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Abstract. This paper describes a framework for quantitative analysis of neu-
roimaging data of traveling human phantoms used for cross-site validation. We
focus on the analysis of magnetic resonance image data including intra- and inter-
site comparison. Locations and magnitude of geometric deformation is studied
via unbiased atlas building and metrics on deformation fields. Variability of tis-
sue segmentation is analyzed by comparison of volumes, overlap of tissue maps,
and a new Kullback-Leibler divergence on tissue probabilities, with emphasis on
comparing probabilistic rather than binary segmentations. We show that results
from this information theoretic measure are highly correlated with overlap. Re-
producibility of automatic, atlas-based segmentation of subcortical structures is
examined by comparison of volumes, shape overlap and surface distances. Vari-
ability among scanners of the same type but also differences to a different scanner
type are discussed. The results demonstrate excellent reliability across multiple
sites that can be achieved by the use of the today’s scanner generation and pow-
erful automatic analysis software. Knowledge about such variability is crucial for
study design and power analysis in new multi-site clinical studies.
Keywords: Multi-site neuroimaging study, validation, traveling phantom, auto-
matic segmentation, cross-site validation

1 Introduction

Image data from patient populations acquired and pooled across multiple sites become
necessary to collect larger number of samples for improved statistical power in inves-
tigating neuroanatomic correlates of disease. Examples are the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) or the Autism Centers of Excellence (ACE) network
projects. Such efforts require advanced concepts for multi-site imaging calibration by
developing standardization of protocols, phantom calibration, and evaluation of cross-
site differences and scanner stability. The nationwide NIH sponsored effort by the BIRN
consortium, for example the Function-BIRN and mBIRN (Morphometry BIRN) aim at
developing “the ability to conduct clinical imaging studies across multiple sites ...” [1].
Whereas a major effort of BIRN so far was dedicated to standardization and calibra-
tion of structural, functional and diffusion MRI, less knowledge is available on the joint
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variability of scanning and quantitative analysis although this is the most crucial infor-
mation for any multi-site neuroimaging study.

This paper focuses on a framework for evaluation of multi-site image data of human
traveling phantoms. Although applied to a limited study as a pilot for a new multi-
site pediatric imaging study, our aim is a) to propose a framework for such analysis
including a set of tests and b) to demonstrate reliability that can be achieved by using the
latest generation of clinical scanners and well-established brain segmentation pipelines.

2 Evaluation of traveling phantom image data

The study described here does not focus on validity, i.e. closeness of results to an exist-
ing truth, but on reproducibility of image data and quantitative measurements extracted
from image data. We present three different analyses, deformation-based analysis to
evaluate the amount of distortion across scanners, comparison of probabilistic brain
tissue segmentations to judge the variability of such commonly applied tissue volume
analysis, and finally assessment of the variability of subcortical structure volumes which
are of interest in neuroimaging studies. Please note that the first evaluation is based on
measurements on raw images, whereas the other two are metrics obtained through the
aperture of a segmentation algorithm, thereby reflecting combined errors of the whole
system from image acqusition at multiple sites to segmentation algorithms. This only
will give the designers of such studies the necessary data on expected variability of
measurements and will help to estimate the sample size via power analysis.

2.1 Study design

This traveling phantom study has been initiated as pilot calibration work for collecting
image data in a new pediatric multi-site autism study. The purpose was two-fold, mea-
suring the variability of imaging across three sites equipped with the same scanner sys-
tem and upgrade (Siemens 3T Tim Trio), and evaluation if a different scanner (Siemens
3T Allegra head-only) could be used for this study. Two human phantoms (male, age
26 and 27), visited the four different sites within one week and got two repeated scans
within 24 hours at each site. Pulse sequences included MPRage with 1 × 1 × 1mm3,
high-resolution T2 (TSE) with 1×1×1mm3, and also DTI which is not discussed here.
In the following, image data from the three sites with same scanner type will be named
Aitj, with i = {1, 2, 3} for scan site and j = {1, 2} for the two time points. The site
with a different scanner will be named Btj. The set of image data anlyzed in this study
has been acquired during one week at four sites with two repeated scans at each sites.
It is therefore safe to assume that there are no brain changes over this short time period
except subtle short-term natural physiological variability. Intra- and inter-site changes
observed by image analysis can thus be fully attributed to scanner differences and limits
of robustness of image segmentation algorithms.

