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SUMMARY

An implicit integration strategy was developed and implemented for use with the material point method
(MPM). An incremental-iterative solution strategy was developed around Newton’s method to solve the
equations of motion with Newmark integration to update the kinematic variables. Test problems directly
compared the implicit MPM solutions with those obtained using an explicit MPM code and implicit
�nite element (FE) code. Results demonstrated very good agreement with FE predictions and also
illustrated several advantages in comparison to calculations using the explicit MPM code. In particular,
the accuracy of the implicit solution was superior to the explicit MPM when compared to validated FE
solutions, and by de�nition the implicit time integration is unconditionally stable. Similarities between
the assembly of the implicit MPM equations and those of the FE method were identi�ed and should
allow further algorithmic improvement. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The material point method (MPM) is a particle method for simulations in computational �uid
and solid mechanics [1, 2]. The method uses a regular structured grid as a computational
scratchpad for computing spatial gradients of �eld variables. The grid is convected with the
particles during deformations that occur over a time step, eliminating the di�usion problems
associated with advection on an Eulerian grid. The grid is restored to its original location at
the end of a time step. In addition to avoiding the Eulerian di�usion problem, this approach
also circumvents problems with mesh entanglement that can plague fully Lagrangian-based
techniques when large deformations are encountered. MPM has also been successful in solving
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1324 J. E. GUILKEY AND J. A. WEISS

problems involving contact, having an advantage over traditional �nite element (FE) methods
in that the use of the regular grid eliminates the need for doing costly searches for contact
surfaces [3].
Coupling of the MPM to computational �uid dynamics simulations is readily achieved

because a regular grid is used for gradient calculations [4]. The grid then serves as both an
Eulerian reference frame for CFD calculations and an updated Lagrangian reference frame
for MPM calculations. Tight coupling can be achieved between the two phases by using
a multimaterial CFD formulation, while each phase still enjoys the bene�ts of computation
using its optimal reference frame. When using explicit time integration for both phases, the
time step sizes required by the Courant stability condition (dt¡dx=c, where dx is the grid
spacing and c is the speed of sound in the material) are often disparate by several orders of
magnitude. The time step size imposed by this restriction is relatively severe compared to the
time step limitations of most CFD codes. This can result in prohibitive computational solution
times for �uid–solid interaction problems involving traditional engineering materials.
To circumvent the time step restrictions imposed by explicit time integration for low rate

dynamic and quasi-static problems, the objectives of this work were to develop and implement
an implicit time integration strategy with the MPM and to test the implementation against an
explicit MPM code and an implicitly integrated FE code. Our implicit time integration strategy
exploits similarities between the function of material points in MPM and integration points in
FE calculations to adapt implicit time integration for use with MPM. The implementation uses
Newton’s method to solve for the incremental grid displacements in the linearized form of the
equations of motion and the update of nodal kinematics using the trapezoidal rule. Explicit
expressions for the tangent sti�ness are derived in terms of the grid displacements used in
MPM. Because of the similarities that are identi�ed between MPM and FE methods in this
work, further improvements to MPM algorithms and numerical implementations should be able
to bene�t from the large amount of published research on implicit FE methods. In addition
to allowing for much larger time steps, the implicit algorithm has also shown advantage over
the explicit algorithm in its ability to obtain a solution for certain types of problems. The
accuracy for problems involving large deformation, contact and dynamics is demonstrated
through representative numerical simulations. The implicit MPM algorithm described here is
intended to give an additional option to analysts for the solution of problems for which MPM
is well suited, but hindered by the explicit time step size restriction.

