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Fig. 1. Popular approaches for computing Morse-Smale complexes assign discrete gradient arrows in the direction of steepest
descent, aligned with cells of the input mesh. Given a highly resolved sampling of two Gaussians, we show the results of the
corresponding complex (a) which demonstrates severe artifacts in the positioning and direction of one-manifolds as can be seen from
the level sets, which should be orthogonal. This paper introduces a randomized algorithm that better represents the gradient flow (b);
and a deterministic variant that integrates probabilities to achieve near-optimal geometric reconstruction of the MS complex (c). We
show the high-quality geometry, as well as the probability fields we compute for a two-dimensional jet (d); and a three-dimensional
tetrahedrane molecule (e).

Abstract—Topological techniques have proven highly successful in analyzing and visualizing scientific data. As a result, significant
efforts have been made to compute structures like the Morse-Smale complex as robustly and efficiently as possible. However, the
resulting algorithms, while topologically consistent, often produce incorrect connectivity as well as poor geometry. These problems
may compromise or even invalidate any subsequent analysis. Moreover, such techniques may fail to improve even when the resolution
of the domain mesh is increased, thus producing potentially incorrect results even for highly resolved functions. To address these
problems we introduce two new algorithms: (i) a randomized algorithm to compute the discrete gradient of a scalar field that converges
under refinement; and (ii) a deterministic variant which directly computes accurate geometry and thus correct connectivity of the
MS complex. The first algorithm converges in the sense that on average it produces the correct result and its standard deviation
approaches zero with increasing mesh resolution. The second algorithm uses two ordered traversals of the function to integrate the
probabilities of the first to extract correct (near optimal) geometry and connectivity. We present an extensive empirical study using both
synthetic and real-world data and demonstrates the advantages of our algorithms in comparison with several popular approaches.

Index Terms—Topology, topological methods, Morse-Smale complex.

1 INTRODUCTION

Since the development of the first combinatorial algorithms to com-
pute the Morse-Smale (MS) complex from sampled data [1, 3, 9, 17]
it has become widely used in a large variety of applications [5, 7, 15,
19, 22, 25]. Since then most of the algorithmic development has been
focused on robust computation, topological consistency, and computa-
tional efficiency. As a result there now exist comparatively simple, yet
highly efficient, streaming and/or parallel algorithms to compute MS
complexes from large data sets [13,28–30]. These algorithms perform
very well as long as one is interested in structural topological attributes
of the data such as how many critical points exist [22] or average con-
nectivity of 1-manifold networks [15]. More recently researchers have
also begun to analyze the geometric information of topological fea-
tures. For example Bennett et al. [2] compute length scales of local
contours and Kasten et al. [19] find and track two dimensional vortex
structures as unstable manifolds in the acceleration magnitude. How-
ever, geometric fidelity so far has been mainly ignored when designing
algorithms and, as shown in Fig. 1, all existing techniques tend to pro-
duce poor geometry even for well-resolved functions. Furthermore, as
discussed in more detail in Section 6, incorrect geometry often leads
to incorrect connectivity thus casting doubts on subsequent analysis.
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Even more problematic is the fact that traditional approaches will not
converge with increasing mesh resolution to the correct solution.

In this context it is important to remember that there exists no MS
complex for a sampled function since such functions are not “Morse-
Smale.” Instead, all algorithms, discrete or otherwise, compute a
quasi-MS complex as defined by Edelsbrunner et al. [9]. Intuitively, a
quasi-MS complex is one that is consistent with the underlying theory,
i.e., there exists a Morse function with this complex, yet not necessar-
ily matching the flow behavior of the function sampled. In particular,
Edelsbrunner et al. introduce a rarely used procedure call a Handle-
Slide to correct the connectivity of a quasi-MS complex assuming the
ability to perfectly compute the geometry of integral lines. By ignor-
ing geometric fidelity most existing techniques may produce severely
incorrect MS complexes making geometric quality a fundamental is-
sue of correctness rather than only of visual improvement.

The geometry of the MS complex is defined by integrating gradient
lines of the underlying flow which current discrete techniques con-
struct through a local, greedy optimization. However, the locally op-
timal choice may accumulate an arbitrarily large global error in the
integration process and also make the algorithms highly dependent on
local mesh orientation. Instead, we propose two new algorithms that
both extract significantly better geometry than existing approaches and
are guaranteed to converge to the correct geometry and connectivity
under subdivision. The first algorithm uses the same algorithmic ker-
nel as the best existing techniques but replaces the local optimization
with a carefully designed random selection. It can easily be integrated
into existing approaches, on average produces the correct complex,
and its standard deviation from the mean converges to zero with in-
creasing mesh size.

The second algorithm exploits the fact that typically only small por-
tions of the gradient field matter to the geometry, namely those areas
containing cell boundaries. By integrating the local probabilities of
the first algorithm we construct a deterministic variant of the algo-
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rithm that extracts near optimal cell boundaries through a simple re-
gion growing approach. Both algorithms are based on the common
discrete framework and thus are combinatorial in nature, guaranteed
to be topologically consistent, and applicable in any dimension. Our
four main contributions are listed briefly below.

1. We introduce a randomized algorithm to compute MS complexes
that significantly improves the geometric quality of the result
when compared to existing techniques and converges with in-
creasing mesh resolution. The algorithm is simple to implement,
efficient, applicable in any dimension, and easily parallelized.

2. We introduce a second deterministic algorithm that directly ex-
tracts near optimal geometry without the need for refinement.

3. We provide an extensive empirical study comparing our ap-
proach with state of the art techniques using both synthetic and
real-world data.

4. We provide a broad range of experiments demonstrating the su-
perior quality and stability with respect to sampling density and
mesh orientation.

2 RELATED WORK

Despite the fact that the initial ideas were already discussed more than
a century and a half ago [6,26] the first practical algorithm to compute
MS complexes of two dimensional, piecewise linear functions was in-
troduced fairly recently [9]. In their seminal paper, Edelsbrunner et al.
not only describe the first robust algorithm but also introduce the no-
tion of a quasi-MS complex indicating a complex consistent with the
theory yet not necessarily correct. Nevertheless, the algorithm relies
on fairly complex data structures to maintain strict separation between
one manifolds.