2.2 Evaluation of cross-site image deformations

Assessment of deformations between images requires the use of high-dimensional non-
linear registration that is sensitive to even localized distortions at sub-voxel scale. Can-



didates of such registration procedures are, among others, large-deformation fluid reg-
istration [2,3,4,5] and elastic registration [6]. Such registrations result in volumetric
deformation fields h(x), and quantitative measurements commonly derived from these
vector fields are:

log |Dh(x)| : log determinant of Jacobian, (1)
‖h(x)‖2 : L2-norm of deformation vector field. (2)

We expect log |Dh| to be very close to zero in regions of no change, and posi-
tive and negative in local areas of extraction and contraction. The L2-norm ‖h(x)‖2

helps to evaluate the magnitude of local voxel shifts. Image maps created with the two
metrics were used for qualitative assessment of locality and magnitude of changes. His-
tograms of both the log|Dh| and ‖h(x)‖2 and measures derived from their cumulative
histograms are used for comparison (Fig. 1). Image data available to this study are the
raw DICOM data and have not been pre-corrected by phantom calibration. We are in-
terested in measuring the magnitude of eventual geometric distortions across scanners
since such deformations and voxel-scaling differences might significantly contribute to
variability of quantitative measurements. Here, we use the large-deformation registra-
tion framework extended to image populations by [4].

The volumetric image scans are preprocessed for bias correction and intensity nor-
malization, which both are part of the EM tissue segmentation method [7] described
in a later paragraph. Intensity normalization is necessary since the matching functional
of our registration is the L2 norm of image intensities. After co-registration by rigid
transformation, we created an unbiased atlas Ā given the set of six T1 images from
scanner type A. The image data of scanner B were deformed into the atlas Ā using the
same fluid deformation method. The resulting diffeomorphic registration fields hk(x)
describe distortions between each image and the unbiased atlas Ā, used here as the best
estimate of truth. Quantitative analysis of deformation is calculated within a brain mask
which was automatically obtained by the EM tissue segmentation (see Fig. 2).

2.3 Evaluation of tissue segmentation

Automatic tissue segmentation: Several methods have been developed for automati-
cally segmenting healthy adult brain MRI, mostly variations of multi-variate statistical
classification techniques [8,7,9] and most recent work by Pohl et al. [10] that augments
tissue class segmentation by a detailed segmentation of neuro-anatomical structures.
Here, we use a modified version of [7] written in ITK [11], which takes a set of multi-
modal MRI as input and performs probabilistic atlas registration, bias correction, brain
stripping, user-selected nonlinear filtering, and multi-variate classification in one inte-
grated tool 1. As results, we get tissue probability maps p(class|x) for the categories
white matter (wm), gray matter (gm), cerebrospinal fluid (csf), and background (bg)
and binary label maps of the maximum posterior classification.
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Overlap measures on segmented structures: Commonly used overlap measures for
binary segmentations are the Dice [12] coefficient DSC(A,B) = A∩B

(|A|+|B|) and the
Jaccard [13] similarity coefficient JSC(A,B) = A∩b

A∪B . By definition, JSC is more
stringent and therefore results in lower values: JSC(A,B) = 2|A∩B|

2(|A|+|B|−|A∩B|) =
DSC(A,B)

2−DSC(A,B) . Given probabilistic segmentations, i.e. segmentations with class proba-
bilities at each voxel, it is preferable to use a probabilistic overlap measure POV [14,4],
a metric derived from the normalized L1 distance between two probability distributions

POV (A,B) = 1−
∑

x |PA − PB |
2
∑

x PAB
. (3)

For POV, PA and PB are the probability maps representing the two fuzzy segmenta-
tions and PAB is the joint probability, calculated by integrating the pair of probabilistic
segmentations over the image space and appropriate normalization. The numerator ex-
presses the probabilities of primarily non-intersecting regions.

Reliability of segmentation via Kullback-Leibler divergence: The problem of com-
paring a pair of image segmentations presented as sets of posterior probability maps
p(c|x) can be rephrased so that we ask for the divergence between probability densities
for locations as a function of classes p(x|c). In the following, the class-specific mea-
sure will be called D

(c)
KL, and the total divergence DKL is obtained as the sum over all

categories c:

DKL(p‖q) =
∑

c

D
(c)
KL(p‖q) =

∑
c

(∑
x

p(x|c) log
p(x|c)
q(x|c)

)
. (4)

Here, the class-specific divergences D
(c)
KL describe differences between probability

densities p(x|c) and q(x|c) of locations x spread across the whole image volume. This
gives us the probability for location x given a specific category c. The p(x|c) can be cal-
culated from the probabilistic EM tissue segmentations p(c|x) since p(c|x)/

∑
x p(c|x)

is exactly p(x|c) if we assume that the prior p(x) is uniform within the image volume:
p(c|x)P
x p(c|x) = p(c,x)

p(x) × 1
1

p(x)

P
x p(c,x)

= p(c,x)P
x p(c,x) = p(c,x)

p(c) = p(x|c). In our implementa-

tion, we use the symmetrized Jensen-Shannon divergence DJS betweeen distributions
p and m = (p+q)

2 to account for p(x) and q(x) drawn from different images.