2. REVIEW OF MPM WITH EXPLICIT TIME INTEGRATION

The following section reviews the framework for explicit time integration with MPM as
presented by Sulsky and Schreyer [2] to introduce symbols and notation and to provide
a starting point for development of the implicit approach. The approaches share the same
particle discretization and interpolation procedures. We assume use of trilinear shape functions
on the computational grid. After the MPM discretization and assembly on the background
computational grid, the equations of motion take the following familiar discretized form:

Mg · ag =Fextg − Fintg (1)

Here, Mg is the mass matrix (typically lumped), ag is the acceleration vector, Fextg is the
external force vector (sum of body forces and surface tractions), and Fintg is the internal
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IMPLICIT ANALYSIS WITH THE MATERIAL POINT METHOD 1325

force vector resulting from the stress divergence. The subscript g indicates that quantities are
evaluated on the computational grid.
The solution procedure begins by interpolating the particle state to the grid to form Mg,

which is in turn used to obtain a velocity �eld vg on the grid. Field variables for a particular
grid node receive contributions from particles that currently reside in any element that contains
the grid node. The mass matrix for the ith grid node is obtained by interpolating the mass
from surrounding material points mp using the shape functions evaluated at each material
point, Sip:

Mi=
∑
p
Sipmp (2)

The grid node velocity vi is obtained by interpolating the momentum of surrounding particles
to the grid node using the shape functions and then weighting their momentum contribution
by the grid node mass Mi:

vi=

∑
p Sipmpvp
Mi

(3)

Here, mp is the particle mass, vp is the particle velocity and Gip is the gradient of the ith node’s
shape function at xp. This approach ensures momentum conservation during the interpolations.
External forces on the particles Fextp are interpolated to the grid similarly:

Fexti=
∑
p
Sip Fextp (4)

A particle velocity gradient ∇vp is computed for constitutive model evaluation:
∇vp=

∑
i
Gipvi (5)

The constitutive model is then evaluated to obtain the Cauchy stress �p at each particle. The
internal force is then

Finti=
∑
p
Gip�pvp (6)

where vp is the particle volume. After assembly, Equation (1) is solved for ag.
The backward Euler method is used for time integration. The grid velocity vLg is then

vLg = vg + ag dt (7)

While the following calculation is never carried out explicitly, the nodes of the grid also
move with the same convective velocity

xLg =xg + v
L
g dt (8)

The particles move with the deforming grid and their kinematics are updated explicitly:

vp(t + dt)= vp(t) +
∑
i
Sipai dt (9)

and

xp(t + dt)=xp(t) +
∑
i
SipvLi dt (10)
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This completes one time step. Since the calculation in Equation (8) is not performed, the
deformed grid is e�ectively reset to its undeformed position at the end of the time step.
This explicit integration strategy is widely used in FEA, and the limitation on the size of

the time step from the conditional stability of the backward Euler integration method is well
known. An implicit time integration strategy that addresses the limitation is described in the
following section.

3. MPM WITH IMPLICIT TIME INTEGRATION

3.1. Incremental-iterative solution of linearized matrix equations

Our approach to implicit time integration with MPM is based on the observation that calcu-
lations on the computational grid are carried out in a manner that is exactly the same as
those performed for �nite element calculations. The material points essentially function as
integration points for the assembly. The discrete form of the equations of motion linearized
about a con�guration at time t are identical to those obtained for a traditional displacement-
based non-linear �nite element formulation, based upon integrals obtained numerically using
the Gauss integration points for evaluation (see, e.g. Reference [5]). Assuming an incremental-
iterative solution strategy, the discretized version of the linearized equations of motion on the
grid at Newton iteration k are

KKk−1g (t + dt) · dukg = Fextg(t + dt)− Fintk−1g (t + dt)−Mg · ak−1g (t + dt)

:=Qk
g (11)

Here KKg is the sti�ness matrix, dug is an estimate of the incremental displacements, Fextg
is the vector of external forces at the new time t + dt, Fintg is the vector of internal forces
due to the stress divergence, Mg is the mass matrix and ag is the acceleration vector.
The objective of the Newton iterations is to determine the grid displacement vector u that

minimizes the norm of the residual, Qg. A new estimate for u is obtained by solving Equation
(11) for the current estimate of incremental displacements dukg and adding it to the previous
displacements

ukg(t + dt)= u
k−1
g (t + dt) + dukg (12)

The other kinematic variables, sti�ness matrix and internal forces are then updated using the
new displacements.
Note that ukg(t + dt) is not the total displacement, but rather it is the displacement of the

grid from t to t + dt. The total material displacements are contained in the positions and
total deformation gradient of the particles. This is a fundamental di�erence from the standard
approach used in implicit FEA. This is apparent in the kinematics in Step (5) below.
Newton iterations are continued until convergence is achieved, de�ned in the present work

as satisfaction of both of the following criteria:

‖dukg‖
‖dumaxg ‖¡�d and

‖dukgQk
g‖

‖du0gQ0
g‖
¡�e (13)
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IMPLICIT ANALYSIS WITH THE MATERIAL POINT METHOD 1327

where ‖dumaxg ‖ is the maximum value of the norm of the displacement increment and ‖du0gQ0
g‖

is the initial value of the norm of the product of the displacement increment and the residual.
�d and �e are user-selected values for the convergence criteria.

3.2. Kinematic update

The unconditionally stable trapezoidal rule is used to advance the grid kinematics to t + dt:

ug(t + dt) =
dt
2
(vg(t) + vg(t + dt)) (14)

vg(t + dt) = vg(t) +
dt
2
(ag(t) + ag(t + dt)) (15)

When Equations (14) and (15) are combined with Equation (12), the acceleration for the
current iteration k at time t +dt can be approximated in terms of known quantities at time t
and estimates at time t + dt from the previous iteration k − 1:

akg(t + dt)=
4
dt2

uk−1g (t + dt)− 4
dt
vg(t)− ag(t) (16)

This value for akg(t + dt) is used in Equation (11) above.
Because the grid is reset each time step, it is not possible to use one-time step old values

of vg(t + dt) and ag(t + dt) for vg(t) and ag(t) respectively. Because particles migrate into
previously empty cells, some of the nodes of these cells will not have had values for vg(t+dt)
and ag(t+dt). Therefore, the values for vg(t) and ag(t) come from the particle values for vp
and ap interpolated to the grid as in Equation (3).

3.3. Computational algorithm for implicit MPM

The approach for implicit integration in the context of MPM proceeds in the above framework,
taking into account the appropriate interpolation of quantities from the particles to the grid
at each step to be consistent with the MPM framework. The equilibrium iterations occur
on the computational grid. At the beginning of each implicit time step, the following particle
quantities are known at time t: mass mp, volume vp, position xp(t), velocity vp(t), deformation
gradient Fp(t) and Cauchy stress �p(t). Also known are the external forces at time t + dt,
Fextp(t+dt) and the acceleration on the grid at time t, ag(t). With the new applied increment
in external forces, Qk

g in Equation (11) is no longer minimized and Newton iterations begin.

1. Interpolate to the grid: Particle data are interpolated to the grid to obtain Mg, vg(t)
and Fextg(t+dt). The interpolations use the same equations as the explicit formulation,
namely Equations (2)–(4).

2. Initialization: For the �rst iteration (k = 1), assume

uk−1g (t + dt)=0

Since ug refers to the displacement of the grid between t and t + dt, setting ug = 0
corresponds to a reset of the grid to its original undeformed con�guration. The material
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1328 J. E. GUILKEY AND J. A. WEISS

points remain in their deformed locations. The ‘footprint’ of the particles on the grid has
thus changed and new estimates for Fintk−1g (t + dt) and KKk−1g (t + dt) are needed:

Fintk−1g (t + dt)=
∑

e

∫
�e
BTL�p(t) dv

Kmatk−1g (t + dt) =
∑

e

∫
�e
BTLDp(t)BL dv

Kgeok−1g (t + dt)=
∑

e

∫
�e
BTNL�p(t)BNL dv

KKk−1g (t + dt)=Kmatk−1g (t + dt) +Kgeok−1g (t + dt) +
4
dt2

Mg

Here BL and BNL are the standard linear and non-linear strain–displacement matrices
encountered in a displacement-based non-linear �nite element formulation [5], composed
of gradients of the trilinear shape functions evaluated at the current particle positions xp.
Dp(t) is the spatial version of the fourth-order second elasticity tensor c [6] in Voigt
notation.

