
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2007; 19:369–396
Published online 24 August 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1103

Parallelization and scalability
issues of a multilevel
elastohydrodynamic lubrication
solver

C. E. Goodyer1,∗,† and M. Berzins2

1Computational PDEs Unit, School of Computing, University of Leeds, Leeds LS2 9JT, U.K.
2School of Computing, University of Utah, Salt Lake City, UT 84112, U.S.A.

SUMMARY

The computation of numerical solutions to elastohydrodynamic lubrication problems is only possible on
fine meshes by using a combination of multigrid and multilevel techniques. In this paper, we show how the
parallelization of both multigrid and multilevel multi-integration for these problems may be accomplished
and discuss the scalability of the resulting code. A performance model of the solver is constructed and
used to perform an analysis of the results obtained. Results are shown with good speed-ups and excellent
scalability for distributed memory architectures and in agreement with the model. Copyright c© 2006 John
Wiley & Sons, Ltd.

Received 22 December 2005; Revised 3 May 2006; Accepted 10 June 2006

KEY WORDS: elastohydrodynamic lubrication; distributed memory; parallelism; scalability

INTRODUCTION

The parallelization of scientific engineering codes has proved to be particularly useful whenever either
results are needed quickly or the memory requirements are too large to be handled in serial. In the
case of solvers for the important engineering problem of elastohydrodynamic lubrication (EHL) both
of these situations can arise. The EHL regime occurs in journal bearings and gears where, under severe
loads in the presence of a lubricant, there may be a very large pressure exerted on a very small area,
often up to 3 GPa. This causes the shape of the contacting surfaces to deform and flatten out at the
centre of the contact. There are also significant changes in the behaviour of the lubricant in this area;
for example, it may take on glass-like properties [1].

∗Correspondence to: C. E. Goodyer, School of Computing, University of Leeds, Leeds LS2 9JT, U.K.
†E-mail: ceg@comp.leeds.ac.uk

Contract/grant sponsor: EPSRC; contract/grant number: GR/N23585/01

Copyright c© 2006 John Wiley & Sons, Ltd.

370 C. E. GOODYER AND M. BERZINS

The computational challenge in solving such problems is considerable. Although the time-dependent
partial differential and integral equations apply only in one or two space dimensions, they are highly
nonlinear and have global dependencies. One of the problems of current interest is to calculate the
frictional characteristics of measured surface roughness profiles. This has been successfully undertaken
for one-dimensional (1D) line contact cases (e.g. [2,3]). Tackling the more realistic two-dimensional
(2D) case has been recognized as one of the immediate challenges in tribology [4]. In order to do this
spatial meshes of 106 × 106 points may be needed. This means that 1012 dense nonlinear equations
may need to be solved. This challenge is beyond a single workstation at present and requires the use of
parallel computers. Given that, at present and to the best of the authors’ knowledge, calculations using
more than 1000× 1000 mesh points are rare, the need for a better understanding of how parallelism
may be applied is obvious.

This paper will address the parallel solution of EHL problems by first describing the numerical
problem to be solved with both the governing equations and a brief introduction to the solution methods
used being covered. The multilevel techniques used will be highlighted, along with the reasons why
they make effective parallelization such a communication intensive process. The parallel approaches
we have taken are then explained and analyzed by means of a performance model. The results section
demonstrates how effective these approaches have been in obtaining remarkably good speed-ups and
scalabilities, given the amount of global communication present. The good agreement between the
calculated efficiencies and those predicted by the performance model provides a way of predicting the
scalability of larger problems on architectures with more processors. The paper is concluded with some
suggestions for further work in this field.

SERIAL PROCESSOR SOLUTION METHODS

Full details of both the EHL problem and the serial solution methods used are described in the book by
Venner and Lubrecht [5] and with details specific to the discussion here given by Goodyer [6].

