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Deformable image registration in the presence of considerable contrast differences and large size and shape changes presents
significant research challenges. First, it requires a robust registration framework that does not depend on intensity measurements
and can handle large nonlinear shape variations. Second, it involves the expensive computation of nonlinear deformations
with high degrees of freedom. Often it takes a significant amount of computation time and thus becomes infeasible for
practical purposes. In this paper, we present a solution based on two key ideas: a new registration method that generates
a mapping between anatomies represented as a multicompartment model of class posterior images and geometries and an
implementation of the algorithm using particle mesh approximation on Graphical Processing Units (GPUs) to fulfill the
computational requirements. We show results on the registrations of neonatal to 2-year old infant MRIs. Quantitative validation
demonstrates that our proposed method generates registrations that better maintain the consistency of anatomical structures over
time and provides transformations that better preserve structures undergoing large deformations than transformations obtained
by standard intensity-only registration. We also achieve the speedup of three orders of magnitudes compared to a CPU reference
implementation, making it possible to use the technique in time-critical applications.

1. Introduction

Our work is motivated by the longitudinal study of early
brain development in neuroimaging, which is essential to
predict the neurological disorders in early stages. The study,
however, is challenging due to two primary reasons: the
large-scale nonlinear shape changes (the image processing
challenge) and the huge amount of computational power the
problem requires (the computational challenge). The image
processing challenge involves robust image registration to
define anatomical mappings. While robust image registra-
tions have been studied extensively in the literature [1–3],
registration of the brain at early development stage is still
challenging as the growth process can involve very large-
scale size and shape changes, as well as changes in tissue
properties and appearance (Figure 1). Knickmeyer et al. [4]
showed that the brain volume grows by 100% the first year
and 15% the second year, whereas the cerebellum shows

220% volume growth for the first and another 15% for the
second year. These numbers indicate very different growth
rates of different anatomical structures. Through regression
on shape representations, Datar et al. [5] illustrated that the
rapid volume changes are also paralleled by significant shape
changes, which describe the dynamic pattern of localized,
nonlinear growth. A major clinical research question is to
find a link between cognitive development and the rapid,
locally varying growth of specific anatomical structures.
This requires registration methods to handle large-scale
and also nonlinear changes. Also, the process of white
matter myelination, which manifests as two distinct white
matter appearance patterns primarily during the first year of
development, imposes another significant challenge as image
intensities need to be interpreted differently at different
stages.

To approach these problems, a robust registration
method is necessary for mapping longitudinal brain MRI to
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• Total volume grows 115%
• Cerebellum grows 235%
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180—two weeks 180—two years

(a) Large-scale deformation

Two-intensity
distribution of wm

Coronal
180—two weeks 180—two years

One-intensity
distribution of wm

(b) Intensity distribution change

Figure 1: Registration challenges of human brains at early development stages. The image show significant shape and size changes of
an infant brain of subject 180 from two weeks to two years as well as the changing white matter properties and appearance due to the
myelination.

a reference space so that we can perform reliable analysis of
the tissue property changes reflected in MR measurements.
This method should not rely on raw intensity measurements,
while it should be capable of estimating large structural
deformations. Xue et al. [6] addressed these issues by
proposing a registration scheme for neonatal brains by
registering inflated cortical surfaces extracted from the MRI.
Their registration method does not make use of voxel-wise
image information and is not intended to capture growth
in internal structures. It is designed for analyzing cortical
surfaces, and it does not define a transformation for the
whole brain volume.

In this paper, we propose a new registration framework
for longitudinal brain MRI that makes use of underlying
anatomies, which are represented by geometries and class
posterior images. This framework can match internal regions
and simultaneously preserve a consistent mapping for the
boundaries of relevant anatomical objects. We show results
of registering neonatal brain MRI to 2-year old brain MRI of
the same subjects obtained in a longitudinal neuroimaging
study. Our method consistently provides transformations
that better preserve time-varying structures than those
obtained by intensity-only registration [7].

The study presents a significant computational challenge
because dense, free-form mapping is computationally expen-
sive. In particular, a correspondence-free geometric norm
such as “currents” has computational complexity of O(M2)
where M is the number of geometric elements, which is in
the same order of the image volume [8]. These methods
require supercomputing power to run [9], but still take a
considerable amount of time to complete. While access to
a supercomputer system or even a cluster is not available
to most researchers, robust registration in the presence of
large deformations is essential. Fortunately, this computation
problem finds an economical solution via the work of
High-Performance Computing (HPC) General Processing
on Graphical Processing Units (GPUs) community. Mod-
ern GPUs, which are available on commodity hardware,

could offer several teraflops of peak performance, which is
equivalent to that of a super computer in the mid-90s. There
have been a number of image processing applications being
implemented on GPUs [10–13]. Most applications achieve
from 20x to several magnitudes of speedup when moved to
GPUs in comparison to conventional CPU versions. A closely
related example is the fast Greedy Iterative Diffeomorphic
registration framework by Ha et al. [14] using GPUs that
achieved 60x speedup in comparison to an optimized, fully
parallel version running on an eight-core Xeon 3.2 Ghz sever.

However, mapping algorithms from the CPU to the GPU
is nontrivial. The GPU programming model is significantly
different from the CPU programming model. While GPUs
are highly efficient for parallel data processing, they are
slow for serial scalar code, which exists in any processing
algorithms. To achieve a high performance, it often requires
developers to reformulate the problem so that it is mapped
well to the GPU architecture. In this paper, we present
the implementation of our registration framework on
commodity GPUs. We introduce two primary performance
improvements with a combination of two approaches: (1)
an algorithmic improvement using a particle mesh approach
and (2) parallelisation using GPUs. We are able to solve the
practical problem in real time and gain speedup of nearly
three magnitudes order over CPU reference implementation.

2. Related Work

The development of image registration is the major focus
of computational anatomy [3, 15–17]. There are two large
bodies of research that our method is developed on: large
deformation diffeomorphic registration and multicompart-
ment registration via surface matching.

