tracts with the computed cortical surface, and then estimate the con-
nectome edge weights by counting the number of tract streamlines
connecting each pair of cortical patches. Further details are de-
scribed in [11].

We show the normalized edge-deletion perturbation based on the
GDD for the connectome for a single subject in Figure 2 (a). Here,
for visualization purposes, we show colormap values only for edges
whose EDP values exceed the 90th percentile, other edges are shown
in grey. To assist interpretation, for each vertex we compute the av-
erage EDP over all edges incident to this vertex, producing a graph
signal which can be rendered on the cortical surface as shown in
Figure 2 (b). The connectome EDP shows interesting structure, with
elevated values near the temporal-parietal junction and in the frontal
lobe. Human cortex is broadly divided into dorsal and ventral ar-
eas based on cytoarchitectonics (the dorsal division with a greater
concentration of pyramidal cells, the ventral division with a greater
concentration of layer IV granular cells reflecting the thalamic sen-
sory input). Intriguingly, the areas showing elevated EDP in Figure 2
(b) correspond to two known regions where these dorsal and ventral
cytoarchitectonics are mixed [12].

As a final use of the graph diffusion distance, we explore the
degradation in the quality of the brain connectome graphs computed
using the FOD approach, as the number of diffusion weighted mea-
surements are reduced. As the FOD’s are computed from a 4th order
tensor model that is estimated from the diffusion measurements at
each voxel, it is possible to estimate them from a reduced number of
diffusion measurements, but at the price of reduced accuracy. We ex-
plore the effects of this tradeoff on the connectome matrices in Fig. 3
by showing plots of both dgdd(An, A60) and dedd(An, A60), where
An is the connectome matrix computed based on using only n of
the original 60 diffusion weighted images for the FOD reconstruc-
tion. Additionally, we measure the distances between A60 and the
connectome ADTI computed with standard diffusion tensor based
tractography [10].

While the overall behavior of both the GDD and EDD is similar,
showing larger values as n decreases, there are differences between
the two figures. In particular, the GDD shows the error between A60

and An to be less than that between A60 and ADTI for n ≥ 16,
while for the EDD this is obtained only for n ≥ 28. This demon-
strates that GDD and EDD show different sensitivities to the pertur-

bations induced in the connectome matrix due to downsampling the
available number of diffusion weighed measurements.

4. DISCUSSIONS / CONCLUSIONS

In this paper, we proposed a novel metric to measure distance be-
tween two brain weighted graphs based on the Laplacian exponen-
tial diffusion kernel. This graph diffusion distance is computed by
searching for a diffusion time t that maximizes the value of the
Frobenius norm of the difference between the diffusion kernels. We
have described several mathematical properties of the novel metric,
and explored its behavior on both simple synthetic graphs and on
weighted graphs representing anatomical brain. Future work will in-
clude exploring the use of the graph diffusion distance for machine
learning applications in anatomical connectivity analysis, as well as
the use of the edge-deletion perturbation as a method for feature ex-
traction.
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