Bremer et al. [3] propose a simpler version of the same idea by
demonstrating that by ordering the computations appropriately much
of the algorithmic complexity can be avoided. They also introduce
the first multi-resolution encoding of the complex. The algorithm pro-
posed in [3] is interesting in so far it has been the only one capable
of producing correct geometry for piecewise linear functions by lo-
cally refining the input mesh. However, the 3D version of the same
approach [8] has proven too complex to be practical and instead the
focus has shifted to approaches based on discrete Morse theory, as
discussed below.

Since the initial research, related concepts have seen rapid adop-
tion in a wide variety of scientific applications. Laney et al. [22] use
MS complexes to analyze Rayleigh-Taylor instabilities, Gyulassy et
al. [15] to study the structure of porous media, Bremer et al. [4] to
analyze turbulent combustion simulations, and Kasten et al. [19] to
study vortical structures, to name just a few. In a related field, Koch et
al. [21] used a probablistic method for tractography in diffusion tensor
images. This work introduced a randomized approach, taking discrete,
axis-aligned steps in tracing out probable diffusion paths, with proba-
bilities weighted by alignment with the local tensor.

The most successful algorithms for computing Morse-Smale com-
plexes for large, especially volumetric data rely on a discrete interpre-
tation of Morse theory introduced by Forman [11]. In this framework,
the key challenge is to compute a discrete gradient vector field from
which the MS complex can then be extracted in a fairly straightfor-
ward manner. Existing techniques share many characteristics yet each
computes a discrete gradient vector field in a unique manner. At the
core of every algorithm is the choice of discrete gradient vector that
best represents the flow behavior of the underlying function and in
this aspect all approaches are remarkably similar. Every approach as-
signs weights to pairings based on the difference in function values of
the cells to be paired. Here, we survey each technique highlighting the
differences in order of computation and philosophy while pointing out
the similarities of the results.

Lewiner [23] presented the first technique for constructing a dis-
crete gradient field that agrees with the flow behavior of a scalar func-
tion. In this approach, recently proved to be robust [24], the discrete
gradient field is represented by a hyperforest. At each iteration of the
GREEDY algorithm, the potential pair with maximum weight is se-
lected and paired if it does not create a cycle. In this approach, the
weight of a pairing is computed as the difference in function values at
the barycenters of the two cells.

King et al. [20] introduced a technique to generate discrete Morse
functions on simplicial complexes by modifying the Hasse diagram.
The resulting diagram encodes both the discrete gradient arrows and
the face relations needed to guarantee the construction of a discrete
Morse function. At each step, the EXTRACTRAW algorithm first cre-
ates a directed edge in the diagram between a vertex and the edge in
the direction of steepest descent, and then assigns pairs in the rest of
the lower link. In effect, the “weight” of the initial vertex-edge pairing
is given by the difference in function values of the two vertices inci-
dent on the edge. An alternative, that scales this weight by one over
the length of the edge, is also mentioned.

Gyulassy et al. [13] introduced an algorithm that assigns cells in
order of increasing function value and increasing dimension, using
the ordering to avoid acyclicity checks. In an extension to the algo-
rithm [12], simply homotopy expansions are performed to avoid spuri-
ous critical points. In this approach, the maximal weight pair is chosen
for a cell, with weight being defined as the difference in value between
the cell and the lowest vertex of its co-facet pair. This approach is used
in [18] to design a blocked, parallel construction of MS complexes.

Reininghaus et al. [27,28] presented an approach for generating dis-
crete vector fields at multiple scales by computing matchings of a cell
graph using the Hungarian method. The mesh is represented using a
Hasse diagram, where the weight of each edge is given by its align-
ment to the gradient direction. Each iteration of the MORSEMATCH-
INGSEQUENCE algorithm adds to the current matching the alternating
path of heaviest weight. The unpaired cells of the maximum weight
matching for any scalar function occur at critical points of the function.
Although this technique finds a maximal global weight, the global sum
is composed of aggregating local weights, therefore, in effect, gradient
pairs are assigned in the steepest direction.

Robins et al. [29] present a technique that computes the discrete
gradient on the lower star of a vertex. The PROCESSLOWERSTARS
algorithm pairs each vertex with the edge in its lower star that touches
the lowest vertex in the lower link. Subsequently, remaining cells in
the lower star are paired using simple homotopy expansions, when
possible, or assigning critical cells. Effectively, this approach maxi-
mizes the weight of a vertex-edge pairing, the weight being the differ-
ence in function values of the two vertices incident on the edge. The
independent assignment of gradient arrows in this approach allows an
embarrassingly parallel implementation.

Shivashankar et al. [30] also present an embarrassingly parallel
technique for computing the gradient. First, a discrete Morse func-
tion is computed in which every cell is critical. However, the function
is defined such that the ASSIGNGRADIENT algorithm simply looks
for the co-facet with lowest value to pair a cell. The recursively de-
fined function ensures that a vertex will always be paired with the edge
whose other endpoint has lowest value, i.e., in the direction of steepest
descent.

In summary, while all approaches use slightly different techniques
they all assign arrows based on steepest-descent and thus produce very
similar geometry. For example, two functions for which all tech-
niques [13,20,23,27–30] produce identical discrete gradient fields are
(1) distance from a point, f (x) = c||x− p||, and (2) any constant slope,
f (x) = cx+ b. The differences for more complex functions are min-
imal, and each technique follows the same pattern of greedy assign-
ment. In the examples in this paper, we use the algorithm of Gyulassy
et al. [13] as a representative of this class of approaches.

3 BACKGROUND

Scalar valued volumetric data is most often available as discrete sam-
ples at the vertices of an underlying mesh. Morse theory has been well-
studied in the context of smooth scalar functions, and has been adapted
to such discrete domains. We first present some basic definitions from
smooth Morse theory, and then present the discrete analogue.

