
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2006; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Parallelization and scalability

of a spectral element channel

flow solver for incompressible

Navier-Stokes equations

C. W. Hamman†, R. M. Kirby‡∗, and M. Berzins§

Scientific Computing and Imaging Institute, University of
Utah, 50 S Central Campus Drive, Rm 3490, Salt Lake City,
UT 84112 USA

SUMMARY

Direct numerical simulation (DNS) of turbulent flows is widely recognized to demand fine
spatial meshes, small timesteps, and very long run-times to properly resolve the flow field.
To overcome these limitations, most DNS is performed on supercomputing machines.
With the rapid development of terascale (and, eventually, petascale) computing on
thousands of processors, it has become imperative to consider the development of
DNS algorithms and parallelization methods that are capable of fully exploiting these
massively parallel machines. A highly parallelizable algorithm for the simulation of
turbulent channel flow that allows for efficient scaling on several thousand processors
is presented. A model that accurately predicts the performance of the algorithm is
developed and compared with experimental data. The results demonstrate that the
proposed numerical algorithm is capable of scaling well on petascale computing machines
and thus will allow for the development and analysis of high Reynolds number channel
flows.

key words: Parallel computing; Spectral/hp elements; Direct numerical simulation; Turbulent

channel flow; Performance modeling

∗Correspondence to: Robert M. Kirby, Scientific Computing and Imaging Institute, School of Computing,
University of Utah, 50 S Central Campus Drive, Rm 3490, Salt Lake City, UT 84112 USA
†E-mail: cwhamman@sci.utah.edu
‡E-mail: kirby@sci.utah.edu
§E-mail: mb@sci.utah.edu

Received 31 March 2006
Copyright c© 2006 John Wiley & Sons, Ltd. Revised 05 November 2006

1



2 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

1. INTRODUCTION

Tremendous increases in parallel computing power have made it possible to consider solution
techniques that were computationally intractable only a short time ago. One such technique
is the direct numerical simulation (DNS) of the incompressible Navier-Stokes equations, a set
of three-dimensional, time-dependent, non-linear partial differential equations. DNS is used to
solve the incompressible Navier-Stokes by resolving all scales from first principles without the
use of additional modeling assumptions. However, the computational requirements for DNS
of flow in a channel (or nozzle) remain formidable at even the most moderate of Reynolds
numbers.

The spatial discretization must encompass the smallest, physically significant length scales
while simultaneously resolving scales that are typically several orders of magnitude larger. The
time-advancement of the convective and viscous terms involves the solution of stiff differential
equations. Furthermore, very small timesteps and long integration times are often necessary
to ensure time accuracy and eliminate the influence of non-physical initial conditions. The
underlying physics dictate that scales on the order of the Kolmogorov length scale need
be resolved, which implies that the number of degrees of freedom NxNyNz for a uniform

grid increases as Re9/4
τ where Reτ is the Reynolds number based on the wall shear stress

velocity (22). The number of timesteps necessary to properly resolve a fully turbulent, three-

dimensional flow based on the Kolmogorov time scale is Nt ≥ O(Re
1/2
τ ) so that the total

time-advancement cost is at least NxNyNzNt = O(Re
11/4
τ ). The quadratic non-linearities of

the Navier-Stokes equations require that steps to eliminate the effects of aliasing error, such
as the Orszag Two-Thirds Rule (4), must also be implemented, further increasing the memory
and computational requirements. Due to these constraints of time and resources, most DNS
simulations have remained restricted to comparatively low Reynolds numbers.

To mitigate these facts, the use of Reynolds-Averaged Navier-Stokes (RANS), Detached
Eddy Simulation (DES), and Large Eddy Simulation (LES) methods have grown in popularity
(22). In these techniques the statistical development of the flow is sought through the partial
modeling of the turbulent energy spectrum. This is in contrast to DNS, which, in principle,
seeks a numerically-accurate, instantaneous solution of the governing equations of motion
directly from first principles. Moreover, RANS, DES, and LES methods encounter the well-
known closure problem, and thus, must devise approximations of unknown correlations in terms
of flow properties that are known in the derived equations. DNS requires no such modeling at
the expense of a far more computationally intensive simulation.

One of the first direct numerical simulations of fully-developed turbulent channel flow was
performed by Kim, Moin and Moser (17). This formulation has effectively become the de facto
standard in the DNS of turbulent channel flows. Most subsequent efforts have used similar
parallelization methods such that the data in the wall-normal direction is stored locally on a
single processor for the solution of the Helmholtz system while the xz-planes are redistributed
amongst processors during operations involving Fourier Transforms thereby necessitating the
use of many communication intensive transpose operations (15; 13; 28).

Following the efforts of Moser et al., there have been a number of papers published based on
making use of parallel computing techniques for the DNS of fully-developed turbulent channel

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 3

flow. For example, Hoyas and Jiménez have resolved simulations up to Reτ = 2003 using a
form of large-scale parallelization (12). Many other efforts (32) have attempted to develop a
scalable DNS algorithm, but massive parallelism in this context remains a challenge. In the
move to massive parallelism, it is natural to consider approaches based on parallelism in the
wall-normal as well as the Fourier directions, concurrently. The approach presented herein
parallelizes the Fast Fourier Transforms (FFTs) but also exploits the strong locality of one-
dimensional spectral elements for further concurrency in the wall-normal direction to attain a
highly robust parallelization methodology. Accordingly, the numerical procedure is also altered
by using a third-order stiffly stable time integration scheme (SE3/SI3) (16).