∑
e represents the element assembly, processing the grid point contributions

into the global arrays.
3. Solve for dukg: For iteration k, invert the following to get the current estimate for the
displacement increment:

KKk−1g (t + dt) · dukg = Fextg(t + dt)− Fintk−1g (t + dt)

−Mg

(
4
dt2

uk−1g (t + dt)− 4
dt
vg(t)− ag(t)

)

:=Qk
g

4. Update kinematics on the grid:

ukg(t + dt)= uk−1g (t + dt) + dukg

vkg(t + dt)=
2
dt
ukg(t + dt)− vg(t)

5. Update stress divergence and tangent sti�ness on the grid: The total deformation gra-
dient F(t + dt) is decomposed into the deformation gradient up to time t, F(t), and the
incremental deformation gradient from t to t + dt, F(dt), so that F(t + dt)=F(dt)F(t).

∇ukp(t + dt)=Gpukg(t + dt)
Fkp(t + dt)=Fkp(dt)Fp(t)= (∇ukp(t + dt) + 1)Fp(t)
�kp(t + dt) is determined from Fkp and any relevant history variables
Dkp(t + dt) follows from �kp

Here Gp represents the gradient of the shape functions evaluated at xp. The internal force
vector, material sti�ness and geometric sti�ness on the grid are obtained as de�ned by
the expressions in Step 2.

6. Convergence criteria: Convergence is checked using Equations (13). If convergence has
not been achieved, return to Step 3 above and continue iterations.

7. Save converged state and update kinematics:

Save Fp(t + dt), Fintg(t + dt), KKg(t + dt).
Compute ag(t + dt) using Equation (16).
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IMPLICIT ANALYSIS WITH THE MATERIAL POINT METHOD 1329

Interpolate ug(t+dt) and ag(t+dt) to the particles to �nd the particle displacement and
acceleration, up(t + dt) and ap(t + dt):

up(t + dt)=
∑

i Sipui(t + dt)
ap(t + dt)=

∑
i Sipai(t + dt)

Update the particle position and velocity:

xp(t + dt)=xp(t) + up(t + dt)
vp(t + dt)= vp(t) + 1

2(ap(t) + ap(t + dt)) dt

8. Continue to next time step:
Note that this incremental-iterative approach uses an exact linearization about time t.
With appropriate numerical evaluation of the integrals in Step 2, an exact expression
for the spatial version of the second elasticity tensor, and a time step size that ensures
the solution remains within an appropriate radius of convergence, we should expect
quadratic convergence from Newton’s method. However, the nature of MPM is such
that the material points will not in general correspond to the optimal sampling locations
within elements of the computational grid. This may a�ect convergence via the accuracy
of the integral evaluations. Monitoring particle distributions within the grid elements and
adjusting either the grid geometry and=or particle distributions accordingly is likely to
improve convergence behaviour and also increase the accuracy of converged solutions.

Step 3 involves the solution of a sparse symmetric linear system of equations. Both iterative
(conjugate gradient) and direct solvers were implemented in the present work. The direct
solver was much more robust than the iterative solver but also much slower. An iterative
solution of the linear system was attempted at each time step, and if it failed, the direct
solver was used. Although we have not performed a thorough investigation of the general
ine�ectiveness of the iterative solver, the likely cause is numerical ill-conditioning in the
sti�ness matrix.
The algorithm described here is for a fully dynamic solution. A quasi-static solution is

readily obtained by simply eliminating the mass matrix contribution to the total sti�ness
matrix (Step 2) and removing the inertial (third) term in Step 3. Also, in what is described
above, no assumptions have been made about the material model used to compute the Cauchy
stress.
As mentioned in the Introduction, the algorithm described above is very similar to an

incremental-iterative solution strategy used with implicit time integration when using the FE
method. The material points serve many of the same functions as the integration points in an
FE solution. If the grid was not reset after each time step, the approach would be exactly the
same as the FE method. However, it is largely this resetting of the mesh that distinguishes
MPM from FEM by avoiding mesh distortion issues. Because the mesh is reset in MPM,
each time step begins with interpolation of the particle data to the computational grid. This
step de�nes the time t data on the mesh, whereas in FEM the time t data comes from the
previous time step’s solution. Construction of the initial mesh is trivial with MPM and mesh
entanglement is completely avoided.
The migration of material points can create some problems for the robustness of the so-

lution. Whereas a �nite element will always have the same number of integration points
throughout a solution and these points will typically be located at the optimal sampling points
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1330 J. E. GUILKEY AND J. A. WEISS

for Gauss integration, the number of material points in a computational cell in MPM varies.
The problems that this �uctuation creates are mitigated by using an increased particle density,
leading to a more robust and accurate solution. Improvements in MPM accuracy could likely
be made by controlling the times at which the computational grid is reset, thereby ensuring
that the material points remain optimally located until grid entanglement is imminent.