3.1 Morse Functions and the MS Complex
Let f be a real-valued smooth map f : M→R defined over a compact
d-manifold M. A point p ∈M is critical when |∇ f (p)| = 0, i.e. the
gradient is zero, and is non-degenerate when its Hessian (matrix of
second partial derivatives) is non-singular. The function f is a Morse
function if all its critical points are non-degenerate and no two critical
points have the same function value. In this case the Morse Lemma
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states that there exists local coordinates around p such that f has the
following standard form: fp =±x2

1±x2
2 · · ·±x2

d . The number of minus
signs in this equation gives the index of critical point p. In three-
dimensional functions, minima are index-0, 1-saddles are index-1, 2-
saddles are index-2, and maxima are index-3.

An integral line in f is a path in M whose tangent vector agrees
with the gradient of f at each point along the path. The integral line
passing through a point p is the solution to ∂

∂ t L(t) = ∇ f (L(t)),∀t ∈R,
with initial value L(0) = p. Each integral line has an origin and des-
tination at critical points of f . Ascending and descending manifolds
are obtained as clusters of integral lines having common origin and
destination respectively. The descending manifolds of f form a cell
complex that partitions M; this partition is called the Morse complex.
Similarly, the ascending manifolds also partition M in a cell complex.
A Morse function f is a Morse-Smale function if ascending and de-
scending manifolds of its critical points only intersect transversally.
An index-i critical point has an i-dimensional descending manifold
and a (d− i)-dimensional ascending manifold.

3.2 Discrete Morse Theory

Discrete Morse theory is at the heart of current techniques for ef-
ficiently computing Morse-Smale complexes. We provide a brief
overview with basic definitions from Forman [11], and we refer the
reader to this introductory work for an intuitive description. A d-
cell is a topological space that is homeomorphic to a Euclidean d-ball
Bd = {x ∈ Ed : |x| ≤ 1}. For cells α and β , α < β means that α is a
face of β and β is a co-face of α , i.e., the vertices of α are a proper
subset of the vertices of β . If dim(α)= dim(β )−1, we say α is a facet
of β , and β is a co-facet of α , and denote this α<̇β . When necessary
to clarify the discussion, we may denote the dimension of a d-cell α

with α(d). The star of a cell α , denoted St(α), is the set of co-faces
of α . The lower star of α , denoted St−(α) is subset of St(α) where
each element has lower function value. The link of α is the closure of
the star, minus the star itself, Lk(α) = St(α)− St(α). Similarly, the
lower link of α is Lk−(α) = St−(α)−St−(α)

Let K be a regular complex that is a mesh representation of M. The
barycenter B : K →M of a d-cell α ∈ K, B(α), is the average of its
vertices. A function F : K→ R that assigns scalar values to every cell
of K is a discrete Morse function if for every α(d) ∈ K, its number of
co-facets |{β (d+1)>̇α|F(β ) ≤ F(α)}| ≤ 1, and its number of facets
|{γ(d−1)<̇α|F(γ) ≥ F(α)}| ≤ 1. A cell α(d) is critical if its number
of co-facets |{β (d+1)>̇α|F(β )≤ F(α)}|= 0 and its number of facets
|{γ(d−1)<̇α|F(γ)≥ F(α)}|= 0, and has index equal d.

A vector in the discrete sense is a pairing of cells 〈α(d),β (d+1)〉,
where α<̇β . We say that an arrow points from α(d) to β (d+1).
The direction of the arrow relates the combinatorial notion of the
pairing to the geometric interpretation of the flow, and is given by
B(β (d+1))− B(α(d)). Intuitively, this vector simulates a direction
of flow. A discrete vector field V on K is a collection of pairs
〈α(d)

i ,β
(d+1)
i 〉 of cells of K such that each cell is in at most one pair

of V . A critical cell is unpaired. Given a discrete vector field V on K,
a V -path is a sequence of cells

α
(d)
0 ,β

(d+1)
0 ,α

(d)
1 ,β

(d+1)
1 ,α

(d)
2 , . . . ,β

(d+1)
r ,α

(d)
r+1

such that for each i = 0,..., r, the pair 〈α(d)
i ,β

(d+1)
i 〉 ∈V , and α

(d)
i and

α
(d)
i+1 are both facets of β

(d+1)
i . A V -path is the discrete equivalent

of a streamline in a smooth vector field. A discrete vector field in
which all V -paths are monotonic in F and do not contain any loops
is a discrete gradient field, denoted G, of a discrete Morse function.
When constructing a discrete gradient field, we say that G is valid
if these two conditions are met. The discrete equivalent of flow in a
continuous gradient is taking a step in a V-path, i.e., we say that α

(d)
i+1

is one step from α
(d)
i . The critical cell α

(d)
r+1 at the end of a V-path is

the destination of the V-path. We also say α
(d)
r+1 terminates the V-path.

Fig. 2. For a function with a constant negative gradient (blue arrow),
approaches using the locally steepest descent produce identical pair-
ings at all vertices (left). The error of the V-path (red) from the integral
line (blue) passing through a vertex ai accumulates with each step. In
our randomized approach, a vertex can be paired with any vertical edge
with some probability, producing a V-path with lower overall error (right).

3.3 Generic kernel for computing discrete gradient fields
The algorithms surveyed in Section 2, while quite varied in their spe-
cific approaches, roughly implement the same underlying functional-
ity. The algorithmic kernel proceeds in the following four steps:

1. Pick a yet unassigned cell
2. Find its potential pairings and assign weights
3. Check for the validity of the pairing
4. Assign gradient arrow of highest weight or declare a critical cell

Each algorithm may perform these steps in unique ways. For exam-
ple, Lewiner [23] picks the cell whose potential pairing has the highest
weight, and uses a search structure on a graph representation of the
gradient to check that the pairing not create a cycle. In contrast, Shiv-
ashankar et al. [30] first define a discrete Morse function for which the
order in which cells are picked is irrelevant. Each cell has one unique
possible pair derived directly from the function, and the validity of the
pairing is guaranteed by the definition of the function. Gyulassy et
al. [13] picks cells in order of increasing function value and dimension
to guarantee that any pairing is valid. Robins et al. [29] selects any
unassigned vertex, pairs it with the edge in the steepest downwards di-
rection, and assigns the rest of the cells in the lower star of the vertex.
Acyclicity is guaranteed by simulation of simplicity used in generating
the lower link.