Given this context, it is beneficial to remain cognizant of the principal physical and
computational motivations underlying DNS research (19). DNS solutions are often used to
further refine LES subgrid models (23; 2; 25) and develop new turbulence models (21; 27). The
field of turbulence control where simulation parameters are modified systematically to study
their effect on quantities such as drag and wall shear stress has increasingly relied on the efficacy
of DNS (33; 5). The computation of vorticity, pressure-strain correlation tensor, and local
topologies of the flow are exceedingly difficult by empirical means while a properly resolved
DNS allows for careful analysis of those quantities as well as calibration of experimental devices
within the bounds of the underlying numerical and physical assumptions. Studies of topological
or spatially local characteristics of the flow (3; 35; 1) benefit from the proper computation of
the small-scale interactions provided by DNS. Turbulence scaling laws, statistics, and boundary
layer analysis are often improved upon by the results of high Reynolds number DNS flow fields
(30; 34; 26; 20).

Thus, the direct numerical simulation of turbulent flows is a valuable resource with wide-
ranging and complementary application for experimental, theoretical, and other computational
models whose chief difficulty remains a problem of algorithm and software design. As the
number of processors increases and the hardware and software infrastructures evolve, software
engineering trade-off decisions must be reevaluated (for examples of such a reevaluation of
design decisions see (7; 8; 9)). What once were limiting factors which impacted algorithm and
software design decisions may no longer be the current bottleneck. Hence, the challenge is then
to assess what design decisions need to be reevaluated so as to develop novel algorithms capable
of reaching higher and higher Reynolds numbers. We anticipate that new algorithms will
meet this challenge by advantageously employing large-scale parallelism on several thousand
processors thereby cultivating the next generation of direct numerical simulations.

In discussing the approach considered herein, it is worth noting that most high-end CFD
simulations utilize approximately forty seconds of wall clock time per timestep independent of
the number of processors (17; 31). This is often the benchmark from which simulation time on
supercomputing machines is measured to predict how many days, months, or years are required
to complete the simulation. Finally, given future trends in parallel computing to incorporate
larger and larger processor counts as parallel computing moves from teraflop towards petaflop
performance, the need for algorithms that can fully employ such machines is paramount.

This paper is organized as follows. We discuss the numerical discretization and algorithm in
Section 2. The parallel decomposition of the algorithm is detailed in Section 3. A performance
model is developed to predict the scaling behavior of the algorithm in Section 4. The
performance model is then compared with the empirical scalability data given in Section 5.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



4 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

2. NUMERICAL METHOD

For an incompressible, isotropic, isothermal, and Newtonian fluid flow, the governing equations
of motion are given by the Navier-Stokes equations and the equation of mass continuity. The
Navier-Stokes equations can be written as follows,

∂u

∂t
+ ω × u +

1

2
∇u2 = −

1

ρ
∇p+ ν∇2

u + F , (1a)

where u (x, t) is the velocity field, ω (x, t) = ∇×u is the vorticity field, p (x, t) is the pressure
fluctuation field, F (x, t) is an appropriate forcing term (such as the mean streamwise pressure
gradient), ρ is the (constant) density, and ν is the (constant) kinematic viscosity of the fluid.
The equation of mass continuity assuming incompressibility is reduced to the condition

∇ · u = 0 . (1b)

For computational purposes, we consider only the rotational form of the non-linear, convective
acceleration term (u · ∇) u = ω × u + 1

2∇u
2 as both linear momentum and kinetic energy

are conserved in the inviscid limit and fewer derivatives need be computed. However, as
a result of this choice, a 2/3-dealiasing method in the streamwise and spanwise directions
with 3/2-over-integration in the wall-normal direction was used to eliminate aliasing error
(4). The numerical properties of one-dimensional spectral element methods are used to yield
comparatively superior performance.

Following Karniadakis et al. (14; 16), the Navier-Stokes equations can be discretized in
time using a three-step splitting (SE3/SI3) scheme with three distinct stages that compute
the non-linear terms, perform a divergence-free pressure projection, and implement a viscous
correction to determine the updated velocity field. During each timestep, the three stages are
executed sequentially with different parallelization strategies. Stage 1 involves the integration
of the non-linear terms. Stage 2 enforces a divergence-free projection of the velocity field and
solves a pressure Poisson equation. During Stage 3, a Helmholtz problem derived from the
viscous contributions is solved for the updated velocity components.

The streamwise direction corresponds to the x-coordinate axis, the spanwise direction the
z-axis, and the wall-normal direction the y-axis. Hence, the xz-plane is periodic, homogeneous,
and employs FFTs to compute the derivatives in transformed space. The wall-normal direction
employs a spectral element discretization with Gauss-Lobatto-Legendre collocation and
quadrature for physical space differentiation and integration to solve the pressure and viscous
Helmholtz problems as required in Stage 2 and Stage 3. This mathematical methodology has
been successfully used previously for the simulation of flow in a channel (32; 33); the goal in
this work is to consider a different algorithmic and implementation choice for parallelization
than previously used while maintaining the same tested mathematical framework.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 5

2.1. Stage 1

In the first stage, the non-linear terms are computed and extrapolated with a consistent order,
Je, in time with timestep ∆t. The first stage is given by the integration of the convective terms

û −
∑Je−1

q=0 αqu
n−q

∆t
= −

Je−1∑

q=0

βq[(ω × u +
1

2
∇u2) − F ]n−q , (2)

where the integration weights, αq, βq and γ0, can be found in (16).
The non-linear terms are computed in rotational form, i.e. (u · ∇)u = ω × u + 1

2∇u
2,

using 2/3-dealiasing in the Fourier directions (xz-plane) with 3/2-over-integration in the wall-
normal direction to properly compute the quadratic nonlinearities. Notice that this stage is
embarrassingly parallel with respect to parallelization in the wall-normal direction as all y-
direction derivatives are computed on an elemental basis that is local to each processor (we
assume that elements are partitioned across processors; an element is not allowed to be split
across parallelization domains). The only communication overhead occurs when processors are
split along the streamwise direction, which is diminished due to the resultant concurrency
of the wall-normal parallelization. The mean streamwise pressure gradient is included in the
forcing term at this stage.