The analysis of shape and size in anatomical images
models anatomy as a deformable template [18]. Common
image registration techniques based on thin-plate splines
and linear-elastic models [19, 20] have a small deformation
assumption and cannot be used due to the large localized
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deformations associated with early brain development. The
large deformation model for computing transformations
developed by Christensen et al. [21] overcomes the limita-
tions of the small deformations model by ensuring that the
transformations computed between imagery are diffeomor-
phic (smooth and invertible). Based on the large deformation
framework by Miller and Younes [3], Beg et al. [22] derived
the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) algorithm. This method computes an optimal
velocity field that satisfies the Euler-Lagrange variational
minimization constraints. Our method is developed upon
the greedy approach proposed by Christensen et al. [21]
that often reports high registration quality comparable to
LDDMM approach but requires significantly lower amount
of computation.

Surface matching is usually considered a semiautomatic
procedure and a “point correspondence” task. First, a small
number of anatomical features such as landmark points and
curve are identified by hand. Next, each of these features
of the discretized surface finds its corresponding feature
on the target. This matching information is then used to
guide the transformation of the entire surface [19, 23, 24].
This approach, however, has a fundamental issue due to
discretization. The currents distance was introduced by
Vaillant and Glaunès [25] as a way of comparing shapes
(point sets, curves, surfaces) without having to rely on
computing correspondences between features in each shape.

Most of the current registration techniques currently
being used in computational anatomy are based on single-
subject anatomy [18, 25–27]. This approach is limited since
a single anatomy cannot faithfully represent the complex
structural variability and development of the subjects. Our
method is based on the multicompartment model proposed
by Glaunes and Joshi [28] which defines a combined
measurement acting on different anatomical features such as
point, curve, and surface to enhance registration quality.

Existing works refer to computational anatomy, espe-
cially free-from matching, as a robust but computationally
expensive framework which is difficult to achieve in real
time on commodity hardware [9, 29, 30]. In this paper, we
consider GPU implementation as an integral part of our
work and an essential contribution that allows scientists to
accurately register images and geometries in time-critical
applications.

3. Method

We propose a new registration method that makes use of the
underlying anatomy in the MR images. Figure 2 shows an
overview of the registration process. We begin by extracting
probabilistic and geometric anatomical descriptors from
the images, followed by computing a transformation that
minimizes the distance between the anatomical descriptors.

3.1. Anatomical Descriptors. We represent brain anatomy as
a multicompartment model of tissue class posteriors and
manifolds. We associate each position x with a vector of
tissue probability densities. In a given anatomy, we capture
the underlying structures by estimating, for each image, the

class posterior mass functions associated with each of the
classes. Given Ω as the underlying coordinate system of the
brain anatomies, each anatomy Ai=1,...,N is represented as

Ai=
{
pi,c=1(x), . . ., pi,c=Nc(x), Mi, j=1(2), . . ., Mi, j=Ns(2)⊂Ω

}
,

(1)

where Nc is the number of probability images, Ns is the
number of surfaces, pc(x) is the class posterior for tissue c
at location x, and M j(2) are 2-dimensional submanifolds of
Ω (surfaces).

As we are interested in capturing major growth of
the white matter and gray matter growth, we rep-
resent brain anatomy as a tuple of the probabilities
{pwm(x), pgm}(x),pcsf (x)} representing class posterior proba-
bilities of white matter, gray matter, and cerebrospinal fluid
respectively, followed by the surfaces of white matter, gray
matter, and cerebellum.

The classification of brain MR images with mature white
matter structures into class posteriors is well studied. We
extract the posteriors from 2-year old brain MR images using
the segmentation method proposed by van Leemput et al.
[31]. The method generates posterior probabilities for white
matter (wm), gray matter (gm), and cerebrospinal fluid (csf).
These probabilities can then be used to generate surfaces
from the maximum a posteriori tissue label maps.

The classification of neonatal brain MR images is chal-
lenging as the white matter structure undergoes myelination,
where the fibers are being covered in myelin sheathes. Several
researchers have proposed methods that make use of prior
information from an atlas or template that takes into account
the special white matter appearance due to myelination [32].
We use the method described by Prastawa et al. [33] for
extracting the tissue class posteriors of neonatal brain MRI,
which includes for myelinated wm, nonmyelinated wm, gm,
and csf. These can then be used to create an equivalent
anatomy to the 2-year old brain by combining the two white
matter class probabilities which then leads to a single white
matter surface.

The white matter and gray matter surfaces are generated
from the maximum a posteriori (MAP) segmentation label
maps using the marching cubes algorithm [34]. The cere-
bellum surfaces are generated from semiautomated segmen-
tations that are obtained by affinely registering a template
image followed by a supervised level set segmentation. The
cerebellum has a significant role in motor function, and
it is explicitly modeled as it undergoes the most rapid
volume change during the first year of development and thus
presents a localized large-scale deformation.

3.2. Registration Formulation. Given two anatomies A1 and
A2, the registration problem can be formulated as an
estimation problem for the transformation h that minimizes

ĥ = argmin
h

E(h ·A1, A2)2 + D(h, e)2 , (2)

where h · A1 is the transformed anatomy, E(·, ·) is a
metric between anatomies, and D(·, e) is a metric on a
group of transformations that penalizes deviations from
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Figure 2: Overview of the proposed registration method that can handle large deformations and different contrast properties, applied to
mapping brain MRI of neonates to 2-year olds. We segment the brain MRIs and then extract equivalent anatomical descriptors by merging
the two different white matter types present in neonates. The probabilistic and geometric anatomical descriptors are then used to compute
the transformation h that minimizes the distance between the class posterior images, as well as the distance between surfaces represented as
currents.

the identity transformation e. The anatomy is transformed
using backward mapping for probability image and forward
mapping for geometries:

h ·A1 = h ·
{
pi,c=1(x), . . . , pi,c=Nc(x),

Mi, j=1(2), . . . , Mi, j=Ns(2)
}

=
{
pi,c=1(x) ◦ h−1, . . . , pi,c=Nc(x) ◦ h−1,

h
(
Mi, j=1(2)

)
, . . . ,h

(
Mi, j=Ns(2)

)}
.