Results of tissue segmentation comparison: Fig. 3 displays the relative tissue vol-
umes across all scanners, where volumes were normalized by the average volume of
scanner type A for each phantom, used as estimated truth. This figure and the table to
the right illustrate that the coefficient of variation for measurements on scanners type
A is in the range of 0.5%, a value that might very well be in the range of normal
brain variability. Tissue segmentation from scanner type B, on the other hand, shows
significantly larger differences, in particular for white matter and csf, which might be



attributed to sensitivity of the EM tissue segmentation to a slightly different contrast
mechanism. The probabilistic overlap measure (see Fig. 4) reflects a similar picture,
with overlap for white and gray matter for scanner A over 97% but scanner B lower
then 95%. Again here, overlap is measured relative to an estimated truth, which are the
probabilistic tissue segmentation maps of the unbiased atlas. Please note that we cannot
judge which scanner and segmentation is right but only that the two types are different.

The Kullback-Leibler distance was calculated based on the same tissue probabil-
ity maps p(c|x). Table 4 right lists the total DKL and the class-specific D

(c)
KL values.

The values reflect again that scanner B differs much more for all three tissue cate-
gories. The relationship between the overlap POV and the information-theoretic DKL

is not straightforward, but a correlation between the two sets of values over all tissue
categories is −0.992 across both type scanners and −0.980 for scanner type Ak only,
which indicates that they describe the pairwise differences in a similar way. The total
DKL can be calculated as the sum of all the class-specific measures and is used as an
overall difference. With overlap measures, such a combination is less obvious.

2.4 Evaluation of subcortical structure segmentation

Subcortical structures were segmented by high-dimensional deformation of an unbiased
population average MRI carrying probabilistic segmentations of the set of subcortical
structures (see [15] for details). Figure 5 lists the coefficient of variation for resulting
volumes as averages over all scanner type A images and both phantoms. In addition,
Dice and Jaccard overlap coefficients are calculated for the same list of structures. These
coefficients are calculated relative to an estimated truth, which is obtained by averaging
the probabilistic segmentations of scanner type A structures and extracting the level-set
at probability 0.5 to represent a hard segmentation, a process similarly to [4]. Tables 5
and 6 list the coefficient of variation (COV), Dice, JSC, probabilistic overlap (POV),
and the mean absolute and Hausdorff distances. These tables clearly demonstrate the
excellent reproducibility of scanner A results and the significantly larger differences of
scanner B, with lower POV and larger surface distances.

3 Discussion

We present methodology and results on validation of MRI data of human traveling
phantoms. The methods include analysis of image deformations, comparison of tissue
segmentation and automatic segmentation of sets of subcortical structures. Analysis of
deformation demonstrates that most voxels show shifts below 0.4mm for scanners of
the same type but much higher values for a different scanner. The log determinant of
the Jacobian is known to be sensitive to noise through the building of derivatives and
determinant, and values within the 90 percentile range can be as high as 20% volume
change. However, scanner B again shows distinctly different values. Tissue volume
analysis shows volume variation close to 0.5% for white and gray matter of scanners
of type A but much higher values for scanner B. The probabilistic overlap POV shows
a similar pattern and is in the range of 97.5% for same scanner types and 94.0% for
the different scanner, all measures calculated relative to the truth which is the unbiased



average image Ā. For automatic subcortical structure segmentation, the COV in the
range 0.5% to 1.0% and POV of mostly above 99% for scanner type A represent a level
of multi-site reliability which to our knowledge has not been reported yet.

This paper primarily proposes comparison metrics for probabilistic segmentations,
taking into account that today’s segmentation algorithms can increasingly provide such
data which more robustly cope with partial voluming and avoid discretization artifacts.
The Kullback-Leibler divergence DKL as presented here seems a viable alternative to
commonly used overlap measures. The information-theoretic KL divergence is based
on a well-researched theory and has a known interpretation for hypothesis testing, a
property that will be explored more extensively in our future research.

The results shown here might serve as a benchmark for other research groups but
will also be useful for clinical researchers involved in multi-site imaging studies to get
information on expected variability of measurements. Upon completion of the phantom
acquisition study, we will make the MRI and DTI image data publicly available.
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L2 norm

Log determinant of Jacobian

Error image Histogram Distribution Function

Fig. 1. Example images and distributions of the L2 norm and the log determinant of the Jacobian
for the eight scans of one phantom.

