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1. ABSTRACT 
 
The objective of this research was to develop and test a procedure for modeling the 
specimen-specific mechanical response of multicellular constructs to globally applied 
strains/stresses using the Material Point Method (MPM).  Volumetric confocal image 
data of vascularized collagen constructs were used to generate particle distributions.  
Refinement and sensitivity studies were performed.  A variant of the standard MPM 
algorithm, in which the background grid is not reset between computational cycles, was 
investigated.  Results demonstrated that geometric representations could be generated 
easily from confocal image data.  Despite the globally homogeneous applied strain, 
stress distribution in the vascular constructs was highly inhomogeneous.  The modified 
MPM algorithm eliminated a common MPM artifact that results from particles crossing 
grid boundaries.  This research demonstrates the feasibility of using meshless methods 
for specimen-specific analysis of complex multicellular constructs, enabling the study 
of the relationship between local cellular stresses and strains and cellular catabolic / 
anabolic responses to mechanical conditioning. 
 
2. INTRODUCTION 
 
Cells exhibit a wide range of responses to mechanical conditioning, including 
modification of the extracellular matrix (ECM) and alterations in cell adhesion.  Thus, 
the effects of globally applied mechanical loads on local cell stresses and strains are an 
important topic in mechanobiology.  Globally applied mechanical loading can result in 
highly inhomogeneous stress and strain fields around cells.  Explicit microscale 
geometric and material representations are needed to calculate the local stress state, but 
standard numerical analysis techniques such as the finite element (FE) method are 
difficult to apply because of the highly complex geometry. 
 
Previous efforts to model cells and cellular constructs have primarily used the FE 
method for spatial discretization. Applications include the study of leukocyte 
deformation [1], cell-tissue interactions [2], intracellular/extracellular fluid flow [3], 
chondrocyte interaction with the pericellular matrix [4] and micropipette aspiration 
[5,6].  The difficulty with application of the FE method to multicellular constructs is 
that a large specimen-specific model is often required to represent a significant portion 
of the overall domain of interest.  The large, complex geometry of cellular constructs 
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makes this task extremely difficult with the FE method.  Meshless methods are 
especially attractive for these problems.   
 
Our laboratory is studying the mechanical interactions of microvessel fragments with a 
synthetic extracellular matrix in the context of an in vitro model of angiogenesis [7].  
The focus of this study is to investigate the influence of mechanical loading of the 
vascularized collagen scaffolds.  The physical scale of interest is at the level of the 
cellular construct.  A meshless method, referred to as the Material Point Method 
(MPM), was chosen to model the complex geometry of microvessel fragments and 
surrounding matrix and thus determine the relationship between globally applied strains 
and local stresses and strains around sprouting capillaries.  [8-10].  The objectives of 
this study were 1) to develop a method to analyze specimen-specific mechanics of 
vascularized constructs using MPM, 2) to perform a sensitivity study to clarify the 
effects of microvessels on the mechanical behavior of collagen gels and 3) to conduct a 
convergence study to demonstrate the effect of grid and particle resolution. 
 
3.  METHODS 

3.1  Implicit Material Point Method 
 
MPM is a variant of the particle in cell methods that represents materials of interest by a 
collection of particles (material points) instead of connected elements.  A regular 
structured grid is used as computational scratchpad for integration and solution of the 
weak form of the equations of motion (Figure 1).  Implicit time integration is desirable 
for the presently considered analyses because they can be classified as quasi-static or 
low-rate dynamic.  A complete 
description of the implicit MPM 
formulation can be found in our 
previous publication [8] – an 
overview is presented below for 
completeness, assuming quasi-
static conditions and elastic 
material behavior to simplify the 
presentation.  Assuming that a 
converged solution is available at 
time t, the computational 
algorithm to obtain a solution at 
time t+dt can be described by the 
following steps: 
 

1) Interpolate the displacements up t( ) and new external forces Fext p t + dt( ) to the 
computational grid to yield nodal values on the grid ug t( ) and Fextg t + dt( ), using 
the particle masses 

 
mp t( ) for weighting.  Grid nodes receive contributions from 

particles that are currently residing in grid elements that are constructed using 
that node, interpolated via the grid shape functions: 
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2) Compute the deformation gradient ( )p tF  at the current particle locations ( )p tx  

Figure 1:  Schematic of a single computational step in MPM 
algorithm.  A) Initial distribution of particles (red) and background 
computational grid (green).  B) Stretching (vertical) and contraction 
(lateral) applied to particles.  Computational grid convects with 
particles.  C) Computational grid is reset and particles remain 
deformed/convected. 
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using ( )g tu  from Equation (1): 
( ) ( )( )p p gt t= +F G u 1 .      (2) 

pG is a matrix containing gradients of the shape functions evaluated at current 
particle coordinates ( )p tx  and 1 is the identity tensor.  The Cauchy stress ( )( )p p tFσ  
and spatial elasticity tensor ( )( )p p tD F  are then calculated from the constitutive 
model. 
3) Evaluate the internal force vector ( )g tFint and tangent stiffness matrix ( )g tKK : 