(3)

We define distance between anatomies E by defining a
norm on an anatomy as a combination of the L2 norm
on the class posteriors and a Reproducing Kernel Hilbert
space norm on the manifolds defined as “currents” through
Glaunes et al. [1]. This norm does not require prior
knowledge on geometric correspondence, as compared to
other geometry matching methods [19, 23, 24] that require
explicit specification of geometric correspondences. More
precisely, they require that a certain point q in object A is
the same (anatomically) as point q in object B; hence, object
A and object B are required to have the same number of
elements and the same ordering of elements. In comparison,
the currents norm defines distance between objects based
on the norm measurement of the union of the geometric
objects. The currents norm is thus correspondence-free and
does not require the objects in comparison to have equal
number of elements and the same ordering or anatomical
definition.

In contrast to Iterative Closest Point (ICP) algorithm [35]
which defines correspondence based on the closest features
on the Euclidean space, the currents matching algorithm
compares each element to all other elements. Since there may
not exist an anatomically homologous correspondence for
every feature due to discretization, the currents matching is
more robust than existing methods. Manifolds with different
number of elements (resolutions) can thus be matched using
the currents norm due to this property. For an oriented
surface M(2) in R3 the norm [M(2)] is the vector-valued
Borel measure corresponding to the collection of unit normal
vectors to M(2), distributed with density equal to the
element of surface area ds and can be written as η(x)ds(x),
where η(x) is the unit normal and ds(x) is the surface
measure at point x. The currents representation forms a
vector space that admits linear operations, unlike other
surface representations such as the Signed Distance Map
[36–38].

Given an anatomy A the k-norm of [A] is composed as

‖[A]‖2
k = ‖P(x)‖L2 + ‖[M(2)]‖k, (4)

where the probabilistic norm is defined as

‖P(x)‖L2 =
Nc∑

c=1

∥∥p1,c(x)− p2,c(x)
∥∥L2

k

=
∫

Ω
|p1,c(x)− p2,c(x)|2dx

(5)
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and the currents norm is given by

‖[M(2)]‖k =
∫∫

M(2)
k
(
x, y

)〈
η(x),η

(
y
)〉
dμ(x)dμ

(
y
)
,

(6)

where k(·, ·) is a shift-invariant kernel (e.g., Gaussian or
Cauchy).

When M(2) is a discrete triangular mesh with Nf faces,
a good approximation of the norm can be computed by
replacing [M(2)] by a sum of vector-valued Dirac masses

‖[M(2)]‖2
k =

Nf∑

f=1

Nf∑

f ′=1

〈
η
(
f
)
,η
(
f ′
)〉
k
(
c
(
f
)
, c
(
f ′
))

, (7)

where Nf is the number of faces of the triangulation and, for
any face f , c( f ) is its center and η( f ) its normal vector with
the length capturing the area of each triangle.

Having defined the norm on probability images
and surfaces, the dissimilarity metric between anatomies
‖[A1]− [A2]‖2

k is given by

wp

Nc∑

c=1

∥∥p1,c(x)−p2,c(x)
∥∥L2

k +wg

Ns∑

j=1

∥∥∥
[
M1, j(2)−M2, j(2)

]∥∥∥2

k

= wp

Nc∑

c=1

∫

Ω

∣∣p1,c(x)− p2,c(x)
∣∣2
dx

+ wg

Ns∑

j=1

∥∥∥
[
M1, j(2)∪

(
−M2, j(2)

)]∥∥∥2

k
,

(8)

where the distance between two surface currents
‖[M1, j(2)−M2, j(2)]‖k = ‖[M1(2) ∪ (−M2(2))]‖k is
computed as the norm of the union between surface M1(2)
and surface M2(2) with negative measures, wp and wg are
scalar weights that balance the influence of probabilistic and
geometric presentations.

We use the large deformation framework [3] that
generates dense deformation maps in Rd by integrating
time-dependent velocity fields. The flow equation is given
by ∂hv(t, x)/∂t = v(t,hv(t, x)), with h(0, x) = x, and
we define h(x) := hv(1, x), which is a one-to-one map
in Rd, that is, a diffeomorphism. The diffeomorphism is
constructed as a fluid flow that is smooth and invertible.
The invertibility of the mapping is a desirable property as it
enables analysis in different spaces and time points as needed.
We define an energy functional that ensures the regularity
of the transformations on the velocity fields: ‖v(t, ·)‖2

V =∫
Rd 〈Lv(t, x),Lv(t, x)〉dx, where L is a differential operator

acting on vector fields. This energy also defines a distance in
the group of diffeomorphisms:

D2(h, e) = inf
v,pv(1,·)=h

∫ 1

0
‖Lv(t)‖2

Vdt. (9)

The registration optimizations in this paper are per-
formed using a greedy approach by iteratively performing

gradient descent on velocity fields and updating the trans-
formations via an Euler integration of the O.D.E. At each
iteration of the algorithm the velocity field is calculated by
solving the PDE:

Lv = F(h), (10)

where v is the transformation velocity field, L = α∇2 + β∇ ·
∇ + γ, and F(h) is the variation of ‖[h ·A1] − [A2]‖2

k with
respect to h. This variation is a combination of the variation
of the L2 norm on the class posteriors and of the currents
norm, computed using the gradient

∂‖[M(2)]‖2
k

∂xr
=

∑

f |xr∈ f

[
∂η
(
f
)

∂xr

] Nf∑

f ′=1

k
(
c
(
f ′
)
, c
(
f
))
η
(
f ′
)

+
2
3

Nf∑

f ′=1

∂k
(
c
(
f
)
, c
(
f ′
))

∂c
(
f
) η

(
f ′
)t
η
(
f
)
,

(11)

given that points {xr , xs, xt} form the triangular face f and its
center c( f ) = (xr + xs + xt)/3 and its area-weighted normal
η( f ) = (1/2)(xs − xr)⊗ (xt − xr).

