
Direct Feature Visualization Using
Morse-Smale Complexes

Attila Gyulassy, Natallia Kotava, Mark Kim, Charles Hansen, Senior Member, IEEE,

Hans Hagen, Member, IEEE, and Valerio Pascucci, Member, IEEE

Abstract—In this paper, we characterize the range of features that can be extracted from an Morse-Smale complex and describe a

unified query language to extract them. We provide a visual dictionary to guide users when defining features in terms of these queries.

We demonstrate our topology-rich visualization pipeline in a tool that interactively queries the MS complex to extract features at

multiple resolutions, assigns rendering attributes, and combines traditional volume visualization with the extracted features. The

flexibility and power of this approach is illustrated with examples showing novel features.

Index Terms—Volume visualization, applications, feature detection, topology.

Ç

1 INTRODUCTION

VISUALIZATION of scalar valued volumetric data is a well-
studied domain. Traditionally, the underlying technol-

ogy of these techniques is a mapping from a combination of
the scalar value and associated local gradient information to a
color and opacity. Some compositing of samples, as in ray
casting or slice-based rendering, results in a final image. Such
techniques have been successful in producing high-quality
images, however, the growing size and complexity of data
sets are encouraging development of techniques that
incorporate automated analysis. Indeed in many fields,
techniques are custom designed to identify and visualize
features specific to data from a single application domain.
Topology-based analysis methods are an attractive alter-
native and are especially well suited in this context, since
they robustly describe a general feature space that can be
queried combinatorially for reproducible and consistent
results. The Morse-Smale (MS) complex is a topological
representation of a scalar function with characteristics that
make it particularly useful in identifying features: the various
cells of the complex form the basis of a large feature space; the
complex can be simplified to represent the function at
multiple scales, for example, to be used in noise removal; and
simple and combinatorial algorithms for its computation
ensure robustness in the analysis. In particular, recent
advances in algorithms for the computation of the MS
complex utilizing discrete Morse theory enable, in practice,

the analysis of increasingly large and complex data. How-
ever, visualization techniques have not yet explored the full
potential of this technology. Topological feature identifica-
tion has traditionally been done by experts on a per-
application basis, with custom code being developed to
visualize the results of each.

Several challenges, until now, have restricted the use of
the MS complex for analysis and visualization. First, there
has been no consistent framework for querying the MS
complex to extract the different features required in
different application areas. We present a model of the MS
complex as a general graph structure and describe a query
language designed to enable generic feature extraction.
Second, the field of topology-based visualization is per-
ceived to be complex, theoretical, and nonintuitive. We
address this by presenting a visual guide to feature
extraction using queries on the MS complex. Third, to the
best of our knowledge, the 2-manifold and 3-manifold
components of the MS complex have never been used for
visualization. We show how they can be used to create
compelling images. We present an algorithm and efficient
data structures to compute these geometries in a simplifica-
tion hierarchy, in a manner that allows interactive random
access to different levels in the hierarchy. We implement
these elements in a hybrid visualization system combining
traditional techniques and direct feature visualization. Our
system allows interactive specification and exploration of
the MS complex feature space with flexible queries using the
familiar look and feel of a scene graph. Using our system, we
present novel visualizations, such as in Fig. 1, that illustrate
never-before-seen features in well-known data sets.

Contributions. We present the following contributions:

. a generic language for querying MS complexes,
designed to identify a broad range of application-
specific features;

. a visual guide for helping understand the content of
a topology-rich visualization, which aids the user in
designing queries;

. algorithms and data structures to maintain the
geometry of manifolds of different dimensions in a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012 1549

. A. Gyulassy, M. Kim, C. Hansen, and V. Pascucci are with the Scientific
Computing and Imaging Institute and School of Computing, Department
of Computer Science, University of Utah, 72 South Central Campus Drive,
WEB 3750, Salt Lake City, Utah 84112.
E-mail: {jediati, mkim, pascucci}@sci.utah.edu, hansen@cs.utah.edu.

. N. Kotava and H. Hagen are with the Department of Computer Science,
Technical University of Kaiserslautern, Postfach 3049, Kaiserslautern
67653, Germany.
E-mail: kotava@rhrk.uni-kl.de, hagen@informatik.uni-kl.de.

Manuscript received 1 Sept. 2010; revised 15 July 2011; accepted 17 Oct.
2011; published online 26 Oct. 2011.
Recommended for acceptance by T. Möller.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2010-09-0208.
Digital Object Identifier no. 10.1109/TVCG.2011.272.

1077-2626/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

simplification hierarchy, supporting interactive ran-
dom access between levels of the hierarchy;

. specifications for an interactive rendering system
that handles concurrent visualization of features of
diverse dimension, supporting locally controlled
attributes; and

. examples showing the practical impact of our
system: for the first time, extracting and visualizing
features previously not possible.

2 RELATED WORK

Modern volume rendering techniques have been used for
the past 30 years. Kajiya and Von Herzen [1] used ray tracing
to render objects represented by densities within a volume
grid, based on light scattering equations. Drebin et al. [2]
and Levoy [3] laid out the foundation for volume rendering,
such as compositing methods, gradient-based shading, and
volume classification. Max [4] discussed several different
models for light interaction with volume densities, includ-
ing absorption, emission, reflection, and scattering.

Volume classification provides the means for visually
segmenting volumetric data. Kindlmann and Durkin [5]
proposed the histogram volume, which captures the
relationship between volumetric quantities in a position
independent, computationally efficient fashion. They pre-
sented semiautomatic methods of generating transfer
functions for direct volume rendering. Kniss et al. [6]
presented multidimensional transfer functions for interac-
tive volume rendering. Correa and Ma [7], [8] proposed
visibility-driven and size-based transfer function design
techniques for volume exploration. While transfer function
design with multidimensional histograms can discriminate
between features (materials) in the data it requires a strong
background knowledge about the data and is time con-
suming. Methods have been proposed to accelerate the
transfer function design process. Rezk Salama et al. [9]
introduced an additional level of abstraction for parametric
models of transfer functions, using semantic models for
transfer function design. Tzeng et al. [10] proposed an
approach to the volume classification problem that couples
machine learning and a painting metaphor to allow more
sophisticated classification in an intuitive manner.

Query-driven visualization techniques provide a mechan-
ism for extracting relevant features, defined by the query,
from data sets. Such queries can be range queries on scalar or
vector fields in the data or can be queries against visualiza-
tion constructs such as isosurfaces. McCormick et al. [11]

described SCOUT which allows a user to define range
queries against their data using a data parallel language to
form the queries. Stockinger et al. [12] introduced DEX which
uses bitmap indexing to efficiently answer multivariate,
multidimensional data queries to provide input to a
visualization pipeline.

Topology-based techniques are well known in the
context of scalar function analysis. In general, a topological
representation of the function is computed, then queried.
Reeb graphs [13], contour trees, and their variants have
been used successfully to guide the removal of topological
features [14], [15], [16], [17], [18], [19], [20]. Pascucci et al.
[21] showed how the Reeb graph can be constructed in a
streaming manner for large data sets. Tierny et al. [22]
presented an efficient algorithm to compute Reeb graphs by
cutting the domain, and showed how it could be used for
isosurface simplification. Weber et al. [23] used contour
trees to segment the domain and render each region with a
separate transfer function. Chiang and Lu used the
augmented contour tree to simplify tetrahedral meshes
while preserving isosurface topology [24].