Governing equations

The EHL case is governed by two main sets of equations, namely those concerning the physical
behaviour of the contact, and those governing the changes in the lubricant. The solution variables
that must be calculated are the pressure profile, P , across the domain, the surface geometry H , the
viscosity η̄ and the density ρ̄. The pressure distribution is described by the Reynolds equation (see [5]),
given in non-dimensional form by

∂

∂X

(
ρ̄H 3

η̄λ

∂P

∂X

)
+ ∂

∂Y

(
ρ̄H 3

η̄λ

∂P

∂Y

)
− us(T)

us(0)

∂(ρ̄H)

∂X
− ∂(ρ̄H)

∂T
= 0 (1)

where us is the sum of the surface speeds in the X-direction at non-dimensional time T , λ is a non-
dimensional constant and X and Y are the non-dimensional coordinate directions. The standard non-
dimensionalization means that the contact has unit Hertzian radius, and that the maximum Hertzian
pressure is represented by P = 1. The boundary conditions for pressure are such that P = 0. For the
outflow boundary, once the lubricant has passed through the centre of the contact it will form a free

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 371

boundary, the cavitation boundary, beyond which there is no contiguous film of lubricant. The non-
dimensional film thickness, H , is given by

H(X, Y)=H00 + X2

2
+ Y 2

2
+R(X, Y)+ 2

π2

∫ ∞
−∞

∫ ∞
−∞

P(X′, Y ′) dX′ dY ′√
(X −X′)2 + (Y − Y ′)2

(2)

where H00 is the central offset film thickness, which defines the relative positions of the surfaces if
no deformation was to occur. The two parabolic terms represent the undeformed shape of the surface,
and R is the roughness profile. The double integral defines the deformation of the surface due to the
pressure distribution across the entire domain.

The conservation law for the applied force (the force balance equation) is given by∫ ∞
−∞

∫ ∞
−∞

P(X, Y) dX dY = 2π

3
(3)

Since an isothermal, generalized Newtonian lubricant model is being used in this work, only
expressions for the density and viscosity will be required. The density model chosen is that of Dowson
and Higginson (see [5]), which takes into account the compressibility of the lubricant:

ρ̄(P) = 0.59× 109 + 1.34phP

0.59× 109 + phP
(4)

where ph is the maximum Hertzian pressure.
The viscosity model used is the Roelands pressure–viscosity relation (see [5]):

η̄(P)= exp

{
αp0

zi

[
−1+

(
1+ phP

p0

)zi
]}

(5)

where η0 is the viscosity at ambient pressure, p0 is a constant (typically 1.98× 108), zi is the pressure
viscosity index, taken as zi = 0.68, and α is the pressure viscosity coefficient.

Numerical methods

The nature of the EHL problem means that there are three very different areas of the domain when
calculating pressure. First, the cavitation region is the area of the solution beyond the free boundary
where the Reynolds equation is not valid. Second, in the centre of the domain is the contact area, where
the pressure rises sharply to reach its maximum peak in a near Hertzian shape. EHL pressure profiles
do differ from purely hydrodynamic profiles in that there is also the presence of a large ridge on the
pressure peak, towards the outflow boundary, as can be seen in Figure 1 where the three-dimensional
(3D) non-dimensional pressure profile is shown as well as the film thickness along the centre line,
which shows the shape of the contact along the centreline. The deformation away from the original
surface geometry is clearly visible and it can be seen that there is a constriction in the contact towards
the outflow, which coincides with a position between the pressure spike and the cavitation boundary.
Finally, in the non-contact region the pressure is very small compared with the contact region.

The methods used for solving for the pressure, the film thickness and the lubricant properties on
a mesh of NX by NY points with a mesh spacing of �X and �Y in X and Y , respectively, are now
described in turn.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

372 C. E. GOODYER AND M. BERZINS

Distance along centreline of contact

N
on

-d
im

en
si

on
al

is
ed

fi
lm

th
ic

kn
es

s
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Undeformed
contact

Deformed shape
OIL
FLOW

(a) (b)

Figure 1. (a) Typical pressure values across an EHL point contact. (b) Typical film thickness.

Pressure

The Reynolds equation discretization used in our software is a first-order scheme [7]:

ε
i− 1

2 ,j
(P n

i−1,j − Pn
i,j)+ ε

i+ 1
2 ,j

(P n
i+1,j − Pn

i,j)

(�X)2
+

ε
i,j− 1

2
(P n

i,j−1 − Pn
i,j)+ ε

i,j+ 1
2
(P n

i,j+1 − Pn
i,j)

(�Y)2

− us(T)

uref

ρn
i,jH

n
i,j − ρn

i−1,jH
n
i−1,j

�X
− ρn

i,jH
n
i,j − ρn−1

i,j Hn−1
i,j

�T
= 0 (6)

where n is the current timestep, and

ε
i± 1

2 ,j
= εn

i±1,j + εn
i,j

2
, ε

i,j± 1
2
= εn

i,j±1 + εn
i,j

2
(7)

where

εi,j = a3ph

6η0R2
xus(0)

ρ̄i,jH
3
i,j

η̄i,j

The discretizations above are all aligned along the flow direction, i.e. parallel to the X-axis.
The contributions from terms perpendicular to this axis are small. All of the fast EHL solution
techniques take advantage of this polarization and tend to solve along mesh lines in the flow direction.