4. CONSTITUTIVE FRAMEWORK

Hyperelasticity was chosen as the primary constitutive framework for our MPM code because
it is objective and path independent for arbitrarily large deformations and it is readily extended
to other material behaviours. Further, constitutive formulations based on energy functionals
ensure that a so-called ‘consistent tangent’ [7] will always be available to ensure optimal
convergence behaviour during the Newton iterations, and the resulting elasticity tensor will
always lead to a symmetric tangent sti�ness matrix.
The strain energy was decoupled into volumetric and deviatoric components via the use of

the deviatoric deformation gradient F̃ and the deviatoric version of the right Cauchy–Green
deformation tensor F̃ [8, 9]:

W =U (J ) + W̃ (C̃) (17)

This assumption ensures that decoupling of the pressure variable from the stress is trivial so
that alternate multi-�eld variational principles can be applied for future analyses of nearly and
fully incompressible material behaviour. The Cauchy stress is then

�= 2
J
F
@W
@C

FT =p1+
2
J
dev

[
F̃
@W̃

@C̃
F̃
T
]

(18)

where the identi�cation p= @U=@J has been made and the operator ‘dev’ extracts the devia-
toric part of a second-order tensor in the spatial con�guration

dev[ · ]= [ · ]− 1
3 ([ · ] : 1)1 (19)

A compressible neo-Hookean constitutive model was employed in the examples that follow:

W̃ (C̃)=
�
2
(Ĩ1 − 3); U (J )=

�
2
[ln(J )]2 (20)

Here, � is the shear modulus, � is the bulk modulus, and Ĩ1 = tr(C̃) is the �rst invariant
of the deviatoric version of the right deformation tensor. The spatial version of the second
elasticity tensor is, after multiple applications of the chain rule

c=(JU ′)′J1⊗ 1− 2JU ′I+ 2�
[
I − 1

3
1⊗ 1

]
− 2J
3
[s⊗ 1+ 1⊗ s] (21)

where s is the deviatoric part of the Cauchy stress [10].
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5. NUMERICAL EXAMPLES

5.1. Compression of an elastic billet

The �rst test problem consisted of a billet of hyperelastic material bonded between two
plates. The plates move toward each other and the material is compressed, bulging out and
eventually contacting the plates from the sides (Figure 1(a) and 1(b)). The objective was
to achieve 50% compression. This is a common test problem in non-linear solid mechanics
and demonstrates both large deformations and contact. Although these analyses were carried
out in two dimensions using plane strain assumptions for ease of illustration, our IMPM
implementation is completely three dimensional.
The total size of the billet was 40:0× 40:0 cm. In all cases, the platen was represented as

rigid and a quarter-symmetry model was employed. Unless otherwise indicated below, the
material properties were assigned as � = 6:0e6dyne=cm2, � = 6:0e7dyne=cm2 (Poisson’s ratio
�=0:45), and �=10:0 g=cm3.

5.1.1. Static compression of an elastic billet. For this test, solutions obtained using IMPM
were compared to solutions from NIKE3D, a standard FE code using implicit time integra-
tion [11]. Because this problem was quasi-static, the mass matrix contribution to the sti�ness
matrix was neglected and the inertial (third) term in Equation (11) was also eliminated.