Partitions of surfaces induced by a piecewise-linear (PL)
function have been studied in different fields, under
different names, motivated by the need for an efficient data
structure to store surface features. Cayley [25] and Maxwell
[26] proposed a subdivision of surfaces using peaks, pits,
and saddles along with curves between them. The devel-
opment of various data structures for representing topo-
graphical features was discussed by Rana [27].

The MS complex is a topological data structure that
provides an abstract representation of the gradient flow
behavior of a scalar field [28], [29]. Several algorithms have
been proposed to compute MS complexes in practice:
Edelsbrunner et al. [30] presented the first algorithm for
two-dimensional data, and Bremer et al. [31] improved this
by following gradients more faithfully and described a
multiresolution representation of the scalar field. Although
an algorithm was proposed to compute all dimensional
manifolds of a three-dimensional complex [32], a practical
implementation was never done due to the complexity of
the algorithm. The one-skeleton (0- and 1-manifolds) of the
MS complex was first computed successfully for volumetric
data by Gyulassy et al. [33]. Although the same authors
presented a more efficient approach to computing the MS
complex by using a sweeping plane [34], data size and
computational overhead still proved to be a limiting factor.

1550 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012

Fig. 1. Topology-based techniques can extract features that are hard to detect with traditional methods. Combinatorial computation of topological
invariants results in robust identification of features, even in degenerate cases, such as topological pouches (left). Using the machinery of topological
persistence and simplification, we can visualize the 3-manifolds of the MS complex forming flow basins in a manner oblivious to noise (middle).
Derived structures, for example, separating surfaces, can be used to represent nonphysical phenomena, such as the “outer surface” of a sponge-like
material (right).

Discrete Morse theory, as presented by Forman [35], is an
attractive alternative to PL Morse theory, since it simplifies
the search for higher dimensional manifolds by discretizing
the flow operator. The challenge in using a discrete
approach is in generating a discrete gradient field. Lewiner
et al. [36] showed how a discrete gradient field can be
constructed and used to identify the MS complex. However,
this construction required an explicit graph-based repre-
sentation of gradient paths, thus, was prohibitively ex-
pensive for large volumetric data. King et al. [37] presented
a method for constructing a discrete gradient field that
agrees with the large-scale flow behavior of the data
defined at vertices of the input mesh. In our approach, we
use the algorithm presented by Gyulassy et at. [38] for its
simplicity of implementation and its dynamic simulation of
simplicity, that greatly reduces the number of zero-
persistence critical points found.

These techniques have begun to make an impact in
analysis of scientific data. Laney et al. [39] used the
descending 2-manifolds of a two-dimensional MS complex
to segment an interface surface and count bubbles in a
simulated Rayleigh-Taylor instability. Bremer et al. [40] used
a similar technique to count the number of burning regions
in a lean premixed hydrogen flame simulation. Gyulassy et
al. [41] used carefully selected arcs from the 1-skeleton of the
three-dimensional MS complex to analyze the core structure
of a porous solid. In each of these examples, feature
definitions were attained by exploring thresholds, levels in
a hierarchy, and different components of the MS complex,
clearly illustrating the need for interactive feature explora-
tion. Although each result was obtained from different
codes, they all use the same underlying mathematical theory,
motivating a unified query system for topological structures.

3 THEORETICAL BACKGROUND

Scalar valued volumetric data are most often available as
discrete samples at the vertices of an underlying mesh. Morse
theory has been well studied in the context of smooth scalar
functions, and has been adapted for such discrete domains.
We first present some basic definitions from smooth Morse
theory, and then present the discrete analogue.

3.1 Morse Functions and the MS Complex

Let f be a real-valued smooth map f : M! R defined over a
compact d-manifold M. A point p 2M is critical when
jrfðpÞj ¼ 0, i.e., the gradient is zero, and is nondegenerate
when its Hessian (matrix of second partial derivatives) is
nonsingular. The function f is a Morse function if all its critical
points are nondegenerate and no two critical points have the
same function value. The Morse Lemma states that there exists
local coordiantes around p such that f has the following
standard form: fp ¼ �x2

1 � x2
2 � � � � x2

d. The number of minus
signs in this equation gives the index of critical point p. In
three-dimensional functions, minima are index-0, 1-saddles
are index-1, 2-saddles are index-2, and maxima are index-3.

An integral line in f is a path in M whose tangent vector
agrees with the gradient of f at each point along the path.
Each integral line has an origin and destination at critical
points of f . Ascending and descending manifolds are obtained
as clusters of integral lines having common origin and

destination, respectively. The descending manifolds of f
form a cell complex that partitions M; this partition is called
the Morse complex. Similarly, the ascending manifolds also
partition M in a cell complex. A Morse function f is a
Morse-Smale function if ascending and descending manifolds
of its critical points only intersect transversally. An index-i
critical point has an i-dimensional descending manifold and
a ðd� iÞ-dimensional ascending manifold. The intersection
of the ascending and descending manifolds of a Morse-
Smale function forms the Morse-Smale complex. The critical
points are called nodes and the one-dimensional cells of the
complex connecting them are called arcs. We refer the
reader to Section 5 for a visual description of these concepts.

3.2 Discrete Morse Theory

Practical algorithms for computing MS complexes for
volumetric data rely on discretizing the domain. For
example, Gyulassy et al. [38] showed how discrete Morse
theory could be applied to sampled data. The following basic
definitions from discrete Morse theory are due to Forman
[35], and we refer the reader to this work for an intuitive
description. A d-cell is a topological space that is home-
omorphic to a euclidean d-ball Bd ¼ fx 2 IEd : jxj � 1g. A
chain is a formal sum of elements. For cells � and �, � < �

means that� is a face of � and � is a coface of�, i.e., the vertices
of � are a proper subset of the vertices of �. If dimð�Þ ¼
dimð�Þ � 1, we say � is a facet of �, and � is a cofacet of �. If a
cell � has dimension d, we denote it as �ðdÞ.

The boundary operator@maps a cell to its facets, and induces
an orientation on the facets. Formally, @� ¼

P
�<�h@�; �i�.

The inner product of chains ci and cj, denoted hci; cji, is equal toP
�2ci

P
�2cj � � �, where � � � is one if � ¼ � and the

orientation of � is the same as the orientation of �, minus
one if the orientations do not agree, and zero if � 6¼ �.