The three distinct regions described above require different numerical schemes to be employed when
solving the Reynolds equation. In the non-contact region a Gauss–Seidel line relaxation scheme is used;

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 373

in the contact region a Jacobi line scheme is employed and in the cavitation region the Christopherson
approach is used [8], where all calculated negative pressures are set to be zero.

The scope of the relaxation scheme used involves employing both the Gauss–Seidel and the Jacobi
line relaxation schemes on the same grid, but without any overlap, depending on the position of the
grid point (i, j) on the computational domain. The two relaxation schemes are employed as follows.

Given an approximation P̃i,j and the associated approximation H̃i,j to the pressure Pi,j and the film
thickness Hi,j , respectively, a new approximation P̄i,j is computed using

P̄i,j = P̃i,j +w�P i,j (8)

where w is a damping factor, which is critical to ensure convergence of the method.
On the line Y = j , the correction terms �Pi,j (i = 1, . . . , NX) are solved simultaneously using

a system of equations created at each grid point (i, j). Depending on the solution at the grid point
(i, j), either the Gauss–Seidel or the Jacobi schemes are employed. If the grid point (i, j) lies in the
non-contact region of the computational domain, then the Gauss–Seidel scheme is employed and the
equation at this grid point is given by

∂L̃i,j

∂P̃i−2,j

�P i−2,j + ∂L̃i,j

∂P̃i−1,j

�P i−1,j + ∂L̃i,j

∂P̃i,j

�P i,j + ∂L̃i,j

∂P̃i+1,j

�P i+1,j

∂L̃i,j

∂P̃i+2,j

�P i+2,j = ri,j

(9)
where L̃i,j = L(P̃i,j)= ri,j .

This system is solved using a pentadiagonal approximation to the Jacobian matrix along the line.
Since the matrix entries in the full Jacobian are small away from (i, j), making this pentadiagonal
approximation [6] does not hamper convergence and allows much faster solution times.

The residual at the point (i, j), ri,j , is given by

ri,j = ε
i− 1

2 ,j
(P̃i−1,j − P̃i,j)+ ε

i+ 1
2 ,j

(P̃i+1,j − P̃i,j)+ h2
x h−2

y (ε
i,j− 1

2
(P̄i,j−1 − P̃i,j)

+ ε
i,j+ 1

2
(P̃i,j+1 − P̃i,j))− hx(ρ̄i,j H̃i,j − ρ̄i−1,j H̃i−1,j) (10)

However, if the grid point (i, j) lies in the contact region of the computational domain, then the Jacobi
scheme is employed and the equation at this grid point is as given by Equation (9) except for the
residual in which P̄i,j−1 is replaced by P̃i,j−1. As the Jacobi and Gauss–Seidel schemes used do not
converge quickly on fine grids, multigrid is often used to accelerate convergence and is summarized in
the next section.

Film thickness calculation

The film thickness calculation, once discretized, has the form

Hi,j =H00 + X2
i

2
+ Y 2

j

2
+Ri,j + δkeval

i,j (11)

where

δkeval

i,j =�X�Y

NX∑
k=1

NY∑
l=1

Ki,j,k,lP
keval

k,l (12)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

374 C. E. GOODYER AND M. BERZINS

where K is the film thickness kernel matrix, approximating the double integral of Equation (2), where
the superscript keval corresponds to the grid of NX by NY points and where the factor �X�Y is
a scaling factor to give mesh independence to the coefficients of K . Hence, for every mesh point,
(i, j), the deformation term is a multi-summation of the pressures at all of the other points in the
computational domain. As this calculation is O(N4) where N =NY =NX, the cost is reduced to
O(N2 ln N2) by using the multilevel multi-integration (MLMI) technique of Brandt and Lubrecht [9]
as described in the next section.