The currents representation is generalized to account for
not only surface meshes but also other m-submanifolds such
as point sets or curves. The currents associated to an oriented
m-submanifold M is the linear functional [M] defined by
[M](ω) = ∫

M ω. When M(0) = ⋃
xi is a collection of

points [M(0)] is a set of Dirac delta measures centered at
the points that is, [M(0)] = ∑

i αiδ(x − xi). When M(1)
is a curve in R3, [M(1)] is the vector-valued Borel measure
corresponding to the collection of unit-tangent vectors to the
curve, distributed with density equal to the element of length
dl:

‖[M(1)]‖2
k =

Nl∑

l=1

Nl∑

l′=1

〈
τ(l), τ(l′)

〉
k(c(l), c(l′)), (12)

whereNl is the number of line segments and, for any segment
l with vertices v0 and v1, c(l) = (vo + v1)/2 is its center and
τ(l) = v1 − v0 is its tangent vertor with its length capturing
the length of the line segment.

Using extra submanifold presentation helps capture
important properties of the target anatomy and hence could
potentially direct the registration and improve the result; see
Glaunes et al. [1] for more details.

4. Efficient Implementation

The implementation of our registration framework is based
on two critical sections: large deformation diffeomorphic
image registration and currents norm computation. The
former requires a linear solver (10) on an M × M matrix
where M is the number of input volume elements (≈10
millions on typical brain image). The linear system is
sparse and there exists efficient solver with complexity of
O(M log(M)). The performance is even further amortized
using a multiscale iterative method resembling a multigrid
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solver. The method maps well to the GPU architecture
and significantly reduces the running time from several
hours on eight-core sever to a few minutes on commodity
hardware. We refer to the work by Ha et al. [14] for details
of the method and implementation of large deformation
diffeomorphic registration on GPUs. Here, we concentrate
on the problem of how to implement norm computation
efficiently based on GPU methodologies.

At a broad level, the GPUs consist of several streaming
multiprocessors—each of them contains a number of strea-
ming processors and a small shared memory unit. GPUs
are good at handling data stream in parallel with processing
kernels [39]. The underlying program structure is described
by streams of data passing through computation kernels.
Given a set of data (an input stream), a series of operations
(kernel functions) are applied to each element in the stream
and produce another set of output data (an output stream).
The program is constructed by chaining these computa-
tions together. This formulation has been used to design
efficient GPU-based sorting and numerical computations
[14, 40, 41].

4.1. Particle Mesh Approximation for Currents Norm Compu-
tation. The major challenge of computing the currents norm
(7) for real brain surfaces is the high computational cost
to compute the dissimilarity metric of all pairs of surface
elements, which is O(N2

f ), where Nf is the number of faces.
A surface extracted from an N3 volume has the average
complexity of N2.46 faces [8], that produces millions surfaces
for a typical 2563 input.

For computational tractability, Durrleman et al. [42]
used a sparse representation of the surface based on matching
pursuit algorithm. On the other hand, an efficient framework
based on the standard fast Gauss transform [43] requires
the construction and maintenance of the kd-tree structures
on the fly. The primary problem of these approaches is that
while the performance is insufficient for real-time applica-
tions on conventional systems, they are too sophisticated to
make use of processing power of modern parallel computing
models on GPUs. Also in practice, we use large kernel width
for the currents norm to match major structures. This is not
ideal for kd-tree-based implementations that are designed
for querying small set of nearest neighbor. Implementing
these ideas on GPUs imposes other challenges, and they are
unlikely to be efficient.

Here, we employ a more parallelizable approach based on
the Particle Mesh approximation (PM). This approximation
has been extensively studied in a closely related problem—
the cosmological N-body simulation, which requires the
computation of the interaction between every single pair of
objects (see Hockney and Eastwood [44] for details).

The particle mesh approximation, as shown in Figure 3,
includes four main steps.

Grid building which determines the discretization
error or the accuracy of the approximation. It also
specifies the computational grid, the spacial con-
straints of the computation. The quantization step in
each spacial direction determines the grid size, hence,

Build grid

Splatting

Interpolation

Update grid
(integration)

Figure 3: Particle mesh approximation algorithm to transform
the computation from irregular domain to regular domain based
on four basic steps: grid construction, splatting, integration, and
interpolation.

the complexity of the grid computation. The finer the
grid means the higher quality of the approximation
but the more computation involving.

Splatting that maps computation from an unstruc-
tured grid to a structured grid. It is the inverse
operation of the interpolation.

Integration which performs the grid computation and
updating step. As the computation, which involves
kernel convolution and gradient computation, is
taking place in a regular domain, the integration
can exploit the parallel processing power of special
computing units such as GPUs.

Interpolation that interprets computational results
from the image space back to the geometrical space,
in other words, to reconstruct the unstructured grid
out of the structured domain. Marching Cube [34]
is an example of techniques using interpolation to
extract isosurfaces from MR images.

The splatting/interpolation operation pair works as a
connection between the computation on regular domain
and irregular domain. We will go into details of how to
implement this interface on the parallel architecture as
the method can be widely used not only for the norm
computation but any mixed—geometric and probabilistic—
computation in general. We consider this strategy as a crucial
method for efficient parallel computation on an irregular
domain.

The error in particle mesh approximation is influenced
by two factors: the grid spacing and the width of the
convolution kernel, as shown in Figure 4. We chose the
image grid spacing, thus the error is bounded by the image
resolution. As being aforementioned, we use large kernel
widths in practice which is ideal for PM. Note that PM
approximation breaks down when kernel width is less than
grid spacing.

While the approximation helps reduce the complexity
to M logM where M is the volume size of the embedded
grid, the total complexity of the method is still very high.
On a high-end workstation with 8-CPU cores, a highly
optimized multithreaded implementation in C++ takes
several hours for one matching pair hence cannot be used
for parameter exploration and real-time analysis. Based on
the GPU framework by Ha et al. [14], we developed an
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Figure 4: (a) shows the run time comparisons between direct computation and the particle mesh implementation for various grid size.
Shown in (b) is the percent error for different for 5000 randomly generated points with different mesh sizes.

implementation that runs entirely on the GPU to exploit
parallel efficiency of regular grid presentation.

4.2. Efficient Implementation of Particle Mesh Method on
GPUs. To achieve the maximum performance efficiency, we
optimized the four steps of particle mesh method on GPUs.
Here, we describe the performance keys and important
details to implement these steps.