Let K be a regular complex that is a mesh representation

of M. A function f : K ! R that assigns scalar values to

every cell ofK is a discrete Morse function if for every�ðdÞ 2 K,

its number of cofacets jf�ðdþ1Þ > �jfð�Þ � fð�Þgj � 1, and its

number of facets jf�ðd�1Þ < �jfð�Þ � fð�Þgj � 1. A cell �ðdÞ is

critical if its number of cofacets jf�ðdþ1Þ > �jfð�Þ � fð�Þgj ¼
0 and its number of facets jf�ðd�1Þ < �jfð�Þ � fð�Þgj ¼ 0, and

has index equal d.
A vector in the discrete sense is a pair of cells f�ðdÞ <

�ðdþ1Þg, where we say that an arrow points from �ðdÞ to
�ðdþ1Þ. Intuitively, this vector simulates a direction of flow.
A discrete vector field V on K is a collection of pairs f�ðdÞ <
�ðdþ1Þg of cells of K such that each cell is in at most one pair
of V . A critical cell is unpaired. Given a discrete vector field
V on K, a V -path is a sequence of cells

�
ðdÞ
0 ; �

ðdþ1Þ
0 ; �

ðdÞ
1 ; �

ðdþ1Þ
1 ; �

ðdÞ
2 ; . . . ; �ðdþ1Þ

r ; �
ðdÞ
rþ1;

such that for each i ¼ 0; . . . ; r, the pair f�ðdÞi < �
ðdþ1Þ
i g 2 V ,

and f�ðdþ1Þ
i > �

ðdÞ
iþ1 6¼ �

ðdÞ
i g. A V -path is the discrete equiva-

lent of a streamline in a smooth vector field. A discrete
vector field in which all V -paths are monotonic and do not
contain any loops is a discrete gradient field of a discrete
Morse function. We use the algorithm presented by
Gyulassy et al. [38] to compute a discrete gradient field
from sampled data.

GYULASSY ET AL.: DIRECT FEATURE VISUALIZATION USING MORSE-SMALE COMPLEXES 1551

The discrete tangent operator, T ð�Þ maps the cell at the tail
of a gradient arrow to the head of the gradient arrow.
Formally, T ð�Þ ¼ �h@�; �i�, where � is the tail of a gradient
arrow, and � is the head of a gradient arrow. If � is not the
tail of a gradient arrow, then T ð�Þ ¼ 0. The discrete flow
operator combines the tangent and boundary operators to
simulate advecting a cell in the gradient “flow” direction, as
is illustrated by Fig. 2. The flow operator � is defined by
�ð�Þ ¼ �þ @T ð�Þ þ T ð@�Þ. The flow operator, and inverse
flow operator are the discrete analogue of an integration
step in computing a streamline, allowing us to compute
ascending and descending manifolds of critical points. Note
that unlike integral lines, paths found using the flow
operator can split and merge. Formally, the descending
manifold D� of a critical cell � is the smallest invariant
chain under the flow operator containing �: �ðD�Þ ¼ D�.
The ascending manifold A� of a critical cell � is the smallest
invariant chain under the inverse flow operator:
��1ðA�Þ ¼ A�. Both the ascending and descending mani-
folds are sets of cells, and in Section 6.2, we discuss how to
construct a geometric realization of these structures for
visualization. Fig. 4 illustrates the discrete version of critical
cells, arcs, and ascending/descending 2- and 3-manifolds.

3.3 Persistence-Based Simplification

A function f is simplified by repeated cancellation of pairs
of critical points connected by an arc in the MS complex.
The local change in the MS complex indicates a smoothing
of the gradient vector field and hence of the function f .
Forman [42] showed how a cancellation could be achieved
in a discrete gradient field by reversing the gradient path
between two critical cells. Gyulassy et al. [38] provided a
full characterization of cancellation operations in terms of
how they affect the connectivity of the complex and the
geometry of the ascending/descending manifolds, operat-
ing solely on the combinatorial structure of the complex.
Repeated application of cancellations in order of persistence,
the absolute difference in function value of the canceled
critical points, results in a hierarchy of MS complexes and a
multiresolution representation of features.

4 INTRODUCING GENERIC QUERIES

The MS complex is a representation of the function in terms
of its flow properties, and the full complex is the basis for a
large feature space; the problem of extracting features is

reduced to querying this structure. In our model, the result
of querying the MS complex is a set of nodes and a set of
arcs. Since higher dimensional manifolds are each asso-
ciated with one node, extracting them is reduced to the
problem of selecting the nodes that generate them. For
example, to extract surfaces separating user-selected basins,
a query would be designed to select the 1-saddles
separating minima, then ascending 2-manifold geometry
would be computed to recover the surfaces.

In this model, interactive exploration of features uses the
following pipeline: a base MS complex and hierarchy are
computed, and then queries on this structure are evaluated
by consumer objects. A consumer object can be a renderer, a
histogram generator, or any other visualization or analysis
tool. One of the key motivations for our functional
programming design of queries is the need for interactive
exploration, where any parameter can be changed in any
part of a visualization pipeline.

4.1 Query Object and Function Types

Table 1 specifies objects and query functions for generic
feature extraction. The objects describe a generic data
structure, in which an MS complex is represented as a set
of nodes and a set of arcs. Each node contains a list of arc
references that have it as an endpoint, and each arc
references the nodes at its upper and lower endpoints.
Both arcs and nodes have attribute objects, collections of
scalars. In our examples, some of the attributes we query for
nodes are index of criticality, function value, and coordi-
nates, although this system could easily be extended to
store ascending/descending manifold surface area or
volume, count of incident arcs, proximity of other critical
points, or other user-specified measures. At the most basic
level, an MS complex is represented as an undirected graph
where each node and arc has a set of associated values.

A query starts with a precomputed MS complex object. A
hierarchy object can be computed by repeated cancellation
of critical point pairs of an MS complex. A persistence selector
operates on a hierarchy and returns the MS complex
simplified to an input scalar value. The data structures
necessary to extract geometry from the simplified complex
are covered in Section 6.3. The set of nodes and arcs for a
particular MS complex are returned by node extractor and arc
extractor objects, respectively.

We also specify function objects that operate on elements
of an MS complex. These objects are used to “navigate” on
the complex as well as filter desired features. Features are
often defined as objects that satisfy certain conditions, and
the node selector and arc selector function objects enable this
functionality. These filter functions take as input a test, a
Boolean function object that decides whether or not a node
or arc is to be included in the output of the selector. The test
performs a comparison with the value returned by a value
extractor object applied to a node or arc. The value extractor
returns one of the attributes of the node or arc. For example,
to extract the minima of a particular MS complex, a node
selector is applied to the node extractor, with a test function
comparing the index of the node (returned by a value
extractor) to zero.

Navigation on the MS complex is equally important in
selecting features. These functions correspond to a “walk” on

1552 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012

Fig. 2. Discrete gradient arrows (red) pair cell with their facets. We apply
the discrete flow operator to the circled edge e : �ðeÞ ¼ eþ @T ðeÞ þ
T ð@eÞ. An orientation (green arrow) is chosen for e, and it induces an
opposite orientation on the 2-cell that is the head of the gradient arrow
starting at e. It also induces opposite orientations on the edges that are
the head of gradient arrows beginning at the facets of e. Cells summed
with opposite orientations cancel one another. The result of the flow on e
is three edges in a chain.

the graph described by the nodes and arcs. The incident arcs
function object applied to a set of nodes returns the set of arcs
touching each node in the set; similarly, the incident nodes
returns the set of nodes that are endpoints of the input set of
arcs. Special variants of these, for example, an upper incident
arcs and upper incident nodes function, denoted iþa ðÞ and iþn ðÞ,
respectively, combine an index test with the incidence
operator to return the set in the “upwards” direction. One
can then define an ascending boundary selector object to find all
the critical points on the boundary of the ascending manifold
of a critical point by repeatedly applying the upper incident
nodes and arcs function. Therefore, the ascending boundary
selector computes the critical points on the boundary of a
basin of a minimum by applying the upper incident nodes
selector to the upper incident arcs selector repeatedly, to
return the set of 1-saddles connected to the minimum, the set
of 2-saddles connected to those, and then the set of maxima
connected to the 2-saddles.