The calculation of H00 in Equation (11) is accomplished by a relaxation of the force balance
equation (3), according to

H00←H00 − c

(
2π

3
−�X�Y

NX∑
i=1

NY∑
j=1

Pi,j

)
(13)

for all mesh points (i, j), where c is a small relaxation parameter. The mathematical basis justifying
this update is described in [10].

In the context of EHL calculations one smoothing cycle is said to be the sequence of updating all of
the pressures Pi,j and film thickness values Hi,j , along with the corresponding density and viscosity
values.

Multigrid and MLMI techniques

The multilevel methods of Venner and Lubrecht [5], Brandt and Lubrecht [9] and Venner [11] have
proved very successful in computing solutions to EHL problems quickly. There are two main multilevel
components; the full approximation scheme (FAS) multigrid is used to solve the nonlinear equations,
whilst for the fast solution of Equation (11) the MLMI technique is used.

Multigrid

The point contact EHL solver described here uses a hierarchy of regular multigrid meshes of size
Nk

x ×Nk
x elements, where Nk

x = 2k + 1. The level of refinement of the mesh can then be referred to as
being grid level k. Due to symmetry about the line Y = 0 it is only be necessary to solve on half of the
computational domain. Since different grid resolutions have different smoothing properties this means
we can eliminate errors quicker than by just working on the finest throughout. The multigrid FAS [12]
aims to solve the nonlinear system

Lk(P k)= f k (14)

where Lk is a discrete approximation such as that of Equation (6) to the differential operator L defined
by Equation (1). The solution to Equation (14) obtained by an iterative method is denoted by ũk and it
approximates the exact solution u with a residual defined by

rk = f k − LkP̃
k

(15)

After relaxing the system of equations on grid k to get an approximation ũk , a representation of this on
a coarser grid, j , can be formed using a suitable coarsening operator, I j

k . On this coarser grid a system

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 375

of equations in the same form as (14) can be formed as

Lj P̂
j = f̂ j (16)

where P̂
j = I

j
k P̃

k + ej and f̂ j = Lj (I
j
k P̃

k
)+ I

j
k rk . By solving Equation (16) we can obtain a coarse

grid correction to the solution on grid k which, using a suitable operator Ik
j , is

P̃
k← P̃

k + Ik
j (P̄

k − I
j

k P̃
k
) (17)

where P̄
j

is the calculated approximation to P̂
j

as in Equation (16).
For cases with regular meshes of 2k + 1 points in each direction then all the mesh points on grid

level k − 1 are coincident with points on level k. This means simple inter-grid operators I
j
k and Ik

j can
be defined, either by injection or weighted interpolation of neighbouring points [12].

By repeated application of the coarse grid correction process described by Equation (17) the solution
scheme can be built up to be solved on the hierarchy of grids. Assuming that the same iterative
process can be used to solve the coarse grid system as the fine grid system, then the finest grid will be
used to smooth the highest frequency errors and progressively coarser grids used to smooth errors of
progressively lower frequencies (coarsening) before returning to get an updated solution on the finest
mesh (prolongation). The smoothing cycles performed before coarsening are called pre-smooths and
those performed after prolongation and correction of the solution are referred to as post-smooths.

The simplest multigrid cycle is the V-cycle. An initial approximation on the finest grid has ν1 pre-
smooths before being coarsened. This is then repeated until the coarsest mesh is reached where ν0
smoothing cycles are performed. The solution on the next finer mesh is then corrected according to
Equation (17) before having ν2 post-smooths. Again this process is repeated until a corrected, smoothed
solution is reached on the finest mesh. This V-cycle is known as a V(ν1,ν2)-cycle. Typical values for
ν1 and ν2 are three or less, although ν0 may be much larger in order to obtain a much better coarse grid
solution.

In EHL calculations, the number of Newton iterations per smoothing step in the code described here
is typically σnewt = 2. In a multigrid V(σpre, σpost) cycle the Reynolds equation is solved σRe times per
level, where

σRe = σpre + σpost + 1 (18)

We denote this number of solves per level to be

σtot = (σRe)× σnewt (19)

and note that on the coarsest grid typically many more smooths will be done, say σcoarse = 30.
The process of full multigrid (FMG) is designed to eliminate the large errors which initially exist on

the fine grid, by starting on the coarsest grid. FMG uses the same multigrid techniques and V-cycles as
described above on each of the coarse grids. At the end of each set of V-cycles the computed solution is
then prolonged up to the next finest grid level and the process is repeated until the finest grid is reached.