4 RANDOMIZED GRADIENT FIELDS

One of the most significant drawbacks of existing techniques is their
poor geometric approximation of gradients which leads to incorrect
connectivity. Due to their local, greedy assignment of gradient arrows
they may produce arbitrary large errors even in regions of constant gra-
dients. Consider the example shown in Fig. 2: The (inverse) gradient
of a function is indicated by the blue arrow and assumed to be con-
stant for all cells. Current techniques will, at each vertex, determine
the locally best pairing, causing all gradient arrows to be chosen hori-
zontally. Thus, the discrete V-path passing through a vertex αi (shown
in red) will diverge drastically from the integral line L in f . The fun-
damental problem is that while each arrow is chosen to minimize the
local error, all arrows deviate in the same direction from −∇ f and
collectively cause major artifacts.

We propose a randomized approach that on average will produce
significantly better results. Instead of choosing the locally optimal gra-
dient arrow at α , we pick among all potential valid pairs with a certain
probability designed such that the expected V-path will approximate
the integral line.

4.1 Algorithm
To construct a randomized gradient field we use the standard discrete
kernel discussed in Section 3.3 with a modified pairing. Similar to ex-
isting techniques, given an unassigned cell α we compute for each of
its co-facets βi a weight for the potential pair 〈α,βi〉. However, instead
of picking the pair with maximal weight, we instead choose at random
from the potential pairs, with probabilities assigned proportional to the
weights. We pair each vertex with an edge probabilistically using these
weights, and use the simple homotopy expansion described by Robins
et al. [29] to complete the pairings for all other cells in the lower star
of the vertex.
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Fig. 3. On the left, the original grid (black) is uniformly subdivided (gray
lines) until the a neighborhood (orange outline) around αi can be mod-
eled using a piecewise constant gradient. The right shows the lower
right quadrant of N, the cells that have a non-zero probability of being
in a V-path passing through αi. The green dots denote the potential exit
point of Pα from N, while the blue dot denotes the exit point of Iα from
N.

More specifically, let α be a 0-cell, and−∇ f (B(α)) be the negative
gradient of f at B(α) the barycenter α . The weight of a potential pair
〈α,βi〉 is defined as the dot-product between the geometric realization
of the pair B(βi)−B(α) and the negative gradient −∇ f (B(α)). Fur-
thermore, all negative weights - indicating invalid pairs - are clamped
to zero:

w(〈α,βi〉) = max{(B(α)−B(βi)) · (−∇ f (B(α)), 0} (1)

Using these weights, the probability of picking 〈α,βi〉 is defined as

Pr(〈α,βi〉) = w(〈α,βi〉)/ ∑
β j∈St−(α)

w(〈α,β j〉). (2)

Note, that the probabilities are invariant under uniform scaling of both
the mesh as well as the gradient magnitudes.

4.2 Geometric Convergence
One of the advantages of our approach is that under subdivision, V-
paths in the resulting gradient field will converge to integral lines in
f . We say a V-path containing α converges to the integral line passing
through B(α) when the Hausdorff distance between the V-path and in-
tegral line goes to zero. It is well known that with increasing mesh
resolution a piecewise constant approximation of a gradient field will
converge to the continuous gradient. In this section we will show that
V-paths of the randomized field will converge to integral lines in a
given piecewise constant gradient field and thus ultimately to any gra-
dient field. In contrast, existing approaches do not faithfully reproduce
even constant gradients, and thus will produce incorrect results even
for well resolved functions.

For simplicity let γ = [0,1]2 be the unit square with a constant gra-
dient ∇ f = (− fx,− fy) and wlg. assume fy > fx > 0. Then the integral
line passing through the origin is the line L : y = fy/ fxx. Here we will
show that if γ is subdivided into a regular n× n grid with gradient
arrows assigned as discussed above then after n steps the expected de-
viation from L is 0 with a standard deviation that behaves like 1/

√
n.

Given the assumptions above, when pairing a vertex, only potential
pairs in positive x or positive y direction in γ have non-zero weights.
All potential pairs in the positive x direction in γ will have a weight of
w(〈α,βx〉) = (1,0) · ( fx, fy) = fx and all potential pairs in the positive
y direction have weight w(〈α,βy〉) = fy. Therefore, the probability of
pairing a vertex with its horizontal edge βx is:

Pr(〈α,βx〉) =
fx

fx + fy
=

fx + fy− fy
fx + fy

= 1−Pr(〈α,βy〉).

Consider assigning gradient arrows starting at the origin one pair at
a time. Each assignment extends the V-path containing the origin by
one pair. Each time we step to the right with probability Pr(〈α,βx〉)
and step upwards with probability Pr(〈α,βy〉). The number of hor-
izontal steps in n trials follows a binomial distribution with parame-
ters n and Pr(〈α,βx〉). Therefore, the expected number of horizontal
steps after n trials is nPr(〈α,βx〉) and the expected number of ver-

tical steps is n− nPr(〈α,βx〉). Normalizing by the grid size, it fol-
lows that the expected endpoint of the V-path starting at the origin
is
(
Pr(〈α,βx〉),Pr(〈α,βy〉)

)
, right on L. Furthermore, the standard

deviation of the binomial distribution normalized by the grid size is
Pr(〈α,βx〉)Pr(〈α,βy〉)/

√
n.

The same argument holds for unit cubes of higher dimen-
sions using multinomial distributions. Let the probabilities
of pairing an edge in the direction xi be Pr(〈α,βxi〉) then
the expected endpoint of the V-path after n steps will be
(Pr(〈α,βx0〉),...,Pr(〈α,βxd 〉)) with the standard deviation in dimen-
sion i given by (Pr(〈α,βxi〉)(1−Pr(〈α,βxi〉)))/

√
n. This proves that

with increasing grid resolution, V-paths of a randomized gradient field
will converge to integral lines of a given piecewise constant gradient
with standard deviation approaching zero. Given that any gradient
field can be approximated up to an arbitrarily small error by a piece-
wise constant field, V-paths in a randomized gradient field will con-
verge to integral lines of the continuous gradient under subdivision.