2.2. Stage 2

The second-stage approximation to u, ˆ̂u, can be computed as

ˆ̂u − û

∆t
= −∇pn+1/2 , (3)

which, assuming ˆ̂u is divergence-free, can be recast as

∇2pn+1/2 = ∇ ·

(
û

∆t

)

, (4)

which can be solved with the following Neumann boundary conditions

∂pn+1/2

∂n
= −νn̂ ·

Je−1∑

q=0

βq(∇× ω)n−q on ∂Ω , (5)

where the unit normal n̂ is strictly directed along the y-axis for a planar channel flow (16).
Once pn+1/2 is found, substitution into Equation 3 immediately yields the second stage
approximation to the velocity field.

2.3. Stage 3

In the third stage, the updated velocity field, u
n+1 is computed as

γ0u
n+1 − ˆ̂u

∆t
= ν∇2

u
n+1 , (6)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



6 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

which can be recast as
(

∇2 −
γ0

ν∆t

)

u
n+1 = −

(
ˆ̂u

ν∆t

)

, (7)

with appropriate boundary conditions (no-slip and stationary walls for the current
simulations). Then, the three stage cycle is repeated with the updated velocity field to advance
the solution in time.

2.4. Spectral element discretization

The use of a conformal spectral element grid in the wall-normal (y) direction permits both
h-type elemental decomposition as well as p-type polynomial expansion modifications to gain
further resolution and accuracy without sacrificing performance. For smooth functions, h-type
refinement results in an algebraic decay of the numerical error while p-type refinement yields
exponential decay of the numerical error. In particular, elements can be positioned arbitrarily
close to the wall with a few large elements spanning the channel center so as to appropriately
resolve all essential turbulent scales dependent on Reynolds number. The use of stretched grids
to concentrate points where the highest frequency perturbations reside (typically, near the wall)
is common practice in DNS (17). The simulation parameters α and β control the distribution
of the element clustering and the amount of clustering performed at the wall boundaries,
respectively. The algebraic mapping (24; 11) between the physical elemental boundaries and
uniform mapping domain is given by

y = H
(2α+ β) [(β + 1)/(β − 1)]

(η−α)/(1−α)
+ 2α− β

(2α+ 1){1 + [(β + 1)/(β − 1)]
(η−α)/(1−α)

}
, (8)

where α is defined on [0, 1), β is defined on (1,∞), H is the channel height, and η is the
mapping of each elemental boundary to a uniform grid defined on [0, 1]. As α approaches zero
(or one), the clustering is concentrated on the top (or bottom) wall, and, for α = 0.5, the
clustering is distributed equally between the top and bottom walls. As β approaches 1, more
grid points are clustered near the wall boundaries while, as β → ∞, the elements approach a
uniform separation. For all simulations presented, α = 0.5 and β = 1.10.

Each of the Ne spectral elements is prescribed a specific modal expansion basis polynomial
degree Pe on the standard interval Ωst = {ξ : −1 ≤ ξ ≤ 1} using the modified Jacobi
polynomial basis given by the following expression:

ψe
p(ξ) =







(
1−ξ
2

)

p = 0 ,
(

1−ξ
2

)(
1−ξ
2

)

P 1,1
p−1(ξ) 0 < p < Pe ,

(
1+ξ
2

)

p = Pe ,

(9)

where Pα,β
j (ξ) is the jth Jacobi polynomial with α = β = 1. The boundary modes (p = 0

and p = Pe) are responsible for coupling the adjacent elements. This allows for a combined
hp-type spectral element discretization where the flow is divided into Ne macro-elements each
discretized by a Pe-th order polynomial expansion basis. By varying Ne or increasing Pe, the

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 7

algorithm will converge to the desired solution. To clarify the exposition, we will assume that
the polynomial order P is constant for each element.

The standard element Ωst is the mapping of the global coordinate y in terms of the local
element e and local coordinate ξ ∈ Ωst as

y = χe(ξ) =
(1 − ξ)

2
ye−1 +

(1 + ξ)

2
ye , (10)

where the elemental boundary locations ye and ye−1 for each element e are determined from
Equation 8. Then, Q Gauss-Lobatto-Legendre quadrature points are distributed within each
element, i.e. Q = P +2. For over-integration of the non-linear terms, Qnl = (3/2)(P +2). The
Jacobian mapping dχe/dξ from Ωst to the actual domain χe is then specified by

dχe

dξ
=
ye − ye−1

2
. (11)

The primary benefit of this particular discretization beyond the geometrical flexibility and
high-order convergence rates afforded by hp-refinement is that the computations are localized
at the elemental level thereby providing further concurrency through simultaneous utilization
of the distinct parallel communication methods of the wall-normal and xz-plane decomposition.

3. PARALLEL DECOMPOSITION

The data decomposition with Py = 2 wall-normal processors and Pxz = 4 streamwise/spanwise
processors for a total of eight (Py ×Pxz) processors is shown in Figure 1. By construction, Py

and Pxz are both positive integers. The communication connection schematic of the parallel
decomposition is shown in Figure 2. The Py processor groups denote the Helmholtz (or
wall-normal) communications while the Pxz processor groups denote the FFT (or xz-plane)
communication costs. Note that, after each FFT, the data ordering is left in a transposed state
thereby saving an extra transposition of the data.