In-depth descriptions of how multigrid is applied to EHL problems can be found in [5] and [6].
For example, the multigrid method has to be modified to deal with the free boundary at the edge
of the cavitation region. If information is allowed to propagate from the cavitation region into the
pressure positive region in the coarsening or prolonging stages, or if the solution on a coarser grid

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

376 C. E. GOODYER AND M. BERZINS

moves the cavitation boundary one coarse mesh point into the cavitation region, then stalling may
occur [13]. This problem is eliminated by not applying the multigrid near the boundary at the risk of
slower convergence of solution boundary values.

The other major difference in the multigrid EHL solver is concerned with the iteration for H00,
and hence updating the force balance equation (3). This value of H00 is only ever corrected once per
multigrid cycle, using Equation (13), and this is performed on the coarsest grid. Appropriate corrections
from finer levels are necessary to ensure that it is the applied force, as defined by Equation (3), on the
finest grid which is being conserved, rather than that on coarser grids (e.g. [5]). The inclusion of the
force balance equation is done through a relaxation of the H00 parameter, as given in Equation (13).
This is clearly a global operation. This relaxation only ever takes place on the coarsest grid and so the
actual update is given by

H00←H00 − c

(
2π

3
− (�X)k(�Y)k

Nk
X∑

i=1

Nk
Y∑

j=1

Pk
i,j + τ k

)
(20)

for where grid corrections τ are defined by

τ k−1 = τ k + (�X)k(�Y)k
Nk

X∑
i=1

Nk
Y∑

j=1

Pk
i,j − (�X)k−1(�Y)k−1

Nk−1
X∑

i=1

Nk−1
Y∑

j=1

P̄ k−1
i,j (21)

with Pk
i,j and P̄ k−1

i,j defined as the fine and coarse grid approximations to the pressure solution on grids
k and k − 1, respectively, similar to Equation (17).

MLMI

The most computationally expensive part of any EHL calculation is the potentially N2 evaluation of the
double summation in Equation (11) for each of the N2 mesh points. Brandt and Lubrecht [9] developed
MLMI in order to reduce such a calculation from O(N4) to O(N2 ln N2).

MLMI assumes that the kernel matrix K , as defined in Equation (12), represents the discretization
of a smooth kernel function, at least greater than a small distance away from the point (i, j).
This means that provided suitably accurate restriction operators are used then the multi-summation
can be performed on a coarser grid than keval as defined by Equation (11), say ksum. A hierarchy of
grids is therefore again used to calculate the deformation on a grid keval. If the keval ≤ ksum then the
multi-summation given by Equation (11) will be performed. However, if keval > ksum then MLMI will
be used.

The relationship between a multigrid V-cycle and an MLMI cycle is shown diagrammatically in
Figure 2. In contrast to the multigrid method the most striking change is that there is no calculation
other than the multi-summation on the coarsest grid, and the correction stages, meaning almost all of
the work is in grid transfer operations.

The method can be thus be reduced to four main operations.

(i) Coarsening the pressure solution and the kernel matrix to grid ksum. These transfer operators
are denoted here by J k

j for transfer from grid j to grid k, with J k
j = (J

j
k)T. The grid transfer

operations for both the coarsening and refinement stages are performed with sixth-order

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 377

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � �
� � � � � � � �

� � �
� � �
� � �

� � � �
� � � �

� � � � � �
� � � � � �
� � � � � �

h

2h

4h

Grids Multigrid V-cycle �

MLMI cycle

Figure 2. Example of a V-cycle with MLMI at each stage.

interpolation operators, which cover most cases feasible for point contact EHL cases and with a
slightly larger correction patch for very fine grids. The stencil used in this work is given by [5]
as

PI = −25Pi−2 + 150Pi−1 + 256Pi + 150Pi+1 − 25Pi+2 + 3Pi+3

512
(22)

where PI on grid k − 1 is coincident with Pi on the grid k.
(ii) Performing the multi-summation on grid ksum to calculate an approximate deformation. At all of

the points (I , J) of grid ksum there are coincident points (i, j) on grid keval and hence the coarse
grid multi-summation is given by

δksum

I, J = (�X�Y)

nksum
x∑
k=1

nksum
y∑
l=1

Kksum

I,J,k,lJ
ksum

keval P
keval

i,j (23)

= (�X�Y)(k
eval−ksum)

nksum
x∑
k=1

nksum
y∑
l=1

Kkeval

i,j,k,lJ
ksum

keval P
keval

i,j (24)

(iii) Interpolation of the calculated deformation back to the finer grids. This is simply the reverse of
the process in (i) (see [5]).