Figure 1. Compression of a billet: (a) initial state; (b) compressed state. Initial con�gurations used in;
(c) the material point method solution; and (d) the �nite element solution.
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1332 J. E. GUILKEY AND J. A. WEISS

The IMPM computational grid had 0:5 cm2 cell size, and the movement of the platen was
discretized in quasi-time so that it would move through half of a grid cell during each time
step. To accommodate the large strains experienced by the billet, a particle distribution of
four particles along both the X and Y directions (4X 4) was used (Figure 1(c)). This particle
density ensured that, even at large deformations, each cell would have a reasonable number
of particles. Element size for the FE mesh was approximately 0.3–0:5 cm (Figure 1(d)) and
an automatic time stepping strategy was employed. Trilinear hexahedral elements were used,
with the boundary conditions adjusted to ensure plane-strain deformations.
Figure 2 shows the deformed billet at 50% compression using IMPM and FEM. In both,

colours indicate von Mises stress. In Figure 2(a), the particle locations are shown to depict the
deformed shape of the billet. Both the shape of the billet and the stress contours within the
billet indicate excellent agreement between the two methods. The horizontal displacements of
the lower right particle (IMPM) and node (FEM) were 7.38 and 7:23 cm, a 2.1% di�erence.
Note that there is a gap between the particles of the billet and those of the platen in the
deformed MPM particle geometry. This is a result of the way contact between bodies is
represented with MPM. Contact occurs when information from the two bodies is interpolated
to common nodes. While each �eld remains independent, this interaction may begin to take
place when the particles are as much as two grid cells apart.
In general, we found that a higher density of particles per cell lead to a more accurate and

robust solution. Lower particle densities (e.g. 2X 2), yielded good results when deformations
were small, but the use of higher particle densities was required to achieve accurate results at
larger deformations. For this particular example, convergence was not obtained beyond 30%
compression when a 2X 2 particle distribution was used. Converged solutions were achieved

Figure 2. Elastic billet compressed quasi-statically to 50% using: (a) the material point method; and
(b) the �nite element method. Colours indicate von Mises stress on the grid.
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with particle distributions of 3X 2 and 3X 3, but the quality of the solution improved notice-
ably when the distribution was changed from 3X 3 to 4X 4. There is additional computational
expense and storage associated with increased particle density, but the number of equations
in the linear system remains unchanged since only the grid nodes contribute degrees of free-
dom to the system of equations. This observation indicates the need for particle re�nement
techniques.

5.1.2. Dynamic compression of an elastic billet. The same problem was analysed with full
dynamic e�ects using IMPM, EMPM and the FEM. The downward velocity of the platen was
speci�ed as 50 cm=s. Again, a 4X 4 particle distribution was used.
Results for the three simulations are shown in Figure 3. As in the static case, results for the

IMPM solution and the FEM solution compared quite favourably. Maximum e�ective stress
di�ered by 4.3% between these two cases, and the horizontal displacements of the lower right
particle (IMPM) and node (FEM) were 7.44 and 7:26cm, a 2.5% di�erence. A comparison of
the IMPM and EMPM results indicated reasonable agreement. Here, the maximum e�ective
stress di�ers by 14% and the horizontal displacement of the lower right particle for the EMPM
case is 7:94 cm, 6.7% greater than the IMPM result. It is worth noting that the comparisons
between results for the IMPM and EMPM are much better at smaller amounts of platen
compression. With increasing compression and the associated larger deformations experienced
by the particles, the explicit results deviated farther from the FEM solution.
The results of these comparison illustrate the distinct advantage of IMPM over EMPM

for low rate dynamic problems. Generally, in problems where the kinetic energy is small in
comparison to the strain energy, we have found that IMPM yields more accurate results than
EMPM. The increasing deviation of the EMPM solution from the FEM and IMPM solutions
likely has two main causes. First, with any explicit method, since there is no iterative procedure

Figure 3. Elastic billet compressed dynamically to 50% using: (a) the implicit material point
method; (b) the explicit material point method; and (c) the �nite element method. Colours

indicate von Mises stress on the grid.
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1334 J. E. GUILKEY AND J. A. WEISS