4.2 Consumers

A consumer object evaluates a query and converts the
resulting list of arcs or nodes into another format. Different
kinds of consumers are: geometry processors, renderers,
and statistics generators. A consumer may rely on the input
gradient field and any computed attributes to do its work.
For example, a geometry extractor, described in Section 6,
may take as input a query that returns a set of saddles, and
outputs the set of ascending and descending 2-manifold
surfaces. A render object typically is at the end of the
visualization pipeline, and can display a set of nodes, a set
of arcs, a set of geometry extractors, the scalar function
value volume, and an index volume, and render the scene
as described in Section 7.3. A statistics generator could
output a histogram of an attribute value for a set of arcs and
nodes. The consumer objects are not listed in Table 1, since
they are highly application dependent. For example, in our
implementation, we are interested in generic visualization
of extracted features, and therefore have implemented
geometry extractors and a renderer. However, one can

envision a usage scenario where an application scientist
wants to perform custom statistics on a set of features
extracted at multiple time steps of a simulation. In this case,
the implementation of a statistics tool consumer is left up to
the user.

5 A VISUAL GUIDE TO FEATURES

When performing MS-complex-based analysis and visuali-
zation, features are identified as combinations of properly
queried nodes and arcs and their corresponding manifold
geometry. One of the more challenging tasks in using
topology-based analysis is to translate a scientist’s intuitive
description of an application-specific feature into formal
queries on the MS complex. This task is made particularly
difficult because it requires the involvement of a user, who
is often a domain expert not knowledgeable in topological
analysis. When formalizing a feature definition, parameters
may be explored in a trial and error process, where
interactive evaluation of the output of a given query is
key in closing the loop and converging to satisfactory
feature definitions.

We provide a simple visual guide to facilitate the
interpretation of the topology-rich visualizations that are
generated as a result of any given query. Fig. 3 presents as a
simple table the key concepts needed for understanding a
visual topological model in 3D. Included with each image is
an intuitive explanation. The queries used to extract the
illustrated features can be found in Table 2 in the appendix,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2011.272. The function we use in these examples is
a simple sum of two Gaussians centered at two evenly
spaced points in a box-shaped domain (Fig. 3 (Morse
Function)). Some isosurfaces are shown, with the isovalue
of the outer surface being the lowest.

The top row in this guide shows the basic elements of a
Morse and Morse-Smale complex, and illustrates the full set
of ascending and descending manifolds of this function

GYULASSY ET AL.: DIRECT FEATURE VISUALIZATION USING MORSE-SMALE COMPLEXES 1553

TABLE 1
A Functional Description of Objects and Selectors for Querying an MS Complex

The objects describe generic data structures, and the selector functions extract sets of arcs and nodes.

along with the critical points that generate them. We annotate

the ascending and descending manifolds with hand-drawn

integral lines to indicate gradient flow direction.

The Morse cells partition the domain of a Morse

function, and its nodes, arcs, surface, and volumetric cells

are the intrinsic topological features that are used as basic

1554 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012

Fig. 3. Key topological definition and intrinsic/derived structures used in data analysis based on Morse theory. The intrinsic features highlighted
above are color coded as follows: blue sphere ¼ minimum; cyan sphere ¼ 1-saddle; yellow sphere ¼ 2-saddle; red sphere ¼ maxim; cyan tube ¼
1-saddle-minimum arc; green tube ¼ 1-saddle-2-saddle arc; orange tube ¼ 2-saddle-maximum arc; orange surface ¼ descending 2-manifold; cyan
surface ¼ ascending 2-manifold.

building blocks in topological analysis of scientific data.
Isolating some of these elements individually, one can start
to extract more interesting features: these are shown in the
second and third row in Fig. 3.

The last row of Fig. 3 shows a few important cases of
structures that can be derived from the intrinsic topological
elements. Here, the filtering and navigation operations are
more sophisticated, and in some cases additional value
extractors need to be defined.

In the first one of these examples, we show how to count
the number of contours at a particular isovalue. We extract
exactly those 2-saddle-maximum arcs and nodes that are
entirely above this value. Counting the number of con-
nected components in this graph gives the number of
contours. Similar to the contour tree, the MS complex
enables this computation without needing to compute any
isosurfaces explicitly.

In the second example, we show a surface that partitions
the flow into two regions: integral lines that originate from
minima in the upper half and those that originate from
minima in the lower half. Intersecting the set of 1-saddles
adjacent to each group gives those that have one endpoint
in the upper, and one endpoint in the lower halves. The
ascending 2-manifolds of these 1-saddles partition the flow.

Next, to compute simple contours (homeomorphic to a
2-sphere), we identify the highest 2-saddle from a max-
imum, and compute an isosurface between that value and
the maximum’s value, restricted to the maximum’s
descending 3-manifold. Finally, we show that our query
system is robust enough to identify topological degenera-
cies, such as a pouch. These structures are present when a
1-saddle has no incident arcs connecting to a 2-saddle, or
vice versa. Notice that the number of derived topological
concepts is virtually unlimited and the development of a
general language for topological queries is essential to
allow the user unrestricted exploration of the feature space.

6 COMPUTING FEATURE GEOMETRY

Visualization of topological elements requires extracting
renderable geometry from a discrete gradient field. In
addition to the geometric realization of the nodes and arcs,
we extract ascending and descending manifolds, and
render them as a collection of geometric primitives.
Computing ascending and descending manifolds in the
context of discrete Morse theory has been well studied: first
Cazals et al. [43] computed them from a tree-based
representation of the gradient, then Gyulassy et al. [38]
gave a description of how to compute them by searching in
the discrete gradient field. Neither of these techniques take
into account the need for random access into a hierarchy of
MS complexes. In previous implementations [43], simplifi-
cation is achieved by repeated reversal of gradient paths,
and therefore random access between levels of a hierarchy
would require sequential reversal of paths and expensive
recomputation of the manifolds in the modified gradient.
The data structures and algorithms we present in this
section do not require modification of the input gradient
field, and avoid recomputation of manifolds during inter-
active exploration. First, we review algorithms to compute
ascending and descending manifolds. Next, we show how a

manifold is translated to renderable primitives. Finally, we
present a data structure and technique for maintaining
manifold geometry efficiently in a simplification hierarchy.

6.1 Computing Ascending/Descending Manifolds

We restate the algorithm described by Gyulassy et al. [38]
for computing ascending and descending manifolds. The
following algorithm collects the d-cells in the descending
manifold of an index-d critical cell � by repeated application
of the flow operator defined in Section 3.2. The following
pseudocode implements this operator, isTail() returning
true if a cell is the tail of a gradient arrow and false
otherwise, isHead() returning true if a cell is the head of a
gradient arrow, and discreteTangent() applied to a cell
returning the cell it is paired within the discrete gradient.

1: AddDescendingCells(cell �):

2: result ¼ f�g
3: for � 2 @� do

4: if isTail(�) then

5: �next ¼ discreteTangent(�)

6: result ¼ result
S

AddDescendingCells(�next)

7: end if

8: end for

9: return result

The input to the algorithm is the critical cell, and the
output is the set of cells of the same dimension that form its
descending manifold. The algorithm to compute ascending
manifolds is similar, replacing the boundary operator with
its inverse.