3.1. HELMHOLTZ SOLVER

For Stage 2 and Stage 3, the local elemental Helmholtz equation being solved is of the form
∫

Ωe

(
∂ψe

q

∂ξ

∂ψe
p

∂ξ
+ λψe

qψ
e
p

)

ûe
p

dχe

dξ
dξ =

∫

Ωe

ψe
pf

e dχ
e

dξ
dξ , (12)

where f represents the right-hand side of Equations 4 and 7, respectively, and the tildes
denote Fourier transformed quantities along the xz-plane. The homogeneity of the flow along
the streamwise and spanwise directions transforms derivatives with respect to x and z into
algebraic expressions that may be absorbed into a single constant λ. For the above equation,
λ = r2m2 + s2n2, where r = 2π/Lx, s = 2π/Lz, m is the streamwise wavenumber, and n
is the spanwise wavenumber where we assume the Fourier transforms are unnormalized; if
normalized transforms are used, r = s = 1. When m = n = 0 during Stage 2, the solution is

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



8 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

Figure 1. Example data decomposition among eight processors with Py = 2 and Pxz = 4.

set to zero since the spatially constant mean streamwise pressure gradient is included in the
forcing term.

After application of the aforementioned boundary conditions and the global assembly
process, the system of equations to be solved then reduces to

Mx = b , (13)

where M is the global Helmholtz matrix, which consists of the global assembly of the local mass
and Laplacian matrices of the spectral element discretization. The global Helmholtz matrix
has a block-diagonal structure with overlap at the boundary modes as shown in Figure 3. The
decomposition of the global Helmholtz matrix amongst four distinct processors is also shown
in Figure 3. Observe that the only overlapping positions in the global Helmholtz matrix are
the boundary-boundary modes formed by local contributions from adjacent processors. Due
to the near-orthogonality of the one-dimensional spectral element expansion basis, the regions
outside the block-diagonal structure are strictly zero, hence, those entries are ignored in the
computation leading to an O(PN) rather than O(N2) matrix-vector multiplication.

A diagonally preconditioned conjugate gradient method is used to solve the system of
equations given in Equation 13. Hence, the only communication necessary between processors
occurs at their corresponding processor boundaries (see Figure 3) as part of the matrix-vector
multiplication and global assembly of the conjugate gradient method. A total of 2(N−1) sends
and receives are executed during this communication step.

This process of communicating the boundary-boundary modes between processors is a
dominant communication cost during Stage 2 and Stage 3. In order to limit the serialization
caused by using blocking sends and receives, the even processors send their last bottom corner

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 9

Figure 2. A schematic representation of the communication connection graph for the proposed
algorithm and domain decomposition. Communication is performed in both the wall-normal and
homogeneous directions with eight processors such that Py = 2 and Pxz = 4 as in Figure 1. The solid
lines denote collective communication between processors of the same xz-plane due to the MPI Alltoall
calls of the FFTs. The dashed lines denote the pairwise and MPI Allreduce communication between

processors of the same yz-plane from the Helmholtz solution process.

mode forward to the next processor while the odd processors send their upper corner mode
backward. Then, the even processors send their upper corner mode backward, and, finally, the
odd processors send their last bottom corner mode forward. This effectively results in the first
two passes of a standard tree algorithm for an all-to-all type of communication. A schematic
of this communication procedure is shown in Figure 4. To further reduce communication
costs associated with initial message startup times, all streamwise and spanwise planar
conjugate gradient solves are performed concurrently such that the boundary modes of each
of the Nx(Nz/2 + 1) complex values in the transformed space are sent to the corresponding
processor as a single packaged array. This places the communication burden primarily upon
the bandwidth of the parallel system, which is advantageous for most parallel computing
architectures where startup latency is dominant. We note that depending on the MPI
implementation used, substitution or augmentation of the above scheme with asynchronous
sends/receives may provide similar or improved results.

Since the decomposition of the one-dimensional domain across processors is performed at
elemental boundaries, the maximum number of processors in the wall-normal direction that
can be utilized is equal to the number of elements. This places an upper bound on the number
of processors that can be used in the wall-normal direction; however, by parallelizing both

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



10 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

Figure 3. Decomposition of the global Helmholtz matrix with Ne = 4, P = 8, and Neumann boundary
conditions over 4 separate processors (Py = 4), which appears during the Stage 2 pressure solver.

the Helmholtz solution process (wall-normal) and the Fast Fourier transforms (xz-plane), the
associated difficulties with the parallelization of FFTs can be effectively deferred to higher
processor counts by adding processors in the wall-normal direction where the additional
communication overhead is marginal. If the FFT parallelization begins to lose its advantage
at Pxz = P processors for the given problem size, the efficiency limitations which come as a
consequence of communications costs can be suppressed until one reaches a higher processor
count of NeP using the aforementioned parallelization. Hence, if the FFT scalability drops
significantly at P = 32 processors for a given xz-plane grid with Ne = 32, the aforementioned
algorithm can effectively utilize 1024 processors efficiently. As a result, higher Reynolds number
turbulent channel flow DNS can be obtained.