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

378 C. E. GOODYER AND M. BERZINS

(iv) Correction of the deformation around the kernel’s singularity. The singular kernel at the point
(i, j) requires a local correction to the deformation calculated around this point on the coarser
grid ksum. This correction needs to be performed over as small a correction patch as possible
and hence the multi-summation must be performed on each grid in the refining process back to
grid keval. The number of points in this region for correction in each dimension is given by [5] as

m= 3+ ln(n) (25)

which thus defines sing. The correction comes in two parts, namely subtraction of the
contributions already included in the deformation from the coincident points on the coarse grid,
and then the inclusion of the contributions from the finer grid. Mathematically, these are given by

δksum

I, J ← δksum

I, J + (�X�Y)(k
eval−ksum)

∑
(i,j)∈sing

(Kkeval

2I,2J,k,l − K̃keval

2I,2J,k,l)P
keval

k,l (26)

for the correction at coincident points and

δkeval

i,j = [J keval

ksum δksum

·]i + (�X�Y)(k
eval−ksum)

∑
(i,j)∈sing

(Kkeval

i,j,k,l − K̃keval

i,j,k,l)P
keval

k,l (27)

for the non-coincident points, where K̃keval

i,j,k,l is the kernel function on the coarse mesh ksum

interpolated back onto the fine mesh keval (see [5, Section 5.7.3]).

In the code implementation of both coarsening and refining methods are performed via ‘half-grids’
where only one dimension is coarsened at a time. This means that the algorithm above can be iteratively
applied in alternating directions for 2D cases. A full description of this method is given in [5].

SERIAL COMPUTATIONAL COMPLEXITY

In this section the computational costs of the multigrid algorithm and of the MLMI are estimated.
Let us define the total number of grids used in the solution scheme to be

ktot = kfine − kcoarse + 1, kdif = kfine − kcoarse (28)

and that the number of Grid points in the X and Y directions are defined by

Nk
X =Nk

Y = 2k + 1 (29)

For the MLMI calculation we need to consider slightly larger grids to include the ghost points for the
higher-order grid transfer operations:

Mk
X =Mk

Y = 2k + 8+ 1 (30)

Also, for notational convenience, let
kc = kcoarse (31)

and
kf = kfine (32)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 379

V-cycle computation costs

We are using a V(3,1) cycle with four smooths on each non-coarse grid and 30 smooths on the coarsest
grid. For each processor the following costs are incurred on grid level k:

• banded line solve for the Reynolds equation: Nk
Y ×O(Nk

X);
• viscosity and density calculations, O(Nk

XNk
Y) each but involving expensive power and

exponential calculations;
• grid transfer operations, O(Nk

XNk
Y);

• calculation of the deformation using MLMI.

There are also additional calculations of the viscosity, density and deformation during the grid transfer
operations which are almost the total cost of an extra smooth.

The V-cycle computational cost is thus given by

VCcost ≈
kf∑

k=kc

γ MG
k [κvcN

k
XNk

Y + VCMLMI
cost] (33)

where γ MG
k = 6 except for the coarsest mesh where γ MG

kcoarse
= 30, and κvc is a constant denoting the

number of operations done to compute a single point.
The cost of the MLMI calculation, VCMLMI

cost , can be broken into three parts. First, the multi-
summation has a computational cost of O([Mkc

X Mkc

Y]2). The corrections to each point during the
refinement sequence on each grid are almost independent of grid level, given from Equation (25),
O[(3+ ln MX)(3+ ln MY)Mk

XMk
Y]. Grid transfer operators are of similar cost to the transfer operators

in the V-cycle but with higher multipliers since there are now the extra ghost points, half grids are
used as well and also the transfer operators are of a higher order: O(Mk

XMk
Y). The MLMI cycle

computational cost may therefore be approximated by

VCMLMI
cost ≈ κsum[(Mkc

X Mkc

Y)2] +
k∑

ki=kc+1

M
ki

X M
ki

Y [κtrans + κcorr(3+ log(M
ki

X))(3+ log(M
ki

Y))] (34)

where κtrans, κcorr and κsum are measures of the number of operations needed for each pointwise
calculation. In the model results presented later we evaluate this sum explicitly but for reasons of
brevity of the algebra such an expansion is not presented here.