4.3 Randomized Gradient Fields of Sampled Functions
In practice, we are primarily dealing with sampled functions in which
case we must estimate the gradient vector at vertices. There exist two
options: First, one can use any of the standard gradient estimation
techniques to compute a gradient per vertex and apply the algorithm as
described above. Second, one may compute a modified version of the
weight that admits gradient discontinuities on the boundary of cells.
When using a per-vertex gradient computed with a gradient estimation
technique, such as central differences, it is possible that the gradient
arrow point in a direction that is locally “uphill”, e.g. in a direction of
increasing function value. To avoid potential cycles the weight of each
potential pair in the lower star will be set to zero, and the vertex will
be marked critical.

For simplicity and/or in a parallel environment it may be conve-
nient to compute a gradient per highest dimensional cell (i.e. quads in
2D, voxels in 3D). In this case all lower dimensional cells have mul-
tiple gradient vectors assigned to them. In this case Equation 1 must
be changed to use the appropriate gradient for each βi. Note that for
regular grids the dot product of, for example, an edge in a two dimen-
sional mesh with its two gradients on either side will naturally produce
consistent values. In fact, since the probabilities are scale independent
one can assume a regular grid with edges of length one in which case
weights can be computed as the difference in function values at their
endpoints.

5 A DETERMINISTIC APPROACH FOR ACCURATE GEOMETRY

The algorithm discussed above will construct a gradient field that on
average is correct and will converge with increasing sampling rates to
the gradient of f . However, in practice subdivision is typically infea-
sible for larger data sets. Therefore, the true value of the randomized
gradient field is that it is expected to produce a good approximation of
f ’s gradient even though the quality of any individual V-path cannot
be guaranteed. This lack of guarantees is inconvenient especially for
large data sets where the computation cannot be easily repeated but
geometric quality is important.

In this section we present an extension of randomize gradient fields
that leads to a deterministic algorithm guaranteed to extract high qual-
ity geometry. The algorithm is based on the insight that the geometry
of the MS complex depends only on a small fraction of V-paths, those
on the boundaries between ascending and descending manifolds. In
particular, one may rephrase the problem of constructing a high qual-
ity MS complex as constructing a discrete gradient in which arrows do
not cross a-/descending manifold boundaries. To this end we integrate
the probabilities defined in Section 4 in order of increasing function
value to compute for each cell the probability of its V-path ending at a
particular critical cell. We then assign gradient arrows to minimize the
number of arrows crossing manifold boundaries. Assigning all gradi-
ent arrows of, for example, a two dimensional grid according to their
minima distribution leaves exactly those cells unassigned that form the
boundary of the ascending manifolds. These cells are filled in by as-
signing cells according to their saddle distributions. In a second pass
we then construct the distributions according to maxima to compute
the boundaries between descending manifolds but restrict the compu-
tation to be consistent with the first pass.
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Fig. 4. This figure represents member distributions of cells as a pie-
charts, i.e., the area of a particular color indicates the probability that
the cell will flow to the critical point represented by the color. On the left,
there are two minima, a and b, colored blue, and red, respectively. The
green arrows indicate the discrete gradient arrows that have non-zero
probability of being picked in a randomized approach. At vertex c, all
four directions have equal probability of being paired and therefore, the
member distributions of the vertices at the other end of each arrow are
averaged to get µc. The image on the right illustrates a scenario where
a V-path splits. In this case, µ f represents this split by assigning equal
probability to e and d. The shaded area indicates cells that have zero
probability of belonging to any V-path terminating at a critical 1-cell.

5.1 Computing Membership Distributions
We represent the probabilities of a (randomized) V-path ending at cer-
tain critical cells as a membership distribution µα : K→ R which for
each d-cell α and all cells κ ∈ K defines the probability of the V-path
containing α to end at κ . Membership distributions are defined recur-
sively starting at critical cells. In the following, let β be a co-facet of
α , and Lk−

β
(α) denote the set of d-cells in the lower link of α that are

also facets of β . Let Pr denote the selection probability function from
Equation 2 in Section 4.1. Then:

µα (κ) =


0 if dim(α) 6= dim(κ)
1 if α is critical and κ = α

0 if α is critical and κ 6= α

∑
β∈St−(α)

Pr(〈α,β 〉) ∑
ρ∈Lk−

β
(α)

µρ (κ)

|Lk−
β
(α)|

otherwise.

The first case reflects the fact that µα will only be used to assign ar-
rows between d-cells and (d+1)-cells and thus we are only concerned
with the index-d critical cells that can be reached from α . In the sec-
ond case, α itself is critical, therefore it has probability one since all
possible V-paths containing α must terminate there. Consequently, in
the third case, if α is critical the probability of reaching any other cell
is zero. The final case defines the membership distribution of a cell
recursively as the weighted combination of the membership distribu-
tions of cells in its lower link. Intuitively, the probabilities indicate the
likelihood that a V-path containing 〈α,β 〉 exists which when multi-
plied with the probability that a V-path containing ρ (β ’s other facet)
ends at κ defines the probability that a path containing α reaches κ via
〈α,β 〉. Summing over all β ’s, thus, computes the probability that any
V-path containing α terminates at κ .

Since the membership distribution of any cell depends only on
membership distributions of cells with lower function value, these dis-
tributions can be computed efficiently by processing cells in order of
increasing value.

5.2 Gradient Computation
The general framework we use for assigning discrete gradient arrows
borrows heavily from published techniques [12–14,23,29]. For exam-
ple, we extend a function sampled at vertices to values at every cell
to assigning a cell the value of its highest vertex. We use the region-
growing approach introduced by Gyulassy et al. [13] to assign discrete
gradient arrows on the interior of an ascending manifold. We then per-
form simple homotopy expansions [12,29]. Indeed, as with every pre-
vious technique, we pair a discrete gradient arrow in the direction that
maximizes the weight of the pairing. However, the new weight func-
tion derived below assumes a particular order of assignment, which

requires subtle variations of existing approaches.
In our algorithm, we first compute the d-cell to (d +1) cell arrows

on the interior of an ascending (D− d)-manifold, where D denotes
the maximum dimension of a cell in the mesh K. We then assign all
possible discrete gradient arrows that preserve the simple homotopy
type of the ascending manifolds. For volumetric data, we first assign
all cells in the interior of ascending three-manifolds, then ascending
two-manifolds, etc. until all cells are assigned. Fig. 5 illustrates these
steps for a simple two-dimensional example. Below we report pseudo-
code for the corresponding algorithm.