4. PERFORMANCE MODEL

Scalability is a measure of the ability of a parallelization algorithm to fully utilize an increasing
number of processors. Ideally, the speedup should scale linearly as more processors are utilized
since the potential computing power increases linearly. Hence, an algorithm that maintains
a near linear speedup over a wide range of processors is scalable. Developing performance

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 11

P0 P1 P2 P3 P4 P5

P0 P1 P2 P3 P4 P5

P0 P1 P2 P3 P4 P5

P0 P1 P2 P3 P4 P5

Stage 1: Even processors send forward
Odd processors receive

Stage 2: Odd processors send backward
Even processors receive

Stage 3: Even processors send backward
Odd processors receive

Stage 4: Odd processors send forward
Even processors receive

Figure 4. Boundary-boundary communication schematic for a single wall-normal communication group
with Py = 6. This communication pattern is used extensively during the matrix-vector multiplication
of boundary-boundary modes as shown in Figure 3 during the conjugate gradient iterations of the

Helmholtz solution process.

models to characterize the scalability of an algorithm is becoming increasingly important
on modern supercomputers where the ability to both employ several thousand processors
efficiently and predict how changing design parameters will impact future simulations is of
the utmost importance. A performance model is developed to characterize the scalability
of this algorithm dependent upon the processor decomposition topology of the Pxz and Py

processors groups. The number of floating point operations per timestep was counted by
hand in order to quantify the total computational burden the supercomputing system must
support. Furthermore, the communication models used as building blocks in this analysis are
the classical models for MPI Alltoall, MPI Allreduce, and pairwise communication between
processors (29) where local communication between processors on the same node is assumed
to be comparable to communication between processors on different nodes. However, we seek
to explain our empirical observations and predict algorithmic scaling through control of the
simulation parameters, processor speed, startup communication, and bandwidth of the given
supercomputer; all factors outside of this class are considered to be negligible.

The performance model of the spectral element channel solver depends upon the
computational and communication time models for the three separate stages of execution as
a function of number of physical space grid points used in the streamwise, spanwise and wall-
normal directions (Nx, Ny and Nz, respectively). Stage 1 principally consists of several FFTs
such that the time to complete the Stage 1 computations on a single processor is approximately

T1 =

(
A1

F

)[

(72 + 15Q+ 15Je)NxNzNy + 24

(
5

2
NxNzNy

)

log2(NxNz)

]

, (14)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



12 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

where F represents the average number of floating point operations each processor can perform
per second and An is an empirically determined calibration constant that accounts for the
different computational and memory access characteristics of the three stages. Similarly, the
communications model for Stage 1 is given by

TC1
= 7

[

Pxz(Pxz − 1)τs +

(
3(Pxz − 1)NxNzNy

PxzPy

)

τw

]

︸ ︷︷ ︸

Fast Fourier Transform communication

, (15)

where τs is the message startup time and τw is the inverse of the bandwidth (time necessary
to communicate a single floating point value).

Stage 2 includes several FFTs as well as the pairwise and MPI Allreduce communication
during K iterations of the pressure Helmholtz solver whose computational and communication
models are given by

T2 =

(
A2

F

)

[(49 + 4Q+ 6Je)NxNzNy + (31 + 16P + (29 + 4P )K)NxNzNeP ] + (16)

(
A2

F

)[

23

(
5

2
NxNzNy

)

log2(NxNz)

]

,

TC2
=6

[

Pxz(Pxz − 1)τs +

(
3(Pxz − 1)NxNzNy

PxzPy

)

τw

]

+ (17)

5

[

Pxz(Pxz − 1)τs +

(
(Pxz − 1)NxNzNy

PxzPy

)

τw

]

︸ ︷︷ ︸

Fast Fourier Transform communication

+

C(K + 2)

[

τs +

(
NxNz

Pxz

)

τw

]

︸ ︷︷ ︸

Pairwise communication

+2(K + 1) log2(Py)

[

τs +

(
NxNzNeP

PxzPy

)

τw

]

︸ ︷︷ ︸

MPI Allreduce communication

.

Stage 3 is similar yet differs in that three times as much data is communicated during the
viscous Helmholtz solution process yielding

T3 =

(
A3

F

)

[24NxNzNy + 3(31 + 16P + (29 + 4P )K)NxNzNeP ] + (18)

(
A3

F

)[

9

(
5

2
NxNzNy

)

log2(NxNz)

]

,

TC3
=3

[

Pxz(Pxz − 1)τs +

(
3(Pxz − 1)NxNzNy

PxzPy

)

τw

]

︸ ︷︷ ︸

Fast Fourier Transform communication

+ (19)

C(K + 2)

[

τs +

(
3NxNz

Pxz

)

τw

]

︸ ︷︷ ︸

Pairwise communication

+2(K + 1) log2(Py)

[

τs +

(
3NxNzNeP

PxzPy

)

τw

]

︸ ︷︷ ︸

MPI Allreduce communication

.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 13

The variable C, dependent on Py, describes the number of pairwise communications necessary
per conjugate gradient iteration (see Figure 4) and is given by

C =







0 if Py = 1 ,
2 if Py = 2 ,
4 if Py ≥ 3 .

(20)

For Stage 2 and Stage 3, the number of conjugate gradient iterations per timestepK is assumed
equal. The number of iterations is, in general, dependent upon the specific discretization used
and the topological character of the flow but is typically less than ten.

The total computational model can be rewritten in an approximate form as

T1 + T2 + T3 =

(
1

F

)

[307 + 83P + 21Je + 4(29 + 4P )K + 80 log2(NxNz)]NxNzNeP , (21)

where Ny ≈ NeP , Q = P + 2, and A1 = A2 = A3 were assumed. Hence, the computational
cost associated with increasing Ne while holding P constant is linear; however, when Nx or
Nz are increased, the computational cost increases super-linearly due to the logarithmic term
of the FFTs.

The common similarity between each stage allows for the communications model to be
written in a more concise, approximate form as

TC1
+ TC2

+ TC3
= τs

(
21P 2

xz + C1 + C2 log2(Py)
)
+ (22)

τw

(
53Ny

Py
+

2C1

Pxz
+

2C2Ny log2(Py)

PxzPy

)

NxNz ,

where Ny ≈ NeP , C1 = 2C(K + 2) and C2 = 4(K + 1). In deriving this last cost, it was
assumed that Pxz ≈ Pxz − 1. When Py is increased, the communication costs scale at most
logarithmically due to the MPI Allreduce communication while the pairwise communications
remain constant. Furthermore, by increasing the number of processors in the Py processor
group, less data must be transmitted during MPI Alltoall communications along a given Pxz

processor group leading to a reduction in the total FFT communication costs. However, when
Pxz is increased while holding Py constant, the startup communication costs of the FFT scale
as P 2

xz. In this form, the parallel performance enhancement by increasing Py rather than Pxz is
readily available; all terms that depend on Py are at most logarithmic while those that depend
on Pxz are at most quadratic.