4.2.1. Grid Building. Without prior information, compu-
tational grid is typically chosen as a discretization of the
bounding box with extra border regions to prevent out-of-
bound quantization error. Since probabilistic and geometric
descriptors coexist in our representation, the computational
grid is effectively chosen as the original grid. This selection
guarantees that it will not introduce further quantization
errors than the original discretized errors inherent to the
construction of geometric descriptors. This strategy also
limits the complexity of the combining technique to the
original order of computation if we use only probabilistic
terms.

4.2.2. Splatting. The main purpose of the splatting function
is to construct a regular n-dimensional scalar or vector field
from its discrete sample points. The constructed grid should
satisfy an inverse operation, the interpolation, so that when
applied to the reconstructed grid will reproduce the sample
points. In other words, Interpolation (Splatting (E)) = E
with E is an arbitrary input. This duality of splatting and
interpolation reflects the fact that probabilistic and geometry
descriptors are just the domain representations of the same
subject. Hence, we could unify their computation without
losing accuracy. We also exploit the duality to validate the

correctness of our implementation of the splatting function
through its dual counterpart.

The splatting function is defined by Trouvé and Younes
[45] through a linear operator ℵ that applies a mapping
vector field v : Zd → R to a discrete image I : Zd → R to
perform an interpolation on the grid Gv = {x+v(x)|x ∈ Zd},
mathematically saying

(ℵI)(x) = (I)(x + v(x)), (13)

with I being linear interpolation, defined by

(I)(I)(x)=
∑

ε∈{0,1}d
cε(x)I(�x1�+ε1, �x2� + ε2, . . ., �xd� + εd),

(14)

with �z� being the integer part of real number z and {z} =
z − �z� is the fractional part. The coefficient cε(x) is defined
as

cε(x) =
d∏

i=1

(εi + (1− 2εi)xi). (15)

While the splatting operator was defined through a vector
field, the splatting conversion from the irregular grid to the
regular domain for an arbitrary input is defined as being
a zero vector field. Figure 5 displays the construction of
a regular grid presentation of geometrical descriptors in
2D through splatting operator. The value at a grid point
is computed by accumulating values interpolated at that
point from its geometrical neighbors. Thus, closer neighbors
will have more influence on the value of the point than
farther points. In fact, we only need to consider the one-ring
neighbors as farther points have a negligible contribution to
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Figure 5: Geometrical conversion based on a splatting function
with zero velocity field v (13). The method served as a bridge to
transform the computation from an irregular grid to a regular grid
which allows an efficient parallel implementation.

its final value. We also assume that the field is continuous and
smooth.

Though the splatting operator has a linear complexity in
terms of the size of geometry descriptors, it is the perfor-
mance bottleneck in practice. The single CPU thread-based
splatting function is too slow for interactive applications.
Even close discrete points do not share the same cache as the
definition of a neighbor in 3D does not map to a neighbor in
the linear CPU cache. The multithread-based CPU splatting,
which assigns each thread a single geometrical element,
however, has a resource-fighting problem. That is, when we
integrate grid value from its neighbor submanifold elements,
it is likely that there are several elements in the neighbor,
and these elements, which are assigned different threads, may
try to accumulate the grid value at the same time. GPU
implementation also has to face with the resource-fighting
problem.

We can apply mutex locking to resolve the conflict.
However, it is inefficient with thousands of threads on GPUs.
A better solution is based on atomic operations, which are
guaranteed to complete without being interrupted by the
actions of other threads. Currently, CUDA does not support
atomic operations for floating point numbers but integer
numbers. Here we propose two different approaches for
splatting computation: the collision-free splatting scheme via
a fast parallel sorting and the atomic splatting scheme using
a fixed-point representation.

The collision-free splatting scheme is applied for systems
without any atomic operation support. As shown in Figure 6,
we employ a fast parallel sorting to resolve the shared-
resource fighting problem. The algorithm involves three
steps.

(i) Compute the contribution of each geometrical
descriptor to grid nodes.

(ii) Sort the contribution based on node indexes. The
contribution array is segmented based on node
indexes.

(iii) Apply a parallel segmented prefix sum scan [40] to
integrate all node values.

All of these steps are implemented efficiently in parallel
on the GPU. The first step is simply a pointwise computation.
For the second step, we apply the fast parallel sorting
[41]. The third step is performed using the optimal seg-
mented scan function in the CUDA Performance Processing
library (CUDPP) [40]. The sorting scheme on CUDA is a

magnitude faster than an optimal multithreaded, multicore
implementation on CPUs [29]. While this scheme is quite
efficient and is the only solution on CUDA 1.0 devices, its
performance largely depends on implementations of two
essential functions: the parallel sorting and the segmented
scan. Also the memory requirement of the method is
proportional to the number of shooting points (which can be
as large as the grid size) and the size of the neighbor (which
is eight for 3D implementation). The memory usage become
even worse as fast parallel sorting based on radix sorting
that could not perform in-place but out-of-place sorting so
the method requires another copy of the contribution array.
In many circumstances, we found a better solution both in
terms of performance and memory usage based on atomic
operations supported on the CUDA 1.1 and later devices.

The atomic splatting scheme resolves the shared-resource
fighting problem using atomic operations. While atomic
floating point operations are currently not supported, it
is possible to simulate this operation based on a fixed-
point presentation. In particular, instead of accumulating
the floating point buffer, we explicitly convert floating point
values to integer representations through a scale. This allows
the accumulation to be performed on integer buffers.

The parallel splatting accumulation is implemented by
assigning each geometrical descriptor a GPU thread, which
computes the contribution to the neighbor grid points based
on its current value and distances to the neighbor grids.
These floating point contribution values are then converted
to integer presentation through a scale number, which is
normally chosen as a power of two (we use 220, in practice)
so that a fast shifting function is sufficient to perform the
scale. The atomic integer adding operator allows values to be
accumulated atomically at each grid point concurrently from
thousand of threads. In our implementation, the contribu-
tion computations—upscale and the integer accumulation
steps—are merged to one processing kernel to eliminate (1)
an extra contribution buffer, (2) extra memory bandwidth
usage to store, reload, and rescale the contribution buffer
from the global memory, and (3) the call overheads of the
three different GPU processing kernel. The accumulation
result is then converted back to floating value by the division
to the same scale value.