( ) T
g L pe e

t dv
Ω

= ∑ ∫Fint B σ ,     (3) 

( ) ( ) ( )g g gt t t= +KK Kmat Kgeo ,     (4) 
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 and L NLB B  are the standard linear and nonlinear strain-displacement matrices 

encountered in a nonlinear finite element formulation [11] and eΣ  represents 
element assembly, processing contributions from grid nodes into the global arrays. 
4) Solve the discrete equilibrium equations linearized about a configuration at time 

t iteratively for the incremental displacements k
gdu using Newton’s method [11]: 

  
KKg t( )⋅dug = Fextg t + dt( )− Fintg t( ).    (7) 

The nodal displacements are accumulated each iteration by: 
    ∆ug = ∆ug + dug ,     (8) 
    ug (t + dt) = ug (t) + ∆ug .     (9) 

where 
  
∆ug is zeroed out at the beginning of each timestep.  The values of 

( ) ( ) and g gt tKK Fint  are then updated appropriately.  The optimal gdu  minimizes the 
L2 norm of the right-hand side of equation (7).  The repeated solution of this linear 
system is performed using a conjugate gradient solver with a Jacobi preconditioner 
[12]. 
5) Save converged state (

   
Fp t + dt( ), Fintg t + dt( ) and KKg t + dt( )), update kinematics: 

up (t + dt) = up (t) + Sgpg∑ ∆ug ,    (10) 

xp (t + dt) = xp (t) + Sgpg∑ ∆ug .    (11) 
6) Reset the grid to its original (typically Cartesian) configuration. 
7) Continue to next time step. 

 
This algorithm can result in an artifact when particles cross grid boundaries [13], which 
can be especially troublesome for quasi-static simulations since there are no inertial 
forces.  We investigated a modified algorithm in which the background grid geometry is 
not reset after each MPM computational cycle (“no reset”) and compared its 
performance to the standard MPM procedure (“reset”). 
 
3.2  In vitro Model, Confocal Imaging and Particle Generation 
 
This research is based around a three-dimensional in vitro model of angiogenesis, 
wherein microvessel fragments are isolated and cultured in a three-dimensional collagen 
gel [14].  Isolated vessel elements contain associated perivascular cells and 
spontaneously grow as patent tubes through the elaboration of numerous vessel sprouts. 



These vessels continue to grow into a new vascular network that ultimately fills the gel 
space. Isolated vessel fragments include the full spectrum of vessel elements in the 
microvasculature, namely arterioles, capillaries and venules [7].  These microvessels 
retain the ability to form a functional vascular tree when implanted [15], supporting the 
notion that such cultured microvessels are healthy, normal and functional. 
 
One vascularized gel cultured for 10 days was harvested and stained en bloc with an 
endothelial cell-specific lectin called GS-1, directly bound to fluorescein.  A volumetric 
confocal image dataset (512(x) x 512(y) x 52(z), x-y dimensions 537.6 x 537.6 µm, 
section thickness 1.0 µm) was obtained with a Bio-Rad MRC-1024ES Confocal Laser 
Scanning Microscope fitted with a 40X objective (Figure 2, left panel).  A bin 
thresholding algorithm was used 
to obtain a binary image.  
Microvessel volume fraction was 
calculated from the thresholded 
dataset.  Finally, a collection of 
over 13 million material points 
was created by distributing 
material points in the image voxels 
(Figure 2, right panel).  The 
calculation area is determined 
based on the needed spacing of 
particles and associated 
computational grid. 
 
3.3  Constitutive Model and Material Properties 
 
The material properties of collagen gels are nonlinear and viscoelastic, while there are 
no data on material properties of microvessel fragments.  As a first order approximation, 
an uncoupled compressible neo-Hookean hyperelastic constitutive model was used to 
represent the collagen and microvessels, with strain energy W [16]: 

( ) ( )W U J W= + C .      (12) 

Here 1( ) = ( 3)
2

W Iµ
−C , [ ]2( ) ln( )

2
kU J J= , J is the volume ratio, µ is the shear modulus, k 

is the bulk modulus, and 1 tr( ) I = C is the 1st  invariant of the deviatoric right deformation 
tensor C .  The shear modulus of the collagen gel (µ = 520.8 Pa) was based on our 
experimental data [14].  To assess the effects of the microvessels on the material 
response of the vascularized scaffold, the microvessel particles were assumed to have 
twice shear modulus of the collagen.  The bulk modulus for both the collagen and the 
microvessels was unknown and was thus arbitrarily chosen to yield a Possion’s ratio of 
0.4, resulting in slightly compressible behavior.  Additional analyses were performed 
with all particles assigned the material properties of collagen for comparison. 
 