1: AddAscendingCells(cell �):

2: result ¼ f�g
3: for � 2 @�1� do

4: if isHead(�) then

5: �next ¼ discreteTangent(�)
6: result ¼ result

S
AddAscendingCells(�next)

7: end if

8: end for

9: return result

6.2 Renderable Geometry from Manifolds

The nodes, arcs, and higher dimensional manifolds extracted
from the discrete gradient field are initially represented as
sets of cells, and we transform them into geometric
primitives for rendering. For example, we use spheres of
different colors as placeholders at the barycenters of critical
cells, since they are a well-understood metaphor for critical
points. Fig. 4 shows the geometry conversion for nodes, arcs,
ascending and descending 2-manifolds, and ascending and
descending 3-manifolds.

6.3 Maintaining Geometry in a Hierarchy

A simplification hierarchy records a sequence of cancella-
tions of pairs of critical points. The geometry associated with
the ascending and descending manifolds of any critical
points neighboring a cancellation will change. Forman [42]
showed that a cancellation can be realized in a discrete
gradient field by simply reversing the discrete vectors on a
V -path. In this setting, the ascending and descending
manifolds can be recovered by the algorithm presented in
Section 6.1. However, in a practical system where interactive

GYULASSY ET AL.: DIRECT FEATURE VISUALIZATION USING MORSE-SMALE COMPLEXES 1555

browsing of the hierarchy is desired, such an operation is
very costly. Furthermore, anticancellations become just as
expensive. Gyulassy et al. [34] introduced data structures
for maintaining the geometry of arcs in a cancellation
sequence, however, this structure did not handle the
anticancellations necessary to browse a hierarchy. The data
structures we introduce for maintaining manifold geometry
in this section follow a similar merging structure, and define
a similar acyclic graph. In a common usage scenario, a user
may wish to skip over tens of thousands of cancellations to
view the hierarchy at different persistences. Using our
approach, a process that previously took several minutes
becomes interactive.

We present an efficient technique for representing the
geometry of ascending and descending manifolds at any
time in the hierarchy by storing their merging in an acyclic
graph. Gyulassy et al. [38], characterized how a cancellation
changes both the structure of the complex and the geometry
of the manifolds. When nu, an index-iþ 1 critical point, and
nl, an index-i critical point, are canceled, the following
changes occur to the manifolds:

1. For every node of index iþ 1 in the neighborhood of
nl, merge its descending manifold with the descend-
ing manifold of nu.

2. For every node of index i in the neighborhood of nu,
merge its ascending manifold with the ascending
manifold of nl.

Using this foundation, our data structure creates a
“merge” element every time the manifold of a node
changes. A hierarchy is a simplification sequence, therefore
we can assign an integer time to each creation/destruction
event. In particular, the creation time of a merge element is
equal to the number of cancellations so far in the sequence.
We define the merge elements as follows:

merge ::¼
ðbase merge; other merge; timeÞ j leaf geometry:

A merge object is either a 3-tuple of two merge objects
and a merge time, or a pointer to the leaf geometry. Leaf
geometry associated with a critical cell � is evaluated as the
result of AddDescendingCells(�) or AddAscendingCells(�),
and has an implicit merge time of 0. Every node n in the MS
complex has one merge object for its ascending manifold
geometry, denoted n:asc man geom, and one for its
descending manifold geometry, n:dsc man geom. Initially,
before any cancellation has occurred, every merge object is
leaf geometry. During a cancellation, we create new merge
nodes and update the graph structure. In the following
algorithm, neighborhood() of a node returns the set of
nodes that share an arc in the complex.

1: ManifoldCancellationUpdate(node nl, node nu, int

cancel time):

2: for ni 2 neighborhoodðnlÞ, ni! ¼ nu do

3: new dsc geom ¼ ðni:dsc man geom,

nu:dsc man geom, cancel time)

4: ni:dsc man geom ¼ new dsc geom

5: end for

6: for ni 2 neighborhoodðnuÞ, ni! ¼ nl do

7: new asc geom ¼ ðni:asc man geom,

nl:asc man geom, cancel time)

8: ni:asc man geom ¼ new asc geom

9: end for

The history of the changes to a node’s geometry is stored
in the base merge field of the merge element: it is a list with
the creation times of each merge object. Therefore, to extract
the state of the merge graph at time t, we start at a node’s
merge element pointer, the newest merge node, and follow
base merge pointers until cancel time is at most t. The
merge element returned was the merge element pointed to
by the node at time t in the creation of the hierarchy. Since
directed edges in the merge graph always point from higher
cancellation-time merge objects to lower cancellation-time
objects, any path in this graph is monotonic, and hence the
graph is acyclic. To recover the full ascending or descending

1556 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012

Fig. 4. Once topological structures are computed as sets of cells, they are converted into geometric primitives for rendering.

manifold from a merge element, we gather the leaf
geometries that are alive at the current simplification level
with a depth-first search. The following algorithm returns
the set of merge leaves that have been merged in the
cancellation process to create the input merge element. In
this algorithm, isLeaf() returns true if a merge element is a
pointer to leaf geometry, false otherwise.

1: RecGatherOddLeaves(merge m, set& s):

2: if isLeafðmÞ then

3: if s \ fmg! ¼ fg then

4: s ¼ s� fmg
5: return

6: else

7: s ¼ s [fmg
8: return

9: end if

10: end if

11: RecGatherOddLeaves(m:base merge, s)

12: RecGatherOddLeaves(m:other merge, s)

Note that we only count leaves that have been visited an
odd number of times: this simulates symbolically reversing
the path along an arc during cancellation. Fig. 5 illustrates
this: a single cancellation reverses the flow along an arc and
extends the manifold for neighboring nodes; a second
cancellation reverts those cells to their original direction.
The following algorithm shows how to traverse a hierarchy
to extract descending manifolds for a particular time in the
simplification sequence.

1: DescendingManifoldAtTime(node n, int time):

2: m ¼ n:dsc man geom
3: while m:time > time do

4: m ¼ m:base merge
5: end while

6: s ¼ fg
7: RecGatherOddLeaves(m, s)
8: return s

Fig. 5 illustrates these algorithms and data structures,
and shows how they are maintained through some
cancellation operations.

7 TOPOLOGY-RICH RENDERING

As a practical example, we describe our interactive feature
extraction and visualization systems. These consist of two
main components: an interface for constructing queries,
modifying parameters and assigning rendering attributes,
and a renderer that is specially designed to handle the kinds
of features that can be identified using the MS complex.

7.1 Interactive Exploration

The data objects of an MS complex and function objects in a
query have a natural branching and dependency structure,
and our interface utilizes this by representing a scene as a
work flow diagram. Our prototype implementation sup-
ports specifying queries in a graphical user interface, where
the input and output to selectors are represented by arrows.
The user chooses different types of objects (tests, selectors,
etc.) from a tool bar and connects them together in a work
flow graph. Each object and selector function has properties
that can be manipulated. For example, the constant factors
in a test function that implements range comparison can be
changed with sliders to interactively adjust queries, and any
changes force recomputation of downstream queries. The
number of objects and depth of the work flow diagram are
limited in practice, and each downstream object can be
recomputed interactively. Our interface provides for saving
and loading an interaction session in an XML file. This
allows a scientist to use the GUI to design queries, and then
use the resulting XML description to extract features in a
batch job, for example, to dump surfaces or statistics to disk
for several time steps of a simulation. Fig. 6 shows an
interaction session in our interface prototype.

