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Abstract. Assessing white matter fiber orientations directly from DWI
measurements in single-shell HARDI has many advantages. One of these
advantages is the ability to model multiple fibers using fewer parameters
than are required to describe an ODF and, thus, reduce the number of
DW samples needed for the reconstruction. However, fitting a model di-
rectly to the data using Gaussian mixture, for instance, is known as an
initialization-dependent unstable process. This paper presents a novel
direct fitting technique for single-shell HARDI that enjoys the advan-
tages of direct fitting without sacrificing the accuracy and stability even
when the number of gradient directions is relatively low. This technique
is based on a spherical deconvolution technique and decomposition of a
homogeneous polynomial into a sum of powers of linear forms, known
as a symmetric tensor decomposition. The fiber-ODF (fODF), which is
described by a homogeneous polynomial, is approximated here by a dis-
crete sum of even-order linear-forms that are directly related to rank-1
tensors and represent single-fibers. This polynomial approximation is
convolved to a single-fiber response function, and the result is optimized
against the DWI measurements to assess the fiber orientations and the
volume fractions directly. This formulation is accompanied by a robust
iterative alternating numerical scheme which is based on the Levenberg-
Marquardt technique. Using simulated data and in vivo, human brain
data we show that the proposed algorithm is stable, accurate and can
model complex fiber structures using only 12 gradient directions.

1 Introduction

In contrast to diffusion tensor imaging (DTI), High Angular Resolution Diffu-
sion Imaging (HARDI) is an imaging technique that is capable of describing
complex white matter structures such as crossing fibers. Given HARDI data,
various reconstruction techniques are used to infer the fiber structures [1–6].
These techniques are primarily based on the reconstruction of an orientation
distribution function (ODF) that describes the dominant diffusion directions.
To recover the white matter fiber pathways, the dominant diffusion directions
are extracted from the ODF. Since white matter connectivity maps are obtained



from tracking these directions, an accurate reconstruction of this information
is crucial. This motivated the development of various analytical and numerical
techniques to achieve this task. These techniques are mainly based on polynomial
root-finding and high order ODF tessellation [7–9], or low-rank tensor approx-
imations [10, 11]. However, the accuracy of these algorithms is limited by the
ODF quality of reconstruction and its reconstruction order (i.e., the spherical
harmonics truncation order). Also, since these algorithms introduce significant
complexity, the complete process of ODF reconstruction, followed by orienta-
tions estimation, is inefficient. Multi-compartment models [3, 12–14], however,
avoid the ODF estimation step by estimating the fiber parameters directly from
the DWI measurements. This allows modeling multiple fiber orientations using a
few number of parameters and, thus, reduce the number of DWI measurements
needed for the reconstruction.

However, these models have two main disadvantages: First, to obtain the best
results the correct number of fiber compartments has to be pre-selected. As was
pointed out in [13], in single-fiber voxels the model will lose accuracy if fitting
two-compartments to the data. Second, the resulting non-linear optimization
problem is unstable and initialization dependent since the objective function
possesses local minima.

In this paper we present an alternative direct estimation technique that en-
joys the advantages of direct fitting without sacrificing the stability, accuracy and
robustness to noise of the algorithm. In addition, it allows accurate estimation of
the orientations even in a case of over-fitting. This technique is based on spher-
ical deconvolution, which is a powerful technique for modelling complex fiber
structures by means of a fiber-ODF (fODF) [2]. It is known that the maximal
accuracy of spherical deconvolution is achieved when the fODF is decomposed
into rank-1 tensors that represent single fiber orientations [10, 11, 15]. Thus, the
fODF estimation step is followed by a tensor decomposition. In this work we
show that using rank-1 tensor fiber representations as linear-forms, these two
distinct steps can be combined into one optimization problem that allows robust
estimation of the fiber parameters directly from the DWI measurements.