Our serial experiments have shown that it is possible to make estimates for each of the κ. values.
The value of κvc is estimated at 1456. The term κsum is countable from the code, and the value agrees
with our experimental value of 7. The values of κtrans and κcorr are similarly taken to be 48 and 5,
respectively. These values will be used in the later comparisons between the parallel model efficiency
and the observed parallel efficiency of the code.

PARALLELIZATION OF MULTILEVEL EHL SOLVER

The starting point for the parallelization of the method described above is the large amount of work
performed on parallel multigrid methods and work by the authors on shared memory machines [14].
Discussions as to why the parallelization of the already computationally optimal multigrid algorithm

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

380 C. E. GOODYER AND M. BERZINS

does not produce high efficiencies are given by McBryan et al. [15], Llorente et al. [16,17] and
Tuminaro and Womble [18]. The main problems are the frequency with which coarse grids are
encountered meaning that there are very high communication costs relative to the computation. This is
especially true once the critical level has been reached, namely the coarse grid where each processor
has the smallest non-trivial amount of computation. The choice is then to use one of the following three
methods: to use the critical level as the coarsest in the multilevel scheme; to agglomerate, by moving
all of the work to a single processor as in Linden et al. [19,20]; or to have idle processors, such as used
by Brown et al. [21]. Even for the simple application considered in [21] the algorithm scaled better
for 1D lines solved in serial. Prieto et al. [22] noted that they used the critical level as their coarsest
grid due to load balancing issues and that agglomeration ‘is more suitable to pointwise relaxation’.
However, some codes, such as the NAS benchmark, do scale relatively well [23].

In the case of EHL problems, the addition of MLMI causes extra difficulties as even more work is
performed at coarse mesh levels. It is already known that existing MLMI type operations may not scale
well [24]. In particular, since no significant computation is performed during the MLMI coarsening,
the communication costs of this process are a significant factor in terms of parallel efficiency. The key
issue is thus that as we go to coarser grids the communications costs do not decrease as quickly as
the computational costs, due to this extra overhead. In the explanation that follows it will be seen how
the high-order coarsening strategy required means that the communication halos are large, typically
even larger than a processor’s own work array on the coarsest meshes. Also there are global operations
that require global knowledge, and local operations that require broadcasts from a small number of
processors.

In addition to the work described above, the only other previously known parallel EHL solver was
presented by Arenaz et al. [25] although, as with the early work shown in [6], the time savings came
from the parallelization of the multi-summation, since neither used MLMI.

Stripwise domain decomposition

Assuming that we are on multigrid level k, then the half domain on which the solution is calculated
is 2k+1 + 1× 2k + 1 points, i.e. Nk

X ×Nk
Y . The solution methods described above rely on a line

relaxation in the direction of the fluid flow. This makes it natural to consider a stripwise decomposition,
parallel to the direction of fluid flow. The decomposition explained below may not be ideal for parallel
efficiency but is that used in the serial codes and is probably necessary for realistically fast EHL
solutions when using the present relaxation schemes.

The partitioning approach is shown in Figure 3, where the halos are demonstrated on two grids
for a four-processor case. The partitioning is such that Nk

Y /np rows are thus allocated to each
processor. Since the top row, j =Nk

Y , is a boundary line then not all solution variables are calculated
here, meaning that if np, the total number of processors used, is of the form 2n then the effective
load balancing is effectively equal between processors. Therefore, the number of points allocated to
processor p = 0, . . . , np − 1 for computation are

Sk
p = Nk

X ×
Nk

Y − 1

np

(35)

The assignment of the set Sk
p is not the only memory requirement per processor. Many of the

calculations need more information than is contained in Sk
p. For instance, the solution of the discrete

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 381

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

MLMI halo region

Adjacent halo region

X

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

Y

p
0

p
1

p
2

p
3

Hierarchy of grids

Figure 3. Schematic showing the mesh partitioning on a coarse and fine grid for a four-processor case,
with the halos shown for processor p2.

Reynolds equation (6) requires density, viscosity, film thickness and pressure values at adjacent rows,
which may be located in Sk

p±1. The requirements of the deformation calculation are discussed in more
detail below.