The speedup S for this performance model is then given by

SP =
T1 + T2 + T3

T1+T2+T3

PxzPy

+ (TC1
+ TC2

+ TC3
)
, (23)

and the efficiency ε is

ε =
S

PxzPy
. (24)

Using the performance model described above, the wall clock time per timestep for various
configurations can be computed. Variations in the communication network with respect to

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



14 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

MPI Alltoall, MPI Allreduce, or pairwise operations across different computing systems can
be accounted for by simply replacing the respective computational characteristics of the
aforementioned model by that for a specific architecture. This allows for a robust capability
to predict and tune the simulation performance on distinct architectures. All subsequent
simulation data uses the predicted serial wall clock time of the performance model on a single
processor for reference when computing the speedup, efficiency, and related quantities. Hence,
we investigate the absolute speedup and efficiency of the performance model and algorithm.

4.1. Memory Requirements

The amount of memory necessary for the simulations is dictated by the amount of three-
dimensional vector arrays necessary to complete the timestepping method. For a Je order
integrator with Nx × Ny × Nz grid points (i.e. Reals) given Ny ≈ NeP and Ns scalar fields,
the amount of memory (CM , in Megabytes) required for double-precision is approximately
equivalent to

CM ≈ Ns

(
NxNzNeP

218

)

, (25)

a memory usage estimate consistent with combined Fourier/Spectral element methods (16; 6).

The simulation requires Ns = 86 + 3Je scalar fields. Hence, for Je = 3, Nx = Nz = 2048,
Ne = 128, and P = 8, the amount of memory required is CM ≈ 1.472 Terabytes of memory
or, distributed over 2048 processors, 736 Megabytes per processor. Memory requirements
could be lowered significantly through judicious use of available memory, however, the given
arrangement was found to be convenient due to the need to parallelize many data sets
simultaneously and to avoid unnecessary memory instantiation or copying.

5. SCALABILITY

The computational scaling and performance results of the implemented Spectral Element
Channel Solver (SPECS) are compared to the analytic performance model to characterize the
parallel communication of the FFTs, pairwise communication, and collective communication
allowing for the accurate prediction of the simulation software performance.

5.1. Hardware

All simulations were performed on the supercomputing machine known as Thunder located
at Lawrence Livermore National Laboratory. Thunder utilizes a Quadrics interconnect with
1, 024 nodes, four 1.4 GHz Itanium2 processors per node, and 8.0 GiB of DDR266 SDRAM per
node. The communication network supports a 900 MB/s bandwidth with MPI latency less than
4µs. As of June 2006, Thunder ranked fourteenth on the TOP500 list of supercomputers (18)
with a 22.9 TFlops peak performance using the LAPACK benchmark. The largest simulations
performed utilized only half of the machine corresponding to 512 nodes or 2048 processors.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 15

5.2. Performance measurement technique

The measurements taken were the time for each stage and the total timestep averaged over
ten timesteps after five initialization timesteps. The number of iterations for both the viscous
and pressure solvers was fixed at K = 10 iterations with P = 8 and Je = 3 to allow for
direct comparison. The performance model was calibrated yielding the model parameters as
A1 = 13.0, A2 = 17.0, A3 = 28.0, F = 4 GFlops, τw = 4.0 · 10−9 s, and τs = 4.0 · 10−6 s.

5.3. Strong scaling

During each strong scaling simulation presented herein, the problem size was held fixed with
Nx = Nz = 512, Ne = 64, and P = 8, denoting a characteristic simulation size. Further
experiments with different simulation dimensions and data in tabular form can be found in
(10). All results presented herein represent the typical behavior found across all experiments.
The processor group parameters Py and Pxz are varied in three distinct cases, (1) Constant
Pxz, (2) Constant Py, and (3) Variable Pxz and Py, to verify the performance model and
characterize the factors that influence the scalability of the algorithm. The scaling behavior
of the speedup and efficiency for the strong scaling simulations as well as the wall clock time
for the isomemory simulations are calculated for each case as shown in Figures 5, 6, and 7.
All the plots shown within this paper adhere to the following convention. The abscissa ranges
over the number of processors, and the ordinate consists of the dependent quantity of interest
(speedup, efficiency or wall-clock time). Symbols are used to denote quantities coming from
measured data. Lines are used to denote the predicted (model) results.

A strong scaling simulation where Pxz = 32 is held fixed is shown in Figures 5(a) and 5(b).
As can be deduced from the performance model, the additional pairwise and MPI Allreduce
communication when varying Py with constant Pxz yields significantly better performance
than the opposite case when Pxz is varied with constant Py where the costly MPI Alltoall
communication dominates as shown in Figures 6(a) and 6(b). This example demonstrates how
the unfavorable FFT communications costs can be deferred to significantly higher processor
counts by concurrent use of the wall-normal parallelization. A hybrid approach where both Pxz

and Py are varied simultaneously is exhibited in Figures 7(a) and 7(b). The cases where Pxz and
Py are held fixed yield upper and lower bounds, respectively, for the parallel speedup in the case
where both parameters vary. The performance model slightly overpredicts the communication
costs associated with the FFTs; this is a result of Thunder’s use of four processors per node
allowing for some local communication to replace the MPI Alltoall communication inherent in
the Pxz processor groups.