The proposed approach is motivated by the symmetric tensor decomposi-

tion [16], that is, any homogeneous polynomial of order d may be decomposed
into a sum of r distinct linear-forms of the same order. Since any spherical func-
tion with antipodal symmetry may be represented as an even-order homogeneous
polynomial (or a symmetric higher-order tensor) [17], we can decompose an ODF
or a fODF in a similar manner. Thus, we consider here a lower-rank polynomial
approximation of a fODF in terms of even order linear-forms which are directly
related to rank-1 tensors. In this approximation, each linear-form represents a
single fiber and its coefficients correspond directly to the fiber orientation and the
volume fraction (the mixing parameter). Similar to existing multi-compartment
models, the fODF expansion in linear-forms is naturally positive-definite, and
hence, no additional constraint that guarantees this property is required. The
expansion’s coefficients are estimated via a spherical deconvolution operation
such that each term is convolved to a single-fiber response and the result is opti-



mized against the HARDI measurements by means of the l2 norm. The resulting
non-linear optimization problem is solved here using a novel iterative alternating
scheme based upon the Levenberg-Marquardt technique and is shown to produce
stable and accurate results.

In this paper we test the algorithm on simulated data as well as in vivo,
human brain data. In both cases the set of gradient directions was sub-sampled
from 96 (or 64 for the human brain data) down to 12 so we could explore the
limitations of the algorithm and the decline in performance. We show that, in
both cases (simulated and real data), sub-sampling from 64 to 32 directions does
not change significantly the results. A performance decline is clearly observed
when the set contains only 12 gradient directions, yet, the algorithm produces
useable results and can reliably separate fibers crossing at 75 degrees and above.

This paper is organized as follows: In Sec. 2 we briefly review the spherical
deconvolution approach and develop the new method in this context. In Sec. 3
we discuss the numerical optimization technique that we developed to solve the
minimization problem. Finally, Sec. 4 is devoted to accuracy and stability studies
and experiments on in-vivo, human brain data.

2 Spherical deconvolution via symmetric tensor

decomposition

Spherical deconvolution is a common technique to recover major diffusion di-
rections from DWI data [2]. It is based on a convolution between a spherically
symmetric function, known as fODF, and an axially symmetric kernel that rep-
resents a single fiber response. Given a vector of n DWI measurements in the
gradient directions, the fODF, denoted by F , is reconstructed by solving the
following deconvolution problem:

min
F

1

2

n
∑

i=1

∥

∥

∥

∥

S(gi, b)− S0

∫

S2

F (v)K(gi,v)dv

∥

∥

∥

∥

2

. (1)

This problem is solved for a fixed kernel, K, where its width is adjusted to the
particular dataset. The resulting fODF represents a sum of spherical delta func-
tions aligned with the fiber orientations and weighted by the volume fractions.
This basic problem is solved by means of least-squares where the fODF is recon-
structed by a pseudo-inverse operation. However, additional constraints such as
fODF positivity leads to non-linear optimization problem [2].

In [16] it was shown that any homogeneous polynomial of order d may be
decomposed into a sum of linear-forms of the same order such that:

F (x1, x2, . . . , xl) =

r
∑

i=1

λif
d
i (2)

where fi = (
∑l

i=1 αixi), r is the polynomial rank and l is the polynomial di-
mension. This decomposition is known as symmetric tensor decomposition since



homogeneous polynomials are directly related to symmetric tensors. An algo-
rithm to decompose a general homogenous polynomial was proposed in [16].

It is known that any spherical function with antipodal symmetry may be rep-
resented as an even-order homogeneous polynomial, where its order is equivalent
to the truncation order of the corresponding spherical harmonics expansion [17].
Since a fODF may be represented as a homogenous polynomial, one may use [16]
to compute its full-rank decomposition. However, a full-rank fODF encodes in-
formation on white matter fibers, as well as noise. Thus, it was proposed in [10,
11] to recover the fiber orientations via a lower-rank tensor approximation. This
approximation was applied to the fODF and required its estimation first.