7.2 Rendering Attributes

A work flow diagram is also the scene graph and gives the
user control of rendering attributes. Each query object of the
MS complex can be assigned valuator functions that
determine how its result is rendered by a render object.
For example, a set of nodes can be assigned a valuator
object that scales the radius of its rendered sphere by some
transfer function. As another example, the surface output
from a geometry extractor can be rendered with its own
transfer function. In this way, we can assign valuators to

GYULASSY ET AL.: DIRECT FEATURE VISUALIZATION USING MORSE-SMALE COMPLEXES 1557

Fig. 5. S1, S2, and S3 are 2-saddles, with initial leaf geometry merge
elements L1, L2, and L3, respectively (left). The first cancellation of S3
and the circled 1-saddle creates new merge elements M1 and M2, both
having time ¼ 1, for the nodes S1 and S2 (middle). The second
cancellation, S2 with the circled 1-saddle, creates a new merge element
M3 for S1 with time ¼ 2 (right). The surface of S1 at time ¼ 1 is L1 and
L3. At time ¼ 2, the surface from S1 is L1 and L2; L3 is counted an even
number of times in a depth-first search.

Fig. 6. A user specified work flow diagram is translated into queries on
the MS complex. Updates to the diagram are reflected in real time in the
output of the renderer. Here, a simple scene is illustrated. A gradient,
MS complex, and hierarchy are precomputed from the input data. The
result of node and arc extractors are filtered by selectors. Each selector
is also linked with a Boolean test. The range test is selected, which
brings up a window to manipulate its properties.

sets of nodes, arcs, surface, or volumes that are locally
evaluated by each element in that set. Initially, the nodes
and arcs extracted from an MS complex have default values
for rendering attributes, such as coloring nodes by index. In
our model, a new selector or node inherits its valuators
from its parent.

7.3 Interactive Rendering

Our rendering system combines traditional volume render-
ing with direct feature visualization. Our depth-peeling
GPU ray-caster allows inlays of semitransparent solid
geometry (spheres, lines, tubes, surfaces) into a locally
controlled volume rendering. The overriding design prin-
ciple to our rendering system is to enable rendering of any
feature using its own rendering attributes combined with
the underlying scalar field. To achieve this, our implemen-
tation uses

1. the input volume of scalar values,
2. a volume of ascending or descending 3-manifold

identifiers storing the segmentation of the domain,
3. a set of surfaces representing ascending and des-

cending 2-manifolds,
4. a set of lines or tubes representing arcs, and
5. a set of spheres representing nodes.

The following describes how each of these is handled.
Volume rendering. In our volume ray caster, the four-

channel colors (red, green, blue, and alpha) of sample
points are found along a ray and composited front-to-back.
Our system allows the user to select the transfer function,
color, and blending mode for each topological feature
individually. Furthermore, a user can rescale the function
values within ascending or descending 3-manifolds, for
example, to display ones with different ranges uniformly
with the same transfer function.

In the following pseudocode that returns the color of a
sample in the volume, let f : R3 ! R be a function that
returns the value of the input scalar field at the point, let
i : R3 ! Z be a function that maps the point to the unique
ID of the ascending or descending 3-manifold containing it,
let rmin : Z! R and rmax : Z! R map an ID to local
rescale values, let color : Z! R3 map an ID to a constant
color, let transfer : Z! ðR! R3Þ map an ID to a transfer
function, and finally let blend : Z! ½0;1� map an ID to a
constant controlling the compositing of color with transfer.

RGBA(point p):

1: ID ¼ iðpÞ
2: VAL ¼ ðfðpÞ � rminðIDÞÞ=ðrmaxðIDÞ � rminðIDÞÞ
3: RES:rgb ¼ blendðIDÞ � transferðIDÞðVALÞ:rgbþ
ð1� blendðIDÞÞ � colorðIDÞ

4: RES:a ¼ transferðIDÞðVALÞ:a
5: return RES

The result of fðpÞ is rescaled by the feature rescale values
found at ID iðpÞ of the rmax and rmin tables, and this value
is sent to the transfer function found for ID, returning a
color. This color is blended with the assigned color of the
feature, using the blend factor and color found for the ID in
the blend and color tables, respectively.

Surface rendering. Surface colors are computed simi-
larly to colors in a volume, except that every point on a

surface has the same ID, and therefore the functions i, rmin,
rmax, color, and blend are all replaced by constants, and
transfer returns the same transfer function for all points on
the surface.

Tubes and lines. Arcs are rendered as tubes or lines. A
tube or line is represented as a list of vertices, each having a
color and radius. Tubes and lines are fully opaque objects.
The values for the color and radius along a tube or line can
be set using a transfer function.

Spheres. Nodes are rendered as spheres. A sphere may
have arbitrary color and radius. Spheres are fully opaque
objects.

We utilize a GPU-based ray caster and depth peeling to
resolve transparency. Samples in the volume and on
surfaces and lines are shaded with fragment programs
written in GLSL. The functions f and i are three-dimen-
sional samplers operating on volumetric textures storing
the scalar values and indices, respectively. The index
volume i is sampled with no interpolation. A single transfer
function is implemented as a one-dimensional texture
lookup, and transfer is implemented as a two-dimensional
lookup. An additional mapping texID : Z! Z is used to
map volume indices to transfer function ID, and the result
of this lookup is the first coordinate in the two-dimensional
transfer function texture. The other coordinate is simply the
rescaled function value. Note that the maximum index
number is the number of extrema generating the segmenta-
tion of the volume. GLSL restricts the maximum size of a
texture dimension to 4,096, therefore texID, rmin, rmax,
color, and blend are implemented as linear lookups into
two-dimensional textures. Note that we can apply Lapla-
cian smoothing to lines and surfaces for aesthetics.

As the MS complex is simplified, several of the regions
in the index texture will merge. Instead of updating the full
volumetric texture, we simulate the merging by copying
the parameters to the two-dimensional textures. This
avoids having to modify the volume value and volume
index textures.

8 RESULTS/EXAMPLES

Our visualization results were performed on an off-the-shelf
2.26 GHz laptop with 4 GB main memory and GeForce GT
130M graphics card with 1 GB physical memory. In each case,
the 1-skeleton of the MS complex was precomputed using a
single-block version of the algorithm presented by Gyulassy
et al. [38], with preprocessing runtimes of the same order,
taking between 1 second (Tetrahedrane) and 4 minutes
(Cosmology). Subsequent exploration, in terms of query
evaluation and parameter editing, is performed interactively,
with frame rates varying between 30 frames per second for
smaller, less complex scenes, to 0.5 seconds per frame for
large scenes with high level of transparent overlap. We wish
to emphasize that our renderer is unoptimized research code,
and we expect that frame rates can be improved.