5.4. Isomemory scaling

For an isomemory study of a parallel algorithm, the problem size is scaled with the number
of processors so that the average memory per processor is held approximately constant. For
this particular algorithm, the total memory scales linearly with the parameters Nx, Nz, Ne,
and P as shown in Equation 25. Hence, if the number of processors is doubled, one of the
aforementioned parameters is doubled so as to keep the average memory per processor constant.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



16 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

Processors

S
pe

ed
up

0 500 1000 1500 2000
0

500

1000

1500

2000
Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model
Linear Speedup

(a) Strong scaling speedup with Pxz = 32.

Processors

E
ff

ic
ie

nc
y

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

1.1

Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model

(b) Strong scaling efficiency with Pxz = 32.

Processors

T
im

e
(s

)

0 500 1000 1500 2000
0

20

40

60

Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model

(c) Isomemory scaling wall clock time with Pxz = 32.

Figure 5. Constant Pxz scaling experiments.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 17

Processors

S
pe

ed
up

0 500 1000 1500 2000
0

500

1000

1500

2000
Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model
Linear Speedup

(a) Strong scaling speedup with Py = 32.

Processors

E
ff

ic
ie

nc
y

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

1.1

Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model

(b) Strong scaling efficiency with Py = 32.

Processors

T
im

e
(s

)

0 500 1000 1500 2000
0

20

40

60

Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model

(c) Isomemory scaling wall clock time with Py = 16.

Figure 6. Constant Py scaling experiments.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



18 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

Processors

S
pe

ed
up

0 500 1000 1500 2000
0

500

1000

1500

2000
Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model
Linear Speedup

(a) Strong scaling speedup with Py = Pxz/2.

Processors

E
ff

ic
ie

nc
y

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

1.1

Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model

(b) Strong scaling efficiency with Py = Pxz/2.

Processors

T
im

e
(s

)

0 500 1000 1500 2000
0

20

40

60

Stage 1
Stage 2
Stage 3
Timestep
Stage 1 Model
Stage 2 Model
Stage 3 Model
Timestep Model

(c) Isomemory scaling wall clock time with Py = Pxz/2.

Figure 7. Variable Pxz and Py scaling experiments.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 19

An isomemory scaling simulation where Pxz = 32 is held fixed is shown in Figure 5(c).
The total number of elements is doubled when the number of processors (in the wall-
normal direction) is doubled. For this case, the computational effort per processor remains
approximately constant as shown in Equation 21. Effectively, increasing Py for a given Pxz

while proportionately increasing the problem size provides a near constant parallel efficiency
and constant execution time due to the lack of additional MPI Alltoall type communications.

A similar set of simulation data where the number of processors controlling the Fourier
planes is doubled while doubling the problem size with Py = 16 held constant is shown
in Figure 6(c). Even though the average domain size per processor is held constant, the
total computational effort per processor is not constant due to the logarithmic term in
Equation 21, hence, the execution time is expected to increase over the range investigated.
Furthermore, the MPI Alltoall communication dominates the total communication cost when
increasing Pxz leading to further performance degradation relative to the case when holding Pxz

constant; however, the performance model overpredicts the experimental data. We attribute
this to Thunder’s processor topology with four processors per node allowing for some local
communication during an MPI Alltoall.

Another simulation where both the Pxz and Py processor groups were increased
simultaneously such that Py = Pxz/2 is shown in Figure 7(c). The expected trends of the FFT
scaling are exhibited relative to the case where Pxz was fixed; however, the FFT communication
cost is deferred to higher processors due to the concurrent increase in Py processor groups.
Thus, the time per timestep effectively remains constant when the number of wall-normal
processors increases yet slowly degrades as the number of streamwise/spanwise processors
increases. This supports the remarks concerning how the performance decrease due to the
FFTs can be deferred by appropriate use of the wall-normal processor topology.

6. CONCLUSIONS

We have shown an effective parallelization method for use in the direct numerical simulation of
turbulent channel flow. The proposed parallelization method was derived as a consequence of
reevaluating algorithmic designs based upon assumptions that may no longer hold true. What
once were limiting factors which impacted algorithm and software design decisions may no
longer be the current bottleneck. Hence, the challenge is then to assess what design decisions
need to be reevaluated and to consider developing novel algorithms that exploit large-scale
parallelism on several thousand processors to solve problems with higher and higher Reynolds
numbers thereby developing the next generation of simulations. To aid our algorithmic
evaluation, a performance model was developed based upon common communication pattern
building blocks that accurately predicts the parallel performance of the simulation software
while maintaining a high-degree of modularity in that the various components that arise from
communication overhead are easily identifiable and replaceable depending upon the underlying
hardware architecture. This fidelity allows for the realistic prediction of parallel performance
on arbitrary architectures.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



20 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

7. ACKNOWLEDGMENTS

This work was partially supported by the U.S. Department of Energy through the Center for
the Simulation of Accidental Fires and Explosions (C-SAFE) under grant W-7405-ENG-48.
We appreciate the computational support provided by C-SAFE and thank Justin Luitjens for
running the simulations on Thunder. The second author acknowledges the support of NSF
Career Award CCF-0347791.

REFERENCES

[1] R.J. Adrian, C.D. Meinhart, and C.D. Tomkins. Vortex organization in the outer region
of the turbulent boundary layer. Journal of Fluid Mechanics, 422: 1 – 54, 2000.

[2] V. Armenio, U. Piomelli, and V. Fiorotto. Effect on the subgrid scales on particle motion.
Physics of Fluids, 11(10): 3030 – 3042, 1999.

[3] H.M. Blackburn, N.N. Mansour, and B.J. Cantwell. Topology of fine-scale motions in
turbulent channel flow. Journal of Fluid Mechanics, 310: 269 – 292, 1996.