To combine the fODF reconstruction and the orientations estimation into
one optimization problem, we first approximate the fODF using an equivalent
lower-rank approximation by means of polynomial approximation (symmetric
tensor decomposition) such that:

F (v) ∼
r̃

∑

i=1

γif
d
i =

r̃
∑

i=1

(αi · v)
d, r̃ < r, (3)

where αi ∈ R
3, v ∈ S2 and each fiber aligned in direction αi is identified with a

linear form (αi ·v)
d. The number of fibers to be estimated is determined by the

approximation rank r̃ and the expansion coefficients are defined as γi = ‖αi‖
d
.

Next, we substitute (3) into (1). This leads to the following non-linear opti-
mization problem:

min
αj
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S(gi, b)− S0

∫
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r̃
∑
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(αj · v)
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∥

∥

2

. (4)

This problem is solved for the coefficients of the linear-forms, three coefficients
for each fiber, which are directly estimated from the DWI measurements. The
fiber orientations and the volume fractions are derived as follows: Since each
linear-form gets its maximum at the direction specified by αj , given the optimal

solution, α̃j , the corresponding fiber orientation is simply uj =
α̃j

‖α̃j‖
. As we do

not impose the constraint
∑r̃

j=1 ‖αj‖
d
= 1, the corresponding volume fraction

is given by wj =
‖α̃j‖

d

∑
r̃
j=1

‖α̃j‖
d .

3 Numerical optimization

To solve this non-linear optimization problem (4) we adopt the Levenberg-
Marquardt (LM) technique. When r̃ = 1, the three coefficients can be estimated
accurately using a straightforward implementation of the LM. However, when
r > 1, more coefficients are involved and estimating them at once provides poor
results. To deal with the multi-fiber estimation case, we suggest an iterative al-
ternating LM scheme. In this scheme, a complete update step is composed of r̃



LM sub-steps. In each sub-step only the coefficient associated with a single fiber
are updated while the other coefficients are kept fixed as described in Algorithm
1. In each iteration, one has to convolve the fiber estimate to the kernel. This op-
eration is performed using a discrete spherical integration scheme [18]. In terms
of convergence, we have found that the algorithm is very robust and converges
for any initial guess.

Algorithm 1 Alternating LM for r̃ = 2

1: Let I be the objective function defined in 4, and let Jk = ∂I
∂αk

, k = 1, 2..
2: Set t = 0.
3: Initialize α

t
k, k = 1, 2.

4: Compute α
t+1

1 using an LM update with respect to J1(α
t
1,α

t
2) and a damping

parameter ǫ1.
5: Compute α

t+1

2 using an LM update with respect to J2(α
t+1

1 ,αt
2) and a damping

parameter ǫ2.
6: if converged then

7: return α
t
1,2

8: else

9: t← t+ 1
10: goto 4
11: end if

4 Simulations

4.1 Synthetic data

To test the accuracy and stability of the algorithm we simulated two crossing
fibers at 4 separation angles: 45, 60, 75 and 90, equal volume fractions and two
b-values: b = 1500s\mm2 and b = 3000s\mm2. The signal was simulated using
the multi-tensor model:

S(gi, b) = S0

2
∑

j=1

wj exp (−bgT
i Djgi) (5)

where for each compartment we assume a prolate tensor with FA=0.8. The
simulated signal was corrupted by Rician noise distribution as follows:

Snoisy(gi, b) =
√

(S(gi, b) + n1)2 + n2
2. (6)

where n1, n2 ∼ N (0, σ2) and σ = S0

SNR
.

For all of the experiments presented below the SNR was set to 20 and for
each separation angle the performance of the algorithm was evaluated on 200
noise realizations. The polynomial order is set to d = 8 as this value gives an



optimal trade-off between the ability to resolve low separation angles and noise
sensitivity at this SNR [2]. The single-fiber response kernel is described here by
the Watson function K(gi,v, δ) = exp (−δ(gT

i · v)2) where δ is a function of
the b-value and the principal diffusivity, gi is the gradient direction and v is the
integration parameter. The Watson distribution is preferred here to the Bingham
distribution used in [19]. As was pointed out in [19] the Bingham distribution
accounts better for fiber-spread but decreases the angular separation power of
the algorithm which is not a desired result here.