We further amortize the performance on later generation
of GPU devices using the atomic shared-memory operations,
which are a magnitude faster than operations on GPU
global memory. We exploit the fact that in diffeomorphic
registration the velocity field is often smooth and show large
coherence between neighbors, so it is likely that two close
points will share the same neighbors. Thus, it would be
better to accumulate the values of the shared neighbors in the
shared memory instead of the global memory. We assign each
block of threads a close set of splatting points and maintain
a shared memory accumulation buffer between threads of
the same block. The accumulation results on the shared
memory are then atomically added to the accumulation
buffer on the global memory. This approach exploits the
fast atomic functions on the shared memory and at the
same time reduces the number of global atomic operations.
This optimization is especially effective on a dense velocity
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Figure 6: Collision-free splatting implementation using fast parallel sorting. The method is based on ordering the node contribution ID to
resolve resource conflicts which allows a parallel efficient integration based on an optimal parallel prefix scan implementation.

field, which shows significant coherency between neighbor
points.

4.2.3. Interpolation. Even though the probabilistic and geo-
metric descriptors are represented by independent data
structures on separate domains, they are, in fact, different
representatives of the same anatomical subject that is
updated during ODE integration under the influence of the
time-dependent velocity field along a registration evolution
path. While the computation occurs on the regular grid,
interpolation is necessary to maintain the consistency of
multicompartment anatomies as they undergo deformation.
Given a deformation h, we update probabilistic images using
backward mapping and geometries using forward mapping
(3).

A computationally efficient version of ODE integration
is the recursive equation that computes the deformation at
time t based on the deformation at the time t − 1. That
is, ht = ht−1(x + v(t − 1)). This computation is done
by a reverse mapping operator (Figure 7), which assigns
each destination grid point a value interpolated from the
source volume grid’s neighbor points. The reason for using
a reverse mapping operator instead of a forward mapping
one is to avoid missing data values at the grid points that
makes computation of forward mappings intractable. A
reverse mapping requires the maintenance of reverse velocity
fields. The update of geometric descriptors is based on a
forward vector field derived by inverting direction of the
reverse velocity field. Algorithmically, the probabilistic and
geometric descriptors are updated in opposite directions.
The updating process of geometric descriptors is illustrated
in Figure 8.

While the selection of interpolation strategies such as 3D
linear interpolation, cubic interpolation, high-order interpo-
lation depends on the quality requirement of the registration,
the updating process of both probabilistic and geometric
descriptor needs to share the same interpolation strategy so
that they are consistent with one another. In practice, 3D
linear interpolation is the most popular technique because

it is computationally simple and efficient and it can produce
satisfactory results especially with large kernel width for
currents norm. On GPUs, this interpolation process is fully
hardware accelerated with 3D texture volume support from
CUDA 2.0 APIs. Another optimization is based on the
texture cache that helps improve the lookup time from the
source volume due to large coherency in the diffeomorphic
deformation fields.

4.3. Other Performance Optimizations. Besides an optimized,
parallel implementation for particle mesh computation,
we further improve the performance with parallel sur-
face normal and multiscale computation on GPUs. These
optimizations keep the entire processing flow on GPUs,
eliminating the need to transfer the data back and forth
between CPU memory and GPU memory which is the main
bottleneck for many GPU applications.

4.3.1. Parallel Surface Normal Computation on GPUs. While
the geometrical descriptor involved in our registration
framework was defined as a surface element (a triangle)
with all property values on its vertices, the computation
was defined at the centroid following its normal direction
and weighted by the size of the surface element (11). This
computation requires the computation of a weighted normal
at the centroid of each surface element from the geometric
descriptors. We perform this operation in parallel on the
GPU by assigning each surface element a thread. We then
employ the texture cache to load the geometrical data from
global memory; while the neighbor triangle shared the same
vertices, the loading values are highly likely in the cache and
cost almost the same amount of time to access from the
shared memory. We also store the three components of the
normal in three separated arrays to allow coalesced access
that gives better memory bandwidth efficiency.

4.3.2. Multiscale Computation on GPUs. Multiscale registra-
tion is an advanced registration technique to improve quality
of the results by registering anatomies at different scale levels.
The method also handles the local optimal matching of
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Figure 7: Reverse mapping based on 3D trilinear interpolation that eliminates the missing data of a forward mapping. The implementation
on GPU exploits the hardware interpolation engine to achieve significant speedup.
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Figure 8: Geometries are updated through the interpolation from the velocity field. This step maintains the consistency between probabilistic
and geometrical compartments of the mixture model.
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Figure 9: Multiscale registration using different sizes of computation kernels helps capture large- and small-scale changes in different levels
and also increases the convergence rate of the algorithm.

gradient-descent optimization. In our registration frame-
work, the primary purpose of doing multiscale computation
is to capture both the large changes in the shape and also
the small changes as the registration anatomy converged to
the target. The method effectively handles the nonlinear,
localized shape changes, as is shown in Figure 9. It also
serves as an effective method to increase the convergence rate
and reduces the running time significantly. The challenge
of applying multiscale computation is that there is no
mathematical foundation for exact multiscale computation
on a regular grid. The level-of-detail techniques (LOD) are
the only approximations that gives no guarantee on the
quality. Here, we achieve the multiresolution effect through

changing the size of a registration kernel, such that we use a
larger kernel width and step size to mimic the effect of large-
scale and smaller kernel width and step size to capture the
details. Our method did not require resampling of the grids,
so there are no additional quantization errors.

5. Results

For evaluation, we used an AMD Phenom II X4 955 CPU
commodity system, 6 GB DDR3 1333, with NVIDIA GT0260
GPU 896 MB. We quantify both aspects of the method:
registration quality and performance. Runtime is measured
in millisecond.
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(a) (b) (c) (d)

Figure 10: Registration results of neonates mapped to 2-year olds. From left to right: (a) neonatal T1 image after affine registration, (b)
reference T1 image at 2 years, followed by (c) neonatal T1 after deformable mutual information registration using B-splines, and (d) after
combined probabilistic and geometric registration. From top to bottom: subjects 0012, 0102, 0106, 0121, 0130, and 0146. We note that
the initial affine registration for subject 0102 (second row, second column) is incorrect; however our method managed to compensate and
generate improved result compared to deformable mutual information registration.