[4] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods in Fluid
Dynamics. Springer-Verlag, New York, 1988.

[5] H. Choi, P. Moin, and J. Kim. Active turbulence control for drag reduction in wall-
bounded flows. Journal of Fluid Mechanics, 262: 75 – 110, 1994.

[6] M.O. Deville, E.H. Mund and P.F. Fischer. High Order Methods for Incompressible Fluid
Flow. Cambridge University Press, 2002.

[7] S. Dong and G.E. Karniadakis. P-refinement and P-threads. Com. Meth. Appl. Mech.
Engr., 192:2191–2201, 2003.

[8] S. Dong and G.E. Karniadakis. Dual-level parallelism for high-order CFD methods.
Parallel Computing, 30(1):1–20, January 2004.

[9] S. Dong, G.E. Karniadakis, and N.T. Karonis. Cross-site computations on the TeraGrid.
Computing in Science and Engineering, 7(5): 14–23, 2005.

[10] C.W. Hamman, R.M. Kirby and M. Berzins, Parallelization and scalability of spectral
element solver. SCI Institute Report UUSCI-2005-011.

[11] K.A. Hoffmann and S.T. Chiang. Computational Fluid Dynamics for Engineers.
Engineering Education System, Austin, Texas, USA, 1989.

[12] S. Hoyas and J. Jiménez. Scaling of the velocity fluctuation in turbulent channels up to
Reτ = 2003. Physics of Fluids, 18: 2006.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



PARALLELIZATION OF A SPECTRAL ELEMENT CHANNEL FLOW SOLVER 21

[13] G-S Karamanos, C. Evangelinos, R.C. Boes, R.M. Kirby, and G.E. Karniadakis.
Direct Numerical Simulation of Turbulence with a PC/Linux Cluster: Fact or Fiction?,
ACM/IEEE SC ’99, Portland.

[14] G.E. Karniadakis, M. Israeli, and S.A. Orszag. High-order splitting methods for
incompressible Navier-Stokes equations. Journal of Computational Physics, 97:414 – 443,
1991.

[15] G.E. Karniadakis and S.A. Orszag. Nodes modes and flow codes. Physics Today, 46(3):
34 – 42, 1993.

[16] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for CFD. Oxford
University Press, Second Edition, 2005.

[17] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at
low reynolds number. Journal of Fluid Mechanics, 177:133 – 166, 1987.

[18] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon. TOP500 Supercomputer Sites. URL:
www.top500.org .

[19] P. Moin and K. Mahesh. Direct Numerical Simulation: A Tool in Turbulence Research.
Annual Review of Fluid Mechanics, 30: 539 – 578, 1998.

[20] R.D. Moser, J. Kim, and N.N. Mansour. Direct numerical simulation of turbulent channel
flow up to Reτ = 590. Physics of Fluids, 11(4): 943 – 945, 1999.

[21] B. Perot. Turbulence modeling using body force potentials. Physics of Fluids, 11(9): 2645
– 2656.

[22] U. Piomelli and E. Balaras. Wall-layer models for large-eddy simulations. Annual Review
of Fluid Mechanics, 34: 349 – 374, 2002.

[23] U. Piomelli, W.H. Cabot, P. Moin, and S. Lee. Subgrid-scale backscatter in turbulent and
transitional flows. Physics of Fluids, 3(7): 1766 – 1771, 1991.

[24] G.O. Roberts. Computational meshes for boundary layer problems. In Second Intl Conf.
on Numerical Methods in Fluid Dynamics (ed. M. Holt). Lecture Notes in Physics, vol.
8, Springer, pp. 171 – 177, 1970.

[25] W. Rodi and N.N. Mansour. Low Reynolds number k-ǫ modeling with the aid of direct
simulation data. Journal of Fluid Mechanics, 250: 509 – 529,1993.

[26] P.R. Spalart. Direct simulation of a turbulent boundary layer up to Reθ = 1410. Journal
of Fluid Mechanics, 187: 61 – 98, 1988.

[27] C.G. Speziale. Analytical methods for the development of Reynolds-stress closures in
turbulence. Annual Review of Fluid Mechanics, 23: 107 – 157, 1991.

[28] H.M. Tufo and P.F. Fischer. Terascale Spectral Element Algorithms and Implementations,
ACM/IEEE SC ’99, Portland.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls



22 C. W. HAMMAN, R. M. KIRBY, AND M. BERZINS

[29] E.F. Van de Velde. Concurrent Scientific Computing. Springer-Verlag: Texts in Applied
Mathematical Sciences Series, 1994.

[30] T. Wei, P. Fife, J. Klewicki, and P. McMurtry. Properties of the mean momentum balance
in turbulent boundary layer, pipe and channel flows. Journal of Fluid Mechanics, 522: 303
– 327, 2005.

[31] D.C. Wilcox. Turbulence Modeling For CFD. D.C.W. Industries, 2006.

[32] J. Xu. Studies of high order finite/spectral element methods for unsteady incompressible
viscous flow. Ph.D. Thesis Brown University 2001.

[33] J. Xu, M.R. Maxey, and G.E. Karniadakis. Numerical simulation of turbulent drag
reduction using micro-bubbles. Journal of Fluid Mechanics, 468: 271 – 281.

[34] M.V. Zagarola and A.J. Smits Mean-flow scaling of turbulent pipe flow. Journal of Fluid
Mechanics, 373: 33 – 79, 1998.

[35] J. Zhou, R.J. Adrian, S. Balachandar, and T.M. Kendall. Mechanisms for generating
coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387: 353
– 396, 1999.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–7
Prepared using cpeauth.cls