The overall memory requirements of this approach are
output sensitive, however, every analysis pipeline begins
with computation and storage of the discrete gradient field,
taking exactly 8 bytes per sample location. Furthermore, we
load the entire data set into main memory and GPU texture
memory. If segmentation volumes are needed in the

1558 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012

pipeline, they are also computed and stored in texture

memory, taking 4 bytes per sample location. Nodes, arcs,

and geometry objects are computed on-the-fly; for example,

the impact crater surface of the porous solid required storing

30K triangles and function values, replicated on the GPU.

The examples in Figs. 7 and 8 show scenes highlighting

the illustrative power and generality of this technique in

order of increasingly complex topology-rich visualizations.

The tetrahedrane has simple topology and is used to

illustrate two rendering modes, showing the structure and

GYULASSY ET AL.: DIRECT FEATURE VISUALIZATION USING MORSE-SMALE COMPLEXES 1559

Fig. 7. In each of these visualizations, the caption provides a brief description of the data as well as the queries and parameters used to generate the
images.

the geometry of the MS complex. The silicium example

illustrates how simple queries can be composed to construct

an abstract representation of the molecule. In the combus-

tion simulation, we extract 3-manifold basins around

minima hypothesized to be involved in flame extinction

events, and show how persistence simplification allows

exploration of these features at multiple topological scales.

With the high-pressure H2O model, we show how the MS

1560 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012

Fig. 8. Additional examples showing never-before-seen features. Each image combines traditional visualization techniques with various components
of the Morse-Smale complex.

complex provides a more accurate interpretation of fea-

tures: we show how topological pouches can be extracted,

something not possible with previous approaches. In the

porous medium data set, we illustrate how to build

nonphysical features, such as the crater surface derived

from the impact with a micrometeoroid, or the most likely

shear fracture dividing the top and bottom of the material.

In the last example, we show how the same analysis of a

cosmology simulation can be visualized in drastically

different ways: in one, the maxima of density are rendered

as spheres whose size and color depend on function value;

in the other the largest simple contours around a maximum

are displayed with color according to function value.

Overall, this set of examples illustrates the power of our

topology-rich visualization technique, showing a variety of

visualizations that were not available within a single

integrated system.

9 CONCLUSIONS/FUTURE WORK

The queries and data structures we introduced allow our

system to integrate interactive feature definition and

exploration with data analysis and visualization. One

current limitation to our tool is data size: the current

implementation relies on GPU memory to store both the

data and an ID volume. On the visualization side, this

problem can be addressed by level-of-detail techniques, or

techniques that compress relevant regions in the segmenta-

tion. Furthermore, our lazy evaluation of manifold geome-

try requires that the discrete gradient be stored in memory.

We plan on addressing this with a distributed model, where

a restricted space of features is specified and precomputed

in parallel. The combinatorial nature of our algorithms

ensures that the same work flow diagram results in

identical analysis results on two different machines, and

we wish to leverage this in building collaborative analysis

tools. Finally, intermediate feedback, such as provided by

statistics viewers, can aid in selecting parameters while

designing a work-flow diagram, and we will augment our

tool with such information.

REFERENCES

[1] J.T. Kajiya and B.P. Von Herzen, “Ray Tracing Volume Densities,”
Proc. 11th Ann. Conf. Computer Graphics and Interactive Techniques,
pp. 165-174, 1984.

[2] R.A. Drebin, L. Carpenter, and P. Hanrahan, “Volume Render-
ing,” Proc. 15th Ann. Conf. Computer Graphics and Interactive
Techniques, pp. 65-74, 1988.

[3] M.S. Levoy, “Display of Surfaces from Volume Data,” PhD
dissertation, Chapel Hill, NC, 1989.

[4] N. Max, “Optical Models for Direct Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 1, no. 2, pp. 99-108,
June 1995.

[5] G. Kindlmann and J.W. Durkin, “Semi-Automatic Generation of
Transfer Functions for Direct Volume Rendering,” Proc. IEEE
Symp. Vol. Visualization (VVS ’98), pp. 79-86, 1998.

[6] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional
Transfer Functions for Interactive Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-
285, July-Sept. 2002.

[7] C. Correa and K.-L. Ma, “Size-based Transfer Functions: A New
Volume Exploration Technique,” IEEE Trans. Visualization and
Computer Graphics, vol. 14, no. 6, pp. 1380-1387, Nov./Dec. 2008.

[8] C.D. Correa and K.-L. Ma, “Visibility-Driven Transfer Functions,”
Proc. IEEE Pacific Visualization Symp. (PACIFICVIS ’09), pp. 177-
184, 2009.

[9] C. Rezk Salama, M. Keller, and P. Kohlmann, “High-Level User
Interfaces for Transfer Function Design with Semantics,” IEEE
Trans. Visualization and Computer Graphics, vol. 12, no. 5, pp. 1021-
1028, Sept./Oct. 2006.

[10] F.-Y. Tzeng, E.B. Lum, and K.-L. Ma, “An Intelligent System
Approach to Higher-Dimensional Classification of Volume
Data,” IEEE Trans. Visualization and Computer Graphics, vol. 11,
no. 3, pp. 273-284, May/June 2005.

[11] P. McCormick, J. Inman, J. Ahrens, J. Mohd-Yusof, G. Roth, and
S. Cummins, “Scout: A Data-Parallel Programming Language
for Graphics Processors,” Parallel Computing, vol. 33, nos. 10/11,
pp. 648-662, 2007.

[12] K. Stockinger, J. Shalf, K. Wu, and E.W. Bethel, “Query-Driven
Visualization of Large Data Sets,” Proc. IEEE Conf. Visualization
(VIS ’05), pp. 167-174, 2005.

[13] G. Reeb, “Sur Les Points Singuliers d’une Forme De Pfaff
Complètement intégrable ou d’une Fonction Numérique,” Comp-
tes Rendus de L’Académie ses Séances, vol. 222, pp. 847-849, 1946.

[14] P. Cignoni, D. Constanza, C. Montani, C. Rocchini, and R.
Scopigno, “Simplification of Tetrahedral Meshes with Accurate
Error Evaluation,” Proc. Conf. Visualization ’00, pp. 85-92, 2000.

[15] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying Flexible
Isosurfaces Using Local Geometric Measures,” Proc. IEEE Visua-
lization ’04, pp. 497-504, Oct. 2004.

[16] I. Guskov and Z.J. Wood, “Topological Noise Removal,” Proc.
Graphics Interface ’01, pp. 19-26, 2001.

[17] S. Takahashi, G.M. Nielson, Y. Takeshima, and I. Fujishiro,
“Topological Volume Skeletonization Using Adaptive Tetrahe-
dralization,” Proc. Geometric Modeling and Processing ’04, pp. 227-
236, 2004.

[18] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder, “Removing
Excess Topology from Isosurfaces,” ACM Trans. Graphics, vol. 23,
no. 2, pp. 190-208, 2004.

[19] H. Carr, J. Snoeyink, and U. Axen, “Computing Contour Trees in
All Dimensions,” Computational Geometry: Theory and Applications,
vol. 24, no. 22, pp. 75-94, 2003.

[20] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and Optimal
Output-Sensitive Construction of Contour Trees Using Monotone
Paths,” Computational Geometry, vol. 30, no. 2, pp. 165-195, 2005.