5.1. Registration Quality. We have applied the registration
method for mapping neonatal MRI scans to 2-year MRI
scans of the same subjects in ten datasets. The datasets are
taken from an ongoing longitudinal neuroimaging study
with scans acquired at approximately two weeks, one year,
and two years of age. Due to rapid early brain development,

each longitudinal MR scan shows significant changes in
brain size and in tissue properties. For comparison, we also
applied the standard intensity-based deformable registration
using mutual information (MI) metric and B-spline trans-
formation proposed by Rueckert et al. [7], which has been
applied for registering 1-year old and 2-year old infants [46].
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(a) (b) (c) (d)

Figure 11: Registration results of neonates mapped to 2-year olds. From left to right: (a) neonatal T1 image after affine registration, (b)
reference T1 image at 2 years, followed by (c) neonatal T1 after deformable mutual information registration using B-splines, and (d) after
combined probabilistic and geometric registration. From top to bottom 0156, 0174, 0177, and 0180.

Both deformable registration methods are initialized using
the same global affine transformation generated using the
mutual information metric. The T1-weighted images before
and after registration using the different approaches for the
first three subjects are shown in Figures 10 and 11.

A quantitative study of the performance of the reg-
istration method is performed by measuring the overlap
between the transformed segmentation maps of neonates to
the segmentation maps of 2-year olds. Since we consider the
segmentation maps at two years of age to be the standard, we
use the following overlap metric:

Overlap(h · S0, S2) = |h · S0∩ S2|
|S2| , (16)

where h·S0 is the transformed neonate segmentation map, S2
is the reference 2-year segmentation map, and | · | indicates
the volume of a binary map. We note that this metric gives
considerably lower values for deviation from S2 than the
standard Dice coefficient. Table 1 shows the quantitative

analysis for the brain parenchyma (a combination of white
matter and grey matter) and cerebellum segmentation maps
without registration, using standard MI registration, and
our method. We use brain parenchyma since white matter
and grey matter on their own are hard to distinguish
in early developing brains. Registration using MI fails
for parenchyma because it does not account for the two
white matter distributions in neonates. Registration using
both probabilistic and geometric descriptors provides better
results and is generally more stable for the structures of
interest. In particular, our method better preserves the shape
of the cerebellum, which has weak intensity boundaries in
regions where it touches the cerebrum and thus cannot
be registered properly using only image-based information.
Another significant challenge is that the cerebellum growth
is distinctly different from the growth of neighboring
structures. Using cerebellum boundary represented by cur-
rents, our method captures the growth better than MI
registration.
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Table 1: Overlap measures comparing the registered segmentation maps against the reference segmentation maps for the parenchyma and
cerebellum structure, obtained through without deformation (None), deformable mutual information registration (MI), and our proposed
method (P + G).

Subject 0012 0102 0106 0121 0130 0146 0156 0174 0177 0180

Parenchyma
None 0.829 0.545 0.813 0.833 0.921 0.750 0.818 0.837 0.782 0.707

MI 0.799 0.449 0.754 0.777 0.902 0.708 0.780 0.832 0.774 0.687

P + G 0.903 0.883 0.884 0.868 0.881 0.860 0.875 0.879 0.913 0.874

Cerebellum
None 0.573 0.263 0.506 0.506 0.638 0.555 0.535 0.503 0.526 0.593

MI 0.755 0.212 0.588 0.515 0.732 0.820 0.713 0.569 0.631 0.777

P + G 0.881 0.821 0.875 0.878 0.858 0.899 0.907 0.885 0.896 0.892

Table 2: Runtime comparison, in milliseconds, of different splatting implementations on volume sized 144 × 192 × 160 and 160 × 224
× 160 using collision-free sorting approach, atomic operation with fixed point presentation, atomic operation on the shared memory and
CPU reference.

Size Method CPU Sorting Atomic Atomic shared

144 × 192 × 160
Random 826 105 29 30

Diffeomorphic 331 110 105 14

Singular 224 105 40 41

160 × 224 × 160
Random 1435 215 75 76

Diffeomorphic 775 224 152 21

Singular 347 215 144 144

Table 3: Runtime comparison, in milliseconds, of different 3D
interpolation implementations for reverse mapping operator with-
out memory caching (GPU global), with linear texture cache (1D
linear) and hardware accelerated interpolation using 3D texture.
The GPU-accelerated implementation is about 40 times faster than
CPU reference and gives identical results.

Method CPU GPU global 1D linear 3D texture

256 × 256 × 256 777 30 24 19

160 × 224 × 160 209 10.4 7.3 6.8

144 × 192 × 160 173 6.8 4.8 5.4

160 × 160 × 160 149 6.6 5.0 5.2

5.2. Performance. We quantify the performance with two
critical steps in particle mesh approach: the splatting and
the interpolation. We measured the performance with typical
volume sizes.

Splatting. The splatting performance varies largely depend-
ing on the regularity of the deformation fields due to
memory collision problem. Here we measured with three
types of deformation fields: a random deformation, which
maps points randomly over the whole volume, a diffeomor-
phic deformation, the typical type of deformation from the
registration of brain images that we use in our framework,
and a singular deformation, which collapses to a point in the
volume. Table 2 shows the runtime comparison in millisec-
onds of different splatting implementations mentioned in
Section 4.2.2: CPU reference, collision-free sorting approach,
atomic fixed-point operation, and atomic operation with
shared memory.

The result shows that the performance gain of GPU
approaches varies depending on the regularity of the defor-
mation field inputs. The singular deformation has the lowest
performance gain because most of the value accumulated
to a small point neighbor hence parallel accumulation is
greatly limited. Though having better performance gain,
the random deformation spreads out in the whole volume
that leads to ineffective caching (both in GPUs and CPUs).
Fortunately, our atomic optimization with shared memory
achieved the best performance gain with diffeomorphic
deformation which we used in practice. The main reason
is that the diffeomorphic deformation shows large coher-
ence between neighbor points that allows more effective
caching through GPU shared memory. The collision-free
approach based on sorting shows stable performance since
it is independent from the memory collision of other
approaches.