In the following, let K be the underlying mesh, F a function map-
ping a cell to a scalar value, and G the discrete gradient field. The
gradient field is defined as a set of pairs of cells, where each pair repre-
sents an arrow pointing from the lower to the higher dimensional cell.
We pair a cell with itself to denote criticality. We call cells assigned if
they can be found in G.

1: ComputeGradient(K, F) :
2: G = {}
3: for d ∈ [0,D] do
4: G = AssignArrows(d, K, F, G)
5: G = HomotopyExpand(K, F, G)
6: end for
7: return G

The functions AssignArrows() and HomotopyExpand() simply add
new pairs to the discrete gradient field G.

Weight of a Pairing. In the process of computing the discrete gra-
dient field, our technique assigns a weight to a potential pair 〈α,βi〉
based on (1) the known destinations (critical cells) of V-paths assigned
so far in G, and (2) the membership distribution µα of the lower di-
mensional cell. Let α be an unassigned d-cell, and C be the set of
(d+1)-cells it can be paired with. Formally, C is the set of unassigned
cells in the lower star of α that are its co-facets, i.e., C = {St−(αi)|
β >̇α,β /∈ G}. We call C candidates, since pairing α with any cell
in C produces a valid gradient field. For each βi ∈ C, we assign a
weight to the potential pair 〈α,βi〉 to minimize the number of arrows
crossing manifold boundaries. When pairing α , each cell in the lower
link γi ∈ Lk−(α) has already been paired. In fact, γi is part of V-paths
that do not change below γi with any subsequent gradient arrow assign-
ments, and we can find their terminating critical cells. It is well-known
that in dimensions higher than one, V-paths can split, for example, as
illustrated in Fig. 4 (right). Therefore, let Dγi be the set of critical cells
that terminate V-paths flowing through γi. The weight of 〈α,βi〉 is
defined as:

w(〈α,βi〉) = ∑
γ∈Lk−(α),γ<̇βi

(
∑

κ∈Dγ

µα (κ)

)
(3)

Intuitively, this weight represents the likelihood that α belongs to
the same ascending manifolds as the facets of β . Therefore, higher
weights indicate potential pairs that are less likely to cross boundaries
of ascending manifolds. Just as the definition of the distributions, the
weight depends on the fact that every d-cell in the sub-level complex
of F(α) has been assigned. Therefore every cell in the lower link of
α belongs to assigned V-paths terminating at critical cells in G. Pro-
cessing cells in order of increasing function value as described below
guarantees this property.

Assigning Gradient Arrows. The following algorithm computes the
d-cell to (d + 1)-cell gradient arrows on the interior of an ascending
(D−d)-manifold. The unassigned d-cells in K are processed in order
of increasing function value, with ties broken by simulation of simplic-
ity [10]. By processing cells in sorted order, in effect, we are growing
the spanning trees of d-cells of the sub-level complex of K. As each d-
cell is visited by the algorithm, its potential pairs, the candidates C are
identified. If there are no candidates for pairing, the d-cell is assigned
critical. Otherwise, the one maximizing the weight function given in
Equation 3 is chosen. The algorithm terminates when all d-cells are
assigned.

1: AssignArrows(d, K, F, G) :
2: Kd = {αd ∈ K| dimension of α is d}
3: sort(Kd)
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Fig. 5. A discrete gradient field of a sampled function indicated in gray is computed using the algorithms of Section 5. From left to right: First,
we pair vertices and edges according to the maximal weight, then pair edges and faces in a simple homotopy expansion. Second, we pair the
remaining edges and cells according to their weight and faces and voxels (not shown) in the corresponding homotopy expansion. Finally, we pair
faces and voxels by weight and mark all remaining unpaired voxels as critical.

4: for αi ∈ Kd do
5: C = {β ∈ St−(αi)| β >̇α}
6: if C = /0 then
7: G = G∪〈αi,αi〉
8: else
9: β j = argmaxβi∈C(w(〈α,βi〉))

10: G = G∪〈αi,β j〉
11: end if
12: end for
13: return G
The function argmax() simply returns the argument that maximizes its
value, i.e., the (d +1)-cell where the pair {α,βi} has highest weight.

Simple Homotopy Expansion Let Kn ⊆ K be the subcomplex of
assigned cells of K after selecting n pairs. Assigning a gradient ar-
row adds exactly two cells to this subcomplex. An assignment of a
gradient arrow is a simple homotopy expansion if Kn is homotopic
to Kn+1. In practice, a d-cell to (d + 1)-cell arrow can be inserted
without changing the homotopy type of the subcomplex when (1)
all faces of the d cell are assigned, and (2) the d-cell is the only
unassigned face of the (d + 1)-cell. The only time we prohibit this
expansion is when the arrow would point “uphill”, i.e., the value
of the d + 1 cell is strictly larger than the value of the d cell in
F .

1: HomotopyExpand(d, K, F, G) :
2: H = {α ∈ K| # unassigned facets in G is 1}
3: while H 6= /0 do
4: α = PopFirst(H)
5: β = unassigned facet of α

6: if F(α)≤ F(β ) then
7: G = G∪〈α,β 〉
8: update(H)
9: end if

10: end while
11: return G
When a gradient arrow 〈α,β 〉 is assigned, the number of unassigned
facets of all co-facets of α and β decreases, and update() inserts the
co-facets having exactly one unassigned facet into H.