90 percentile
Phantom1 Phantom2

A1t1 0.30 0.33
A1t2 0.48 0.48
A2t1 0.30 0.27
A2t2 0.30 0.27
A3t1 0.42 0.36
A3t2 0.30 0.27
Bt1 1.17 0.90
Bt2 0.90 0.78

5 percentile 95 percentile
Phantom1 Phantom2 Phantom1 Phantom2

A1t1 -0.12 -0.16 0.08 0.12
A1t2 -0.12 -0.24 0.16 0.20
A2t1 -0.12 -0.12 0.08 0.08
A2t2 -0.12 -0.12 0.08 0.08
A3t1 -0.12 -0.12 0.08 0.12
A3t2 -0.12 -0.12 0.08 0.04
Bt1 -0.44 -0.20 0.28 0.12
Bt2 -0.20 -0.20 0.16 0.12

Fig. 2. Quantitative evaluation of image deformation. Left: 90 percentiles for the L2 norm (in
mm). Right: 5 and 95 percentiles for the log det Jacobian (log volume change).

Scanner type A
tissue class COV (%)

wm 0.573
gm 0.471
csf 0.988
icv 0.267

Fig. 3. Left: Tissue volumes for all the scanners normalized relative to scanner A averages for
each phantom. Right: Coefficient of variation for tissue volumes.



POV % wm gm csf
A1t1 97.45 97.38 95.04
A1t2 97.33 97.13 94.56
A2t1 97.47 97.40 95.12
A2t2 97.42 97.34 94.87
A3t1 97.38 97.32 94.38
A3t2 97.54 97.37 94.43
Bt1 94.66 94.14 88.58
Bt2 95.08 94.48 88.90

DKL D
(wm)
KL D

(gm)
KL D

(csf)
KL

A1t1 0.0612 0.0141 0.0137 0.0331
A1t2 0.0681 0.0153 0.0158 0.0369
A2t1 0.0605 0.0139 0.0140 0.0321
A2t2 0.0641 0.0143 0.0143 0.0349
A3t1 0.0674 0.0141 0.0142 0.0390
A3t2 0.0661 0.0132 0.0142 0.0385
Bt1 0.2034 0.0467 0.0456 0.1099
Bt2 0.1909 0.0411 0.0424 0.1057

Fig. 4. Probabilistic overlap measure POV for the tissue segmentation of each case compared to
the tissue segmentation of the atlas. Right: KL divergence measure of reliability of tissue prob-
ability maps. Total DKL and class-specific D

(c)
KL for each scan are listed. Correlation between

POV and DKL is −0.992 for wm, gm and csf combined (see text).

Structures COV
Amygdala L 1.05%
Amygdala R 0.75%
Caudate L 0.58%
Caudate R 0.95%
Hippocampus L 0.75%
Hippocampus R 0.55%
Pallidus L 1.49%
Pallidus R 1.71%
Putamen L 0.47%
Putamen R 0.50%

Dice (%) JSC (%)
97.95 95.99
98.13 96.34
98.14 96.36
98.17 96.40
98.26 96.57
98.21 96.48
98.38 96.81
98.63 97.29
98.55 97.15
98.90 97.82

Fig. 5. Segmentation of subcortical structures averaged over scanner type A and both phantoms.
Left: 3D display of binarized probabilistic template. Middle: Coefficient of variation for resulting
volumes. Right: Overlap of binary segmentations.

POV Scanners
Structures A (%) B (%)
Amygdala L 98.96 95.81
Amygdala R 99.12 96.79
Caudate L 99.12 97.87
Caudate R 99.12 97.78
Hippocampus L 99.11 97.30
Hippocampus R 99.15 97.13
Pallidus L 99.18 97.65
Pallidus R 99.29 97.20
Putamen L 99.28 97.61
Putamen R 99.40 97.13

MAD (in mm) Hausdorff (in mm)
Structures A B A B
Amygdala L 0.10 0.34 1.15 2.33
Amygdala R 0.08 0.30 1.03 2.31
Caudate L 0.07 0.17 0.95 1.04
Caudate R 0.07 0.17 1.27 1.44
Hippocampus L 0.06 0.20 0.98 1.62
Hippocampus R 0.06 0.22 1.00 1.56
Pallidus L 0.06 0.18 0.83 1.10
Pallidus R 0.05 0.21 0.88 1.00
Putamen L 0.06 0.22 0.98 1.57
Putamen R 0.05 0.26 0.95 1.09

Fig. 6. Reliability of segmentation of subcortical structures. Left: Probabilistic overlap coeffi-
cient. Right: Surface distances (in mm) per structure for scanners A and B relative to estimated
truth.