to minimize the error in each time step, error builds up over subsequent time steps. As
expected, it was observed that lowering the time step size for the explicit calculations yielded
improved results. The second, more destructive e�ect is particular to MPM. Speci�cally, as
particles move through the computational grid, adjacent cells may contain di�ering numbers
of particles. It has been shown [12] that this can lead to an imbalance in internal force at
the nodes that is proportional to the di�erence in the number of particles in the neighbouring
cells. When the internal forces are small relative to the inertia, this artifact is not signi�cant.
However, for quasi-static solutions this artifact can be so large that the explicit solution can
be destroyed. For example, attempts to use a lower particle density resulted in failure to reach
a solution with the EMPM algorithm. The implicit algorithm was able to reach a converged
solution for particle distributions of 3X 2 and 3X 3 for this case. Because of the iterative nature
of the implicit algorithm, IMPM is much less susceptible to this problem. Given the di�culty
in obtaining a solution with the EMPM code for this case and the excellent agreement between
the IMPM and FEM results, the implicit solution strategy is clearly the better choice for this
problem.
The time-step size advantage of IMPM is also demonstrated by this example. Time-step size

for EMPM was selected automatically each time step based on the Courant stability criterion
by monitoring material wave speed and particle velocities, and was approximately 7× 10−5 s.
As in the static case, the time-step size for IMPM was chosen to allow movement of the
platen through one-half of a computational cell during each time step. This choice is based
on the limitations of deformation of the computational grid during a single iteration of the
Newton method. If the platen was allowed to completely crush or invert a cell in a single
time step, Newton iterations diverged and a solution could not be obtained. For this example,
the time step was on the order of 5×10−3 s, or more than 70 times larger than the explicit
time-step size.
EMPM time steps required 0:39 s of CPU time on one processor of an SGI Origin 200

(225 MHz), while IMPM time steps required 121 s on the same platform, a factor of 309
larger. Considering only time to solution, to be considered ‘e�cient’ it would be necessary
to take implicit time steps at least 309 times larger than the explicit time step. Thus, for a
sti�er billet material or a slower platen velocity, IMPM would provide both a more e�cient
and a more accurate solution.

5.2. Stress waves in granular media

Stress wave propagation in granular materials is a problem of signi�cant research interest,
and EMPM has been applied successfully to this class of problems [3, 13, 14]. This is in part
due to the importance of contact between individual grains, which MPM is able to handle
with relative ease. Bardenhagen [14] simulated four co-linear disks subjected to loading via a
Hopkinson bar with EMPM and compared predictions to results from photoelasticity experi-
ments carried out by Roessig [15, 16]. Good qualitative agreement between the experimental
and computational results was demonstrated. More recently, Cummins and Brackbill [13] noted
that noise frequently appears in the EMPM solution. They modelled a similar version of this
problem using an implicit MPM algorithm that is di�erent from that described here in that it
uses a Newton–Krylov solution technique. While their results were not compared to experi-
mental measurements, the noise in the solution was signi�cantly diminished with the use of
their implicit strategy.
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IMPM was used to study this same problem and comparisons were made to EMPM and
experimental measurements. Speci�cally, four 1cm disks with material properties approximat-
ing Plexiglas were arranged co-linearly edge to edge. Material properties were: �=72 GPa,
�=102GPa and �=1900 kg=m3. This resulted in a longitudinal wave speed of 1 cm=�s. The
velocity of the striker that loaded the disks was 5:6 m=s. The problem was modelled in two
dimensions, assuming plane stress. Fifty computational cells were used across the diameter of
each disk (Bardenhagen used 80 cells for the explicit calculations). A particle distribution of
2X 2 was used for the IMPM calculations. IMPM time-step size for was chosen to correspond
to the time for a longitudinal wave to cross one-half of a computational cell.
In order to numerically simulate the technique of photoelasticity, fringe patterns were gen-

erated by �rst calculating the in-plane principal stresses, �1 and �2. The fringe intensity F
was then computed as [13]:

F = cos
(
2�fno(�1 − �2)
max(�1 − �2)

)
(22)