5.3 A Two-Pass Approach

The algorithm described above only takes the geometric accuracy of
ascending manifolds into account. To get both accurate ascending and
descending manifolds, we use the result of the first pass to restrict a
second pass. In the second pass, we repeat the algorithm on the com-
plement of K using the negative of F with one change: We only con-
sider candidates for pairing cells belonging to the interior of the same
dimensional ascending manifold. Figure 6 illustrates this approach.

6 RESULTS

In this section we present experiments comparing the geometric qual-
ity of the MS complex computed using previous steepest-descent tech-
niques, the new randomized approach, and the two-pass, deterministic
variant. We compute and visualize the MS complex from a discrete
gradient field using the techniques described by Gyulassy et al. [16].
For clarity we begin with simple two-dimensional examples. Fig. 7

Fig. 6. A first pass computes accurate geometry for the ascending man-
ifolds (left). In the second pass (right), arrows in ascending 1-manifolds
(pink lines) may only be paired with one another. In each image, the
hazy cells indicate the maximum probability of a cell belonging to a par-
ticular manifold - the darker the color, the lower the probability. The
boundaries between cells in our MS complex naturally occur where
probability of membership is lowest.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. The top row, (a-c) show the function from Fig. 1, up-sampled
four times in each direction. Note that the steepest-descent construc-
tion in (a) does not improve with increased mesh resolution. We
show five realizations of our randomized approach (b), and our near-
optimal approach (c). In (d-f) we show the same techniques applied
to f (x,y) = arctan(−y/|x|) for r1 < ||(x,y)|| < r2. In these examples, the
smooth integral line starting at the saddle forms a circle. The same
function is used sampled four times finer in each direction in (g-i).
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(a) (b) (c)
Fig. 8. These images illustrate the dependence of the steepest-descent construction (a) on the mesh orientation, and the resilience of the two
proposed techniques (b, c). The same underlying function is re-sampled onto one grid oriented vertically, and another grid rotated 30 degrees from
vertical. We overlay the complexes computed for each, aligning them with the orientation of the underlying function. Excluding boundary artifacts,
the complexes of the locally maximizing approach (a) vary significantly, the randomized approach (b) displays better behavior, and the complexes
of our two-pass approach (c) vary only by the width of a cell.

(a) (b) (c) (d) (e) (f)

Fig. 9. In (a-c), minima along two “valleys” and maxima along a “ridge” are separated by saddles. While the complex generated by the steepest
descent approach (a) is consistent, it connects the saddles and extrema poorly. Our randomized approach performs better (b), and the two-pass
approach (c) produces a very accurate solution. In (d-f) we show the resilience of our techniques to flat regions in the data. (d) The region growing
variant of the steepest-descent algorithm described by Gyulassy et al. [12] provides a reasonable approximation to ascending 1-manifolds (pink
lines), However, the descending lines simply follow the steepest-descent direction given by simulation of simplicity [10]. We apply the same order
of assignment, but with our randomized kernel (b), resulting in a more intuitive traversal of flat regions. In the two-pass approach, distance (in
the number of steps in a V-path) naturally factors into the weight function, steering the geometry of the complex perpendicularly away from the
boundary of a flat region.

and 1 show how each algorithm responds when the mesh is subdi-
vided. We sample two smooth functions on a regular grid: The first is
the sum of two Gaussians; The second is a function with semi-circular
integral lines. In both cases existing approaches create severe artifacts
in both direction and shape of the one-manifolds. Moreover, the ar-
tifacts are unaffected by the increase in resolution. The randomized
algorithm, while producing somewhat wavy patterns, already signif-
icantly improves the geometry and converges to the correct solution
with increasing mesh resolution. The two pass approach extracts the
correct geometry up to the resolution of the mesh, and a higher reso-
lution mesh unsurprisingly allows more accurate geometry.

Fig. 8 shows the resilience of each algorithm to changes in the ori-
entation of the underlying mesh. Here, an underlying function is sam-
pled by two grids, rotated 30 degrees from one another. The com-
puted complexes are overlaid, for each technique, for visual compar-
ison. Again the steepest-descent assignment shows large variations
and artifacts, while the randomized approach shows a good correspon-
dence, and the two-pass algorithm extracts identical geometry to the
extent possible.

Fig. 9(a-c) compares the topological correctness of each technique.
In this case, we connect saddles along a perturbed valley to maxima
on a perturbed ridge, and saddles from the ridge to the minima. In
this case we consider the topological information encoded by an arc of
the MS complex to be correct when the critical points at the ends are
connected by an integral line in the underlying function. An infinites-
imal perturbation of the function can redirect integral lines, therefore
any MS complex that is consistent is a valid output (a quasi-MS com-
plex in the sense of [9]). However, the output ideally should be both

consistent and correct for some smooth interpretation of the sampled
function. In this sense, our randomized and two-pass techniques pro-
duce a far more correct complex.

Imaged data is often captured with limited precision or quantized
to reduce its size. This often leads to degenerate regions with zero
gradients everywhere. Therefore, the behavior of algorithms in such
“flat” regions is of significant interest. In Fig. 9(d-f) we compare the
results of our new algorithms against the best know previous tech-
nique of Gyulassy et al. [14], where gradient arrows are assigned in a
breadth-first order to route V-paths efficiently across flat regions.

Finally, Fig. 10 compares our algorithms against steepest-descent
techniques for two volumetric data sets. As before, the steepest-
descent algorithm produces significant artifacts as exemplified by the
shape of the one-manifolds for the tetrahedrane. Note that in the jet
example, the mangled geometry causes entire Morse crystals to disap-
pear leading to significant changes in the structure of the complex.

Results were generated on a commodity laptop, with 4Gb main
memory and 2.2GHz Intel processor. Our algorithms were imple-
mented in C++. The running time and total memory used for each
example is summarized in table 1. The table shows results for both
a serial implementation of the randomized approach, as well as the
deterministic algoirthm for computing accurate geometry. Storing the
membership distributions was responsible for the large memory foot-
print of the latter approach.