All the angular deviations reported here are calculated by summing up the
deviations of the fibers from their closest ground-truth compartments, and di-
viding the result by the number of fibers (two fibers in our experiments). In
the first experiment we tested the stability of the algorithm using 64, 32 and
12 gradient directions. For each separation angle we simulated a noisy signal
at different separation angle, initialized the algorithm randomly 200 times and
measured the mean angular deviation from the true orientations as well as the
standard deviation. The results in Fig. 1 show that the algorithm provides stable
performance in all of the simulated cases using 64 and 32 directions. The stability
of the algorithm declines when the number of gradient directions is reduced to
12. In that case, only large separation angles can be detected reliably, especially
when b=3000.
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Fig. 1. Stability analysis for SNR=20. The experiments were carried on b=1500 (left)
and b=3000 (right).

Next, we tested the accuracy of the algorithm. For each separation angle 200
noisy data instantiations were simulated and the angular deviation was mea-
sured separately for each instantiation. To test the performance decline under
gradient directions sub-sampling, different sets of gradient directions were used:
96, 64, 32 and 12. The mean and the standard deviation of the collected results
are depicted in Fig. 2. These results verify the stability test observations: The
algorithm performs very well using 32 gradient directions and provide plausible
results with only 12 gradient directions. Note that 12 directions are below the



minimal number of measurements required for a 4th-order ODF estimation (15
coefficients) without using sparse representations or super-resolution techniques.

Finally, we compared our results to direct multi-tensor fitting. Since the signal
was simulated using the multi-tensor model, theoretically, fitting this model to
the data would give the best results. However, the comparison results depicted
in Fig. 3 show that our algorithm is more stable, provide more accurate results
and has a better separation resolution. To compare robustness to noise we added
a dataset with SNR=40.

The multi-tensor fitting results were generated using Camino [20] with cylin-
drically symmetric tensors constraint. To get the best results, the diffusivities
were set to the same values used to simulate the signal. The superiority of our
algorithm in terms of accuracy and robustness to noise with only 12 samples is
clearly shown in Fig. 3.
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Fig. 2. Simulated data with SNR=20. Results of two b-values are presented:
1500s\mm2 (left) and 3000s\mm2 (right). The angular resolution is presented at the
top and the volume fractions at the bottom. When the standard deviation exceeds the
axis limit, we present the mean only.

In addition to the results reported here, our algorithm was compared with
12 different HARDI reconstruction techniques in ISBI’12 Workshop on HARDI
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Fig. 3. Comparison of our Low Rank Polynomial Approximation (LRPA) and the
Multi-Tensor (MT) model. The b-value is 3000 and the SNRs are 40 (top) and 20
(bottom). From left to right: 64, 32 and 12 gradient directions.

reconstruction [21]. The different algorithms were evaluated on a simulated 3D
phantom as well as single voxels, in three SNR levels: 30, 20 and 10. Each
algorithm was ranked based on the accuracy of fiber directions reconstruction,
estimation of the number of fibers in each voxel and the ODF quality compared to
the ground-truth. The number of gradient directions used for the reconstruction
was also taken into account for the final ranking. Our algorithm (presented under
the team name “The HOT gang”) was ranked first or second in all of the three
final ranking options.

The measured running time for a Matlab implementation of our algorithm is
on average 40ms per voxel. This was measured on a standard laptop with 2.4Ghz
Intel Core i5 CPU and 4 GM RAM. The tested implementation is non-optimal
and acceleration methods can be used to achieve faster convergence times.