3.4 Computational Analysis 
 
To simulate extension of the vascular construct, the bottom of the domain was fixed and 
an extension was prescribed to the top to achieve 10% global strain.  The fully three 
dimensional nonlinear problem was solved on 128 processors of a Xeon cluster using 
MPI.  The computation required 2 hours of wall clock time.  Results were processed to 
determine reaction force at the clamped end and spatial distribution of von Mises stress.  

Figure 2:  Left – volume rendering of original confocal microscopy 
data, showing a portion of a typical microvascular construct in 
collagen at Day 10 of culture.  Right – initial distribution of material 
particles (collagen particles not shown for clarity).  Direction of tensile 
loading is vertical.



 
While the goals of this research will 
eventually require large numbers of 3D 
simulations, current efforts are focused 
on better understanding the effects of 
grid resolution and particle distribution 
on the quality of the simulation results. 
Specifically, a convergence study was 
performed to assess the effects of these 
factors on the resulting reaction force 
and von Mises stress distribution 
(Figure 3).  These initial studies are 
being carried out in 2D using just 1 of 
the 52 slices that comprised the 
confocal data set. 
 
 
4.  RESULTS 
 
The computed volume fraction of 
the microvessels was 19.4%.  The 
stress distribution in the 
vascularized constructs was highly 
inhomogeneous (Figure 4), 
consistent with the hypothesis that 
local stress around cells and 
cellular constructs is 
inhomogeneous even under simple 
tensile loading.  For the standard MPM algorithm, all particle/grid resolutions exhibited 
artifacts that were due to particles crossing grid boundaries (Figure 5, left panel).  In 
contrast, when the background grid was not reset, the traction force on the top of the 
gels was nearly linear with applied strain, which is consistent with the nearly linear 
material behavior of the neo-Hookean constitutive model.  There was a 7.4% difference 
in the traction force at 10% tensile strain between the cases of collagen only and 
collagen + microvessels for 
the most resolved case. 
 
5.  DISCUSSION 
 
This research demonstrates the 
feasibility of using MPM for 
computational modeling of the 
mechanics of multicellular 
constructs.  Meshless methods 
have several significant 
advantages for the simulation 
of multicellular structures.  
First and foremost, 3D 
distributions of particles for 
computational modeling can 

Figure 3:  Schematic of particle and grid configurations 
investigated in the studies of grid and particle resolution.  In 
all cases, the entire volume is 8.4 x 8.4 x 2.0 µm.  Yellow 
points represent material points associated with the 
collagen, red points are associated with a blood vessel, aqua 
points are nodes in the computational grid and black lines 
denote the boundaries of grid cells. 
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Figure 4:  Effects of resetting the grid and particle/grid resolution on 
the spatial distribution of von Mises stress.  Left panel – standard 
MPM algorithm resets the grid, resulting in significant artifacts in the 
stress field due to particles crossing grid boundaries.  Middle and 
right panels –results for two different particle/grid resolutions 
without resetting the grid.  Stress field artifact is eliminated, resulting 
stress field is highly inhomogeneous, and there are only minor 
differences between the two cases.  Case represented by middle 
panel incurs significantly less computational expense.   
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Figure 5:  Effects of solution algorithm, grid/particle resolution and presence 
of vessels on clamp reaction force.  Left - results for standard MPM algorithm 
(reset).  Right - results for modified algorithm (no reset).  Left graph shows 
significant errors in computed reaction force due to particles crossing cell
boundaries.  This problem is somewhat alleviated when the ratio of particles-
per-cell to grid cell size is maximized.  Right graph demonstrates that all three
resolutions give acceptable results when the background grid is not reset. 
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be generated directly from confocal microscopy or other types of image datasets on a 
specimen-specific basis.  Second, between-material contact is easily represented without 
specific representation of the material boundaries [17].   Finally, MPM avoids issues of 
element inversion and mesh entanglement during the simulations that can plague FE-
based simulation techniques. A minor weakness with MPM is the additional 
computational costs associated with interpolations from the particles to the grid and 
back.  Additional research is needed to develop optimal interpolation functions between 
the particles and the grid.  Although our present focus is on modeling the interaction of 
cellular constructs with ECM, MPM and other meshless methods can be readily applied 
to simulate the mechanics of single cells, cell membranes, intracellular organelles and 
the cytoskeleton, using volumetric image data as a basis for model generation. 
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