For this work, a value of 7 was chosen for fno, the fringe number. This value was selected
to give the best visual match to the experimental results.
A sample of the results from the current work, the EMPM results of Bardenhagen and the

experimental results of Roessig are shown in Figure 4 at three di�erent times. Frame times are
non-dimensionalized by the wave transit time across a single disk [3]. Owing to experimental
uncertainties in both the time of arrival of the striker and the material properties of the
disks, Bardenhagen chose matching frames by eye, subject to the constraint of a constant
time contraction factor for all frames. Thus, the experimental results in Figure 4 are from
non-dimensional times of 2.6, 6.6 and 9.2, while the explicit simulation results are at times
of 2.2, 5.5 and 7.7. Subjecting the current results to the same constraints as those used by
Bardenhagen, the implicit simulation results are at time of 1.9, 4.8 and 6.7. The di�erence
in scaling factors between the explicit and implicit results may be due to the di�erence in
the resolution used for the calculations. The contact between adjacent disks is modelled more
accurately with increased resolution.
Good agreement is again noted between the IMPM, EMPM and experimental results. The

implicit solution shows less noise than the explicit results. While a relatively small time-step
size was used for the results shown here, tests on similar problems have indicated that a
time-step size at least 4 times larger gives results that are practically indiscernible from those
obtained under the time-step constraint used here. Because of the desire to resolve the stress
wave propagation, a larger implicit time-step size was not tested for this case.

6. CONCLUSIONS

An implicit integration strategy was developed and implemented for the material point method.
Solutions from the IMPM algorithm were compared to those obtained with the implicit �nite-
element code NIKE3D. Very favourable quantitative agreement was demonstrated. Compar-
isons with the traditional EMPM strategy were also made and advantages of IMPM were
identi�ed for certain classes of problems.
Note that times to solution between the IMPM code and NIKE3D were not presented. Our

IMPM code was written to demonstrate a new algorithm, whereas NIKE3D is a production FE
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Figure 4. Stress wave propagation through four co-linear disks. Matching frames are presented together
with the implicit results on top, explicit results in the middle and experimental results on the bottom.
Non-dimensional frame times are 1.9, 4.8 and 6.7 for the implicit results, 2.2, 5.5 and 7.7 for the

explicit results and 2.6, 6.6 and 9.2 for the experimental results.

code that has undergone over 20 years of continuous development and optimization. Su�ce
it to say that, at this time, solution times with NIKE3D are much shorter than those with
IMPM for the same simulation. The implicit FEM will likely continue to be faster even after
optimization as the IMPM (and EMPM) requires a number of additional interpolation steps
between the particles and the computational grid that are not necessary with implicit FEM.
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However, the advantage of avoiding mesh entanglement with IMPM clearly makes it the
superior choice for certain problems that demonstrate extreme deformation and contact.
The principal advantage of IMPM over EMPM is the accommodation of much larger time

steps. Time steps hundreds of times larger than that dictated by the CFL condition have been
used successfully. The only time-step restriction for IMPM is related to the magnitude of cell
deformation in the computational grid during a single iteration of the Newton method. An
additional signi�cant bene�t of IMPM is that it frequently performs much better in both its
ability to obtain a solution and in the accuracy of that solution than its explicit counterpart,
particularly for quasi-static loading scenarios.
The implicit solution strategy described here di�ers substantially from another implicit MPM

technique recently reported by Cummins and Brackbill [13]. Their work utilized a Newton–
Krylov solver. This ‘matrix-free’ technique avoids the inversion of a large linear system of
equations at each iteration, which is the most costly part of the algorithm described here.
However, the reported time step restrictions associated with their method were rather severe,
much more so than in the present work. Speci�cally, they report that an inability to achieve
a solution for time steps greater than 10 times the explicit time step size (when using a CFL
number of 0.25 for the explicit case). Additionally, as in this work, they limit the time step
size based on strain, but while the method reported here is limited by a strain of 50% per time
step, that of Cummins and Brackbill is limited to 1% strain per time step. The ability of the
presently reported method to use larger time steps is likely due to the fact that our approach
employs a consistent tangent, providing the best convergence behaviour possible with Newton
methods in the context of implicit MPM analysis.
Because of the similarities between MPM and FEM, the implicit solution strategy described

here should be easily modi�able to accommodate quasi-Newton solution methods. The BFGS
method introduced by Matthies and Strang [16] is an obvious choice as it has proven to
be robust and computationally e�cient for a wide range of non-linear problems in solid
mechanics. Implementation of BFGS will reduce the number of times a large linear system
will need to be solved, and should further improve the e�ciency of this technique.
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