[21] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas,
“Robust On-line Computation of Reeb Graphs: Simplicity and
Speed,” ACM Trans. Graphics, vol. 26, pp. 58.1-58.9, July 2007.

[22] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci, “Loop Surgery
for Volumetric Meshes: Reeb Graphs Reduced to Contour
Trees,” IEEE Trans. Visualization and Computer Graphics, vol. 15,
no. 6, pp. 1177-1184, Nov./Dec. 2009.

[23] G.H. Weber, S.E. Dillard, H. Carr, V. Pascucci, and B. Hamann,
“Topology-Controlled Volume Rendering,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 13, pp. 330-341, Mar. 2007.

[24] Y. Chiang and X. Lu, “Progressive Simplification of Tetrahedral
Meshes Preserving All Isosurface Topologies,” Computer Graphics
Forum, vol. 22, no. 3, pp. 493-504, 2003.

[25] A. Cayley, “On Contour and Slope Lines,” The London, Edinburgh
and Dublin Philosophical Magazine and J. Science, vol. 17, pp. 264-
268, 1859.

[26] J.C. Maxwell, “On Hills and Dales,” The London, Edinburgh and
Dublin Philosophical Magazine and J. Science, vol. 40, pp. 421-427,
1870.

[27] S. Rana, Topological Data Structures for Surfaces: An Introduction to
Geographical Information Science. Wiley, 2004.

[28] S. Smale, “On Gradient Dynamical Systems,” Annals of Math.,
vol. 74, pp. 199-206, 1961.

[29] S. Smale, “Generalized Poincaré’s Conjecture in Dimensions
Greater than Four,” Annals of Math., vol. 74, pp. 391-406, 1961.

[30] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical
Morse-Smale Complexes for Piecewise Linear 2-manifolds,”
Discrete and Computational Geometry, vol. 30, no. 1, pp. 87-107, 2003.

[31] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci, “A
Topological Hierarchy for Functions on Triangulated Surfaces,”
IEEE Trans. Visualization and Computer Graphics, vol. 10, no. 4,
pp. 385-396, July/Aug. 2004.

[32] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Morse-
Smale Complexes for Piecewise Linear 3-Manifolds,” Proc. 19th
Ann. Symp. Computational Geometry, pp. 361-370, 2003.

GYULASSY ET AL.: DIRECT FEATURE VISUALIZATION USING MORSE-SMALE COMPLEXES 1561

[33] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B.
Hamann, “Topology-Based Simplification for Feature Extraction
from 3D Scalar Fields,” Proc. IEEE Conf. Visualization (VIS ’05),
pp. 535-542, 2005.

[34] A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B.
Hamann, “A Topological Approach to Simplification of Three-
Dimensional Scalar Functions,” IEEE Trans. Visualization and
Computer Graphics, vol. 12, no. 4, pp. 474-484, July/Aug. 2006.

[35] R. Forman, “A User’s Guide to Discrete Morse Theory,” Séminaire
Lotharingien de Combinatoire, vol. B48c, pp. 1-35, 2002.

[36] T. Lewiner, H. Lopes, and G. Tavares, “Applications of Forman’s
Discrete Morse Theory to Topology Visualization and Mesh
Compression,” IEEE Trans. Visualization and Computer Graphics,
vol. 10, no. 5, pp. 499-508, Sept./Oct. 2004.

[37] H. King, K. Knudson, and N. Mramor, “Generating Discrete
Morse Functions from Point Data,” Experimental Math., vol. 14,
no. 4, pp. 435-444, 2005.

[38] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci, “A
Practical Approach to Morse-Smale Complex Computation:
Scalability and Generality,” IEEE Trans. Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1619-1626, Nov./Dec. 2008.

[39] D. Laney, P.T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci,
“Understanding the Structure of the Turbulent Mixing Layer in
Hydrodynamic Instabilities,” IEEE Trans. Visualization and Com-
puter Graphics, vol. 12, no. 5, pp. 1053-1060, Sept./Oct. 2006.

[40] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell,
“Analyzing and Tracking Burning Structures in lean Premixed
Hydrogen Flames,” IEEE Trans. Visualization and Computer
Graphics, vol. 16, no. 2, pp. 248-260, Mar./Apr. 2010.

[41] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann, “Topologically Clean Distance
Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 13,
no. 6, pp. 1432-1439, Nov./Dec. 2007.

[42] R. Forman, “Morse Theory for Cell Complexes,” Advances in
Math., vol. 134, no. 1, pp. 90-145, 1998.

[43] F. Cazals, F. Chazal, and T. Lewiner, “Molecular Shape
Analysis Based Upon the Morse-Smale Complex and the
Connolly Function,” Proc. 19th Ann. Symp. Computational
Geometry, pp. 351-360, 2003.

[44] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli, “The
TOPORRERY: Computation and Presentation of Multi-Resolu-
tion Topology,” Mathematical Foundations of Scientific Visualiza-
tion, Computer Graphics, and Massive Data Exploration, pp. 19-40,
Springer, 2009.

[45] K. Heitmann, P.M. Ricker, M.S. Warren, and S. Habib, “Robust-
ness of Cosmological Simulations, I. Large-Scale Structure,” The
Astrophysical J. Supplement Series, vol. 160, no. 1, p. 28, 2005.

Attila Gyulassy received the bachelor’s of Arts
in computer science and applied mathematics
from the University of California, Berkeley in
2003 and the PhD degree in computer science
from the University of California, Davis in 2009.
His research interests as a postdoc at the
Scientific Computing and Imaging (SCI) Insti-
tute, University of Utah, include topology-based
data analysis and visualization.

Natallia Kotava received the MSc degree in
computer science from the University of Kaiser-
slautern, Germany. Currently she is working
toward the PhD degree in the computer graphics
research group at the University of Kaiserslau-
tern. Her research interests include graphics,
scientific visualization, and computational geo-
metry.

Mark Kim received the MS degree in computer
science from the University of Denver in 2005
and is working toward the PhD degree under
Professor Charles Hansen. His research inter-
ests include scientific visualization and interac-
tive computer graphics.

Charles (Chuck) Hansen is a professor of
computer science and an associate director of
the Scientific Computing and Imaging Institute at
the University of Utah. He was awarded the
IEEE Technical Committee on Visualization and
Graphics “Technical Achievement Award” in
2005 in recognition of seminal work on tools for
understanding large-scale scientific data sets.
He is a senior member of the IEEE.

Hans Hagen received the PhD degree in
mathematics from the University of Dortmund,
Germany, in 1982. He is currently a professor of
computer science at the University of Kaiser-
slautern and the head of DFG’s International
Research Training Group on Visualization of
Large and Unstructured Data Sets, Applications
in Geospatial Planning, Modeling and Engineer-
ing. In 2009, he received the IEEE career award.
He is a member of the IEEE.

Valerio Pascucci received the EE laurea
(master’s) degree from the University La Sa-
pienza in Rome, Italy, in December 1993, as a
member of the Geometric Computing Group,
and the PhD degree in computer science from
Purdue University in May 2000. He is an
associate professor at the Scientific Computing
and Imaging (SCI) Institute at the University of
Utah. Before joining SCI, he served as a group
leader and project leader at the Lawrence

Livermore National Laboratory, Center for Applied Scientific Computing.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1562 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 9, SEPTEMBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