4.2 Human brain data

The human brain data was acquired on a 3T Siemens Tim Trio scanner using a
single-shot spin-echo EPI sequence and a b-value of 2000 s/mm2. One B0 image
and 64 diffusion weighted images with a matrix size of 106 × 106 × 76 and a
voxel volume of 2mm3 were acquired. The measured baseline SNR for these
data was approximately 20. A white matter mask was registered to the data and
the kernel width, δ, was estimated by computing the mean principal diffusivity
of all white matter voxels with FA > 0.7.

Selecting the number of fiber compartments per voxel is a significant chal-
lenge, especially in direct model fitting techniques. As was pointed out in[13], fit-
ting a mixture model with more than one compartment to a single fiber voxel will
yield inaccurate results. Therefore, the number of fibers has to be pre-selected
by using statistical inference methods such as an F -test. As we have found out



Fig. 4. Coronal slice showing reconstruction results of a crossing fibers region in human
brain. From left to right: 64, 32 and 12 gradient directions. The FA values are shown
at the background. The ODFs were reconstructed using [4] and are only provided as a
reference for the fibers’ structure in this ROI.



by simulated data experiments, our technique can accurately resolve the fiber
orientations even in a case of over-fitting. That is, fitting a convolution of a
sum of two linear-forms to a single fiber voxel, will yield a dominant fiber with
a high volume fraction and a fiber with a low volume fraction. The dominant
fiber accurately matches the orientation of the single fiber. This suggests that we
can estimate the orientations everywhere using a fixed number of linear-forms
and, then, eliminate “weak” fibers by direct thresholding. This is a clear advan-
tage over multi-compartment fitting techniques. Also, it was shown in [14] that
weight-based thresholding provides more accurate estimates of the number of
fibers compared to statistical inference methods.

For this brain data we set r̃ = 3 and learn the threshold from the high FA
voxels that were used for the kernel parameter estimation. As most of these
voxels lie in single tract regions, such as the corpus callosum, they presumably
consist of single fibers. Thus, by applying a rank-two polynomial approximation
to these voxels, the term with the lowest weight is likely to describe noise rather
than a fiber. Indeed, the results show a high ratio between the weights of the
first and the second term in these voxels. The threshold was then set as the
average of the lowest weights where a value of 0.21 was computed. Thus, fibers
with a volume fraction less than about 25% of the dominant volume fraction are
considered as noise and eliminated.

To test the algorithm we have chosen the brain region where the corpus
callosum (CC), the corona radiata (CR) and the superior longitudinal fasciculus
(SLF) form a crossing pattern (Fig. 4). The results show that along the single
tracts mostly one fiber model was selected whereas in the region where the
different tracts cross, mostly two-fiber patterns were selected.

The fiber orientations were reconstructed using different sets of gradient di-
rections which contain 64, 32 and 12 directions. The original set of gradient
directions was sub-sampled using the algorithm described in [22]. The results of
the fiber orientations and the number of fiber selected in each voxel are very simi-
lar whether 64 or only 32 directions were used. Crossing fibers are still presented
using only 12 gradient directions although a performance decline is observed.
This is due to loss of separation resolution and estimation accuracy in compli-
ance with the simulated data observations. Yet, considering the noise level and
the number of gradient directions used, these results are plausible. Note that we
have not used any spatial regularization term in the current algorithm and we
believe that these results can be improved by adding such regularization.

5 Conclusions

We presented a robust technique for the estimation of white matter fiber ori-
entations and volume fractions directly from single-shell HARDI measurements.
Similar to multi-compartment models, this technique avoids the complexity of
extracting the orientations from the ODF and can model complex fiber structures
using a few number of parameters. This technique relies on a low-rank homoge-
neous polynomial approximation by means of powers of linear-forms represent-



ing single fibers. An l2 optimization problem based on a spherical deconvolution
technique is used to estimate the fiber orientations and the volume fractions. Our
technique is accompanied by a robust iterative alternating Levenberg-Marquardt
scheme. Using simulated data we showed that our algorithm provide accurate
and stable results for low number of gradient directions and is favorable to direct
multi-tensor fitting. We applied this algorithm to in vivo, human brain data and
showed that the reconstructed orientations follow the major tracts and describe
fiber intersection regions well. Furthermore, by sub-sampling the number of gra-
dient directions we showed that plausible results can be obtained using only 12
gradient directions. The potential of this approach for reduced HARDI acqui-
sition time is clear. In the future, we plan to deploy our new method within a
tractography algorithm. In addition, accuracy and stability evaluations with re-
spect to other reconstruction techniques, including sparsity-based methods, will
be provided.
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6. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Reso-

lution of complex tissue microarchitecture using the diffusion orientation transform
(DOT). NeuroImage 31(3) (2006) 1086–1103