7 DISCUSSION

Our results highlight the difficult cases for a local steepest-descent al-
gorithm. In many cases, such an algorithm produces acceptable re-
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 10. We show results for two three dimensional datasets. The top row shows the ascending 2-manifolds, arcs, and nodes of the electron
probability density function of a tetrahedrane(C4H4) molecule (a). (b) Uses the steepest-descent, (c) the randomized, and (d) the two-pass
approach. Note the shape of the arcs, and the gradual decline of the surface of (d) with respect to (b)(circled). Figure 1(e) shows the integrated
probability functions for this dataset. The bottom row (e-i) displays the dissipation elements in a cross-flow jet flame. Each element is defined
by the boundary of an ascending 3-manifold on the interior of the flame, and the same filters are used to select from each complex computed
using steepest-descent (f), randomized (g), and two-pass (h) gradient fields. Several of the ascending 3-manifolds in the complex computed using
steepest-descent (f) are missing (arrow), possibly due to handle slides. (i) shows the integrated probabilities for our two-pass approach, with blue
indicating low ascending manifold membership probability, and red indicating low descending manifold membership probability.

Table 1. Run time and maximum memory usage to construct the discrete gradient field using the randomized approach(section 4) and the
deterministic one(section 5). The times reported for the randomized approach are for a single thread.

Randomized Deterministic
XxY(xZ) # Vert Time(s) Memory(Mb) Time(s) Memory(Mb)

gauss60 60x60 3600 0.047 <1 0.124 2
gauss240 240x240 57,600 0.546 4 2.044 12
JetSlice 768x512 393,216 4.509 14 16.54 49
C4H4 24x24x24 13,824 0.374 5 5.7 18
Fuel 64x64x64 262,144 4.509 12 14.64 40
JetChi 192x84x128 2,064,384 57.02 100 256.3 411

sults. In particular, sharp features, such as sharp ridge and valley
lines are typically well-represented by a steepest-descent algorithm.
In these cases, our approaches perform just as well, since there tends
to be little variation in the probable membership of a cell.

In practice, we represent membership distributions as a sparse map,
and compute them during the region-growing construction. In this
case, only the membership distributions on the growing front of our
region need to be available. When every d-dimensional neighbor of
a d-cell has been assigned, its membership distribution can safely be
discarded. In our implementation, the memory requirements of mem-
bership distributions is given by a constant times the number of cells
crossed by the largest isosurface. The constant is bounded by the max-
imum number of critical d-cells α could flow to. In equation 3, the set
Dγ of critical d-cells that terminate the assigned V-paths containing
a cell is also computed incrementally. When a gradient arrow is as-
signed into a pair 〈α,β 〉, Dα it is simply the union of Dγ for γ<̇β . In
practice, the running time of our algorithm is C2 ∗n logn.

The one case our two-pass algorithm does not handle correctly is
the interior of a topological strangulation. The geometric accuracy
of our approach depends on finding the boundary between distinct re-
gions - in a strangulation, an a-/descending manifold borders itself. In
this case, when each potential pairing has equal weight, we resort to
steepest-descent.

8 CONCLUSION AND FUTURE DIRECTIONS

We have presented two new approaches for computing discrete gradi-
ent fields that better approximate the gradient flow a scalar function.

Our first technique is simple and can be plugged in as-is to parallel
computation of the MS complex. Our second technique provides ac-
curate geometry, but at the cost of serial computation. As the MS com-
plex is becoming more widely used in analysis, geometric guarantees
become necessary. We will investigate techniques for providing nu-
merical error estimates for analysis performed using the MS complex.
The most significant current limitation is the heavier memory footprint
of the two-pass approach. Although the two-pass algorithm computa-
tion is serial, there are several potential avenues for its parallelization.
We are investigating a GPU implementation of the membership distri-
bution computation, maintaining efficiency by only keeping the most
probable elements of µ . We plan on addressing the memory limita-
tion initially through a divide-and-conquer approach on a distributed
memory system. Alternatively, the complex could be computed in
parallel using any previous technique, with a multi-threaded approach
applying the two-pass algorithm to “fix” the gradient on independent
sub-regions delimited by the boundaries of existing ascending and de-
scending manifolds.

ACKNOWLEDGMENTS

This work is supported in part by NSF OCI-0906379, NSF
OCI-0904631, DOE/NEUP 120341, DOE/MAPD DESC000192,
DOE/LLNL B597476, DOE/Codesign P01180734, and DOE/SciDAC
DESC0007446.

2021GYULASSY ET AL: COMPUTING MORSE-SMALE COMPLEXES WITH ACCURATE GEOMETRY



REFERENCES

[1] E. Babson and P. Hersh. Discrete Morse functions from lexicographic
orders. Transactions of the American Mathematical Society, 3(457):509–
534, 2005.

[2] J. Bennett, V. Krishnamurthy, S. Liu, V. Pascucci, R. Grout, J. Chen,
and P.-T. Bremer. Feature-based statistical analysis of combustion sim-
ulation data. IEEE Transactions Visualization and Computer Graphics,
17(12):1822–1831, 2011.

[3] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topolog-
ical hierarchy for functions on triangulated surfaces. IEEE Transactions
on Visualization and Computer Graphics, 10(4):385–396, 2004.

[4] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell. Analyzing
and tracking burning structures in lean premixed hydrogen flames. IEEE
Transactions on Visualization and Computer Graphics, 16(2):248–260,
2010.

[5] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B.
Bell. Interactive exploration and analysis of large scale simulations using
topology-based data segmentation. IEEE Transactions on Visualization
and Computer Graphics, 17(99), 2010.

[6] A. Cayley. On contour and slope lines. The London, Edinburgh and
Dublin Philosophical Magazine and Journal of Science, XVIII:264–268,
1859.

[7] F. Cazals, F. Chazal, and T. Lewiner. Molecular shape analysis based
upon the morse-smale complex and the connolly function. In Proceed-
ings of the 19th Symposium on Computational Geometry, SCG ’03, pages
351–360, New York, NY, USA, 2003. ACM.

[8] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale
complexes for piecewise linear 3-manifolds. In Proceedings of the 19th
Symposium on Computational Geometry, pages 361–370, 2003.

[9] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-
Smale complexes for piecewise linear 2-manifolds. Discrete Computa-
tional Geometry, 30:87–107, 2003.
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