Interpolation. Table 3 shows the runtime comparison in
milliseconds of different 3D interpolation implementations:
CPU reference, simple approach (GPU global memory),
linear 1D texture, and 3D texture.

The interpolation runtime shows that reverse mapping
using the accelerated hardware achieves the best performance
and is about 38x faster than CPU reference implementation
on the evaluation hardware. However, this method suffers
from lower floating point accuracy. To not further introduce
more errors to the approximation, we apply the 1D-linear
texture-cache implementation instead which is as fast as
the accelerated hardware but retains the floating point
precision. The method produces results equivalent to the
CPU reference.
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Table 4: Time elapsed, in minutes, for registration using deformable mutual information (MI) on the CPU (AMD Phenom II X4 955, 6 GB
DDR3 1333) and our proposed approach (P + G) on the GPU (NVIDIA GTX 260, 896 MB) with 1000 iterations of gradient descent.

Subject 0012 0102 0106 0121 0130 0146 0156 0174 0177 0180

MI on CPU 92 63 103 92 101 112 106 99 91 96

P + G on GPU 9 8 8 8 8 7 9 8 7 7

Overall Performance. We have also compared the perfor-
mance between our method and the standard MI registra-
tion. Registration using our approach on the GPU takes 8
minutes on average, while registration on the CPU using
mutual information metric and B-spline transformation
takes 100 minutes on average. Detailed time measures are
listed in Table 4.

Overall, computing the currents norm and its gradient
between a surface with 160535 triangular faces and another
with 127043 faces takes approximately 504 seconds on CPU,
while it takes 0.33 seconds with our GPU implementation.
The speed gain is in order of three magnitudes over the
equivalent CPU implementation using particle mesh, while
the computing time for the exact norm on CPU is difficult
to measure since it takes significantly longer. The proposed
algorithm typically converges in 1000 iterations, so on
average it takes less than eight minutes to register two
anatomies. This allows us to perform parameter exploration
and real-time analysis on a single desktop with commodity
GPU hardware.

6. Conclusions

We have proposed a registration framework that makes use
of the probabilistic and geometric structures of anatomies
embedded in the images. This allows us to enforce matching
of important anatomical features represented as regional
class posteriors and tissue boundaries. Our framework
allows us to register images with different contrast properties
by using equivalent anatomical representations, and we
have demonstrated results for registering brain MRIs with
different white matter appearances at early stages of growth.
The overlap validation measures in Table 1 show that
geometric constraints, particularly for the cerebellum, are
crucial for registering structures undergoing significant
growth changes.

In the future, we plan to apply this framework in
early neurodevelopmental studies for analyzing the effects
of neurological disorders such as autism and fragile X
syndrome. The proposed registration framework is generic
and independent of the application domain; it can thus be
applied to any registration where one encounters large-scale
deformation and different appearance patterns. We also want
to incorporate other submanifolds representations and their
computation such as point sets (M(0)) and curves (M(1)).
Such additional representations are potentially critical in
clinical applications involving anatomical landmark points
(e.g., anterior commissure and posterior commissure) as well
as curve structures (e.g., blood vessels, sulcal lines, white
matter fiber tracts). All these computations can be done
efficiently and entirely on GPUs and potentially will improve

the results by guiding the registration process to preserve
critical geometries. The efficiency of the GPU method also
provides an opportunity to apply the algorithm for high-
quality atlas formation using our framework on a GPU
cluster, which gives us the ability to perform statistical
tests that are previously impossible due to excessive time
requirements.
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N. Ayache, “Inferring brain variability from diffeomorphic
deformations of currents: an integrative approach,” Medical
Image Analysis, vol. 12, no. 5, pp. 626–637, 2008.

[31] K. Van Leemput, F. Maes, D. Vandermeulen, and P. Suetens,
“Automated model-based tissue classification of MR images of
the brain,” IEEE Transactions on Medical Imaging, vol. 18, no.
10, pp. 897–908, 1999.

[32] S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive,
template moderated, spatially varying statistical classification,”
Medical Image Analysis, vol. 4, no. 1, pp. 43–55, 2000.

[33] M. Prastawa, J. H. Gilmore, W. Lin, and G. Gerig, “Automatic
segmentation of MR images of the developing newborn
brain,” Medical Image Analysis, vol. 9, no. 5, pp. 457–466, 2005.

[34] W. E. Lorensen and H. E. Cline, “Marching cubes: a high reso-
lution 3D surface construction algorithm,” ACM SIGGRAPH
Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987.

[35] Z. Zhang, “Iterative point matching for registration of free-
form curves and surfaces,” International Journal of Computer
Vision, vol. 13, no. 2, pp. 119–152, 1994.

[36] H. A. El Munim and A. A. Farag, “Shape representation
and registration using vector distance functions,” in IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’07), June 2007.

[37] K. M. Pohl, J. Fisher, S. Bouix et al., “Using the logarithm of
odds to define a vector space on probabilistic atlases,” Medical
Image Analysis, vol. 11, no. 5, pp. 465–477, 2007.

[38] A. Tsai, A. Yezzi, W. Wells et al., “A shape-based approach to
the segmentation of medical imagery using level sets,” IEEE
Transactions on Medical Imaging, vol. 22, no. 2, pp. 137–154,
2003.

[39] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, “GPU computing,” Proceedings of the IEEE, vol.
96, no. 5, Article ID 4490127, pp. 879–899, 2008.

[40] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and A. Davidson,
CUDPP: CUDA Data Parallel Primitives Library, 2007.

[41] D. G. Merrill and A. S. Grimshaw, “Revisiting sorting for
GPGPU stream architectures,” in the 19th International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT ’10), pp. 545–546, September 2010.

[42] S. Durrleman, X. Pennec, A. Trouvé, and N. Ayache, “Sparse
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