7. Aganj, I., Lenglet, C., Sapiro, G.: ODF maxima extraction in spherical harmonic
representation via analytical search space reduction. In: MICCAI’10. Volume 6361
of LNCS. (2010) 84–91

8. Bloy, L., Verma, R.: On computing the underlying fiber directions from the dif-
fusion orientation distribution function. In: MICCAI’08. Volume 5241 of LNCS.
(2008) 1–8

9. Ghosh, A., Wassermann, D., Deriche, R.: A polynomial approach for maxima
extraction and its application to tractography in hardi. In: IPMI’11. Volume 6801
of LNCS. (2011) 723–734

10. Jiao, F., Gur, Y., Johnson, C.R., Joshi, S.: Detection of crossing white matter
fibers with high-order tensors and rank-k decompositions. In: IPMI’11. Volume
6801 of LNCS. (2011) 538–549



11. Schultz, T., Seidel, H.P.: Estimating crossing fibers: A tensor decomposition ap-
proach. IEEE TVCG 14(6) (2008) 1635–1642

12. Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.
13. Alexander, D.: Multiple-fibre reconstruction algorithms for diffusion MRI. Annals

of the New York Academy of Sciences 1046 (2005) 113–133
14. Schultz, T., Westin, C.F., Kindlmann, G.: Multi-diffusion-tensor fitting via spher-

ical deconvolution: A unifying framework. In Jiang, T., Navab, N., Pluim, J.,
Viergever, M., eds.: MICCAI’10. Volume 6361 of LNCS., Springer, Heidelberg
(2010) 673–680

15. Rathi, Y., Malcolm, J.G., Michailovich, O., Westin, C.F., Shenton, M.E., Bouix, S.:
Tensor kernels for simultaneous fiber model estimation and tractography. Magnetic
Resonance in Medicine 64(1) (2010) 138–148

16. Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.P.: Symmetric tensor decom-
position. Linear Algebra and Applications 433(11-12) (2010) 1851–1872

17. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion
coefficients from high angular resolution diffusion imaging: Estimation and appli-
cations. Magnetic Resonance in Medicine 56(2) (2006) 395–410

18. Atkinson, K.: Numerical integration on the sphere. J. Austral. Math. Soc. 23
(1982) 332–347

19. Kaden, E., Knsche, T.R., Anwander, A.: Parametric spherical deconvolution: Infer-
ring anatomical connectivity using diffusion MR imaging. NeuroImage 37 (2007)
474–488

20. Cook, P.A., Bai, Y., Nedjati-Gilani, S., Seunarine, K.K., Hall, M.G.,
Parker, G.J., Alexander, D.C.: UCL Camino Diffusion MRI Toolkit.
http://cmic.cs.ucl.ac.uk/camino/ (2006)

21. Gur, Y., Jiao, F., Zhu, S.X., Johnson, C.R.: Fiber orientations assessment via
symmetric tensor decomposition. In: ISBI Workshop on HARDI reconstruction,
Barcelona, Spain (May 2012) http://hardi.epfl.ch/

22. Zhan, L., Leow, A.D., Jahanshad, N., Chiang, M.C., Barysheva, M., Lee, A.D.,
Toga, A.W., McMahon, K.L., de Zubicaray, G.I., Wright, M.J., Thompson, P.M.:
How does angular resolution affect diffusion imaging measures ? NeuroImage 49(2)
(2010) 1357 – 1371