The MLMI solver also uses a hierarchy of grids used to accelerate the calculation of the deformation.
It was explained in the ‘Multigrid and MLMI techniques’ section above how it is necessary to use
sixth-order interpolation operators in multi-integration. These operators act on the coarsening of the
pressure, the coarsening of the kernel matrix used in the correction area and also the refinement of the
deformations calculated on the coarser grids. These sixth-order schemes therefore require up to three
rows of ghost cells.

The use of the multigrid method means that each processor will need to calculate the solution of
(1/np)th of each grid used. This means the inter-grid transfer operators must also scale easily. This has
been accomplished by ensuring that inter-processor boundaries occur on mesh lines on the coarsest
multigrid used, say k = C. This is again easily accomplished by choosing np to be of the form 2n.
However, using parallelism with MLMI does place additional constraints on the parallelism strategies
used. The halos required on a grid mean that, for an efficient algorithm in terms of memory usage, it has
been necessary for each processor to have a more complex message passing structure to receive these
dummy points from multiple processors. We have not implemented agglomeration-style techniques
and so all processors are never idle. This, in turn, means that the level of the coarsest grid used for both
multigrid and MLMI is restricted by the need for each processor to have a non-trivial amount of work.

Other memory costs in the MLMI solver are incurred by the multi-summation having to be
performed on grids C ≤ k ≤ ksum. This means that on each of these grids there must be enough
computational memory allocated for the complete pressure and kernel solutions to be stored. Also,
in the entire multi-integration solve extra cells are used to extend the domain on each level for use in

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

382 C. E. GOODYER AND M. BERZINS

the sixth-order coarsening routines. Given this higher-order method uses four extra points over every
edge, the domain is thus extended to be Mk

X ×Mk
Y = (Nk

X + 8)× (Nk
Y + 8) points. Therefore, the

number of points chosen for the multi-integration calculations are not those given in Equation (35), but
are instead given by

T k
p =Mk

X ×
Mk

Y

np

(36)

and hence there must be a small amount of realignment of data performed at both the start and end of
each deformation calculation.

PARALLEL COMPUTATIONAL COMPLEXITY

In this section, the computational and communication costs of the parallel multigrid algorithm and of
the multilevel integration are calculated. By combining these it will be possible to form a theoretical
model of performance and scalability which will be able to be compared against the actual scalability
of the software.

Assuming that we have np processors then, since all the computation has been parallelized, we can
simply take the relevant fraction of the serial cost given by Equation (33) as follows:

VCparallel
cost = 1

np

kf∑
k=kc

γ MG
k

{
κvcN

k
XNk

Y + κsum[(Mkc

X Mkc

Y)2]

+
k∑

ki=kc+1

M
ki

X M
ki

Y [κtrans + κcorr(3+ log(M
ki

X))(3+ log(M
ki

Y))]
}

(37)

Communication costs

Some communications requirements, such as the size of halos, have already been covered when
discussing the partitioning of the domain. Here we cover the specific costs associated with the parallel
implementation in detail. In describing these costs it is important to note that the communications costs
from the top and bottom processors are approximately one half of the costs of the interior processors,
although this has been neglected in the analysis to follow. The communications model used is the
standard approximation in which the cost of sending Nx data items from one processor to another as
denoted by CNX is defined by

Csend
NX
= α0 + βNX (38)

where α0 ≈ 10−5 s, β ≈ 2.510−8 s and the cost of a floating point operation γ ≈ 10−10 s on the
machine for which we compare the model against the experimental results below. Clearly, the number
of communications and their associated costs are governed by the number of grid levels used in the
multilevel scheme.

The communications model used for a broadcast of N data items from one processor to all of the
others, denoted by CBcast

N , is defined by

CBcast
N = α0 + 3 log(np)(βN + α1) (39)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 383

where α1 = 10−6. Let us define the total number of grids used in the solution scheme to be ktot =
kfine − kcoarse + 1.

In the parallel EHL code there are three parts to the communication pattern which are addressed in
turn in the next three sections:

• multigrid for the pressure and the fluid model;
• multi-integration for film thickness evaluations;
• force balance calculation to compute H00.

Pressure and fluid calculations

In the ‘Numerical methods’ section it was explained how two different numerical schemes are used for
the update for pressure, in and out of the contact region. For the Gauss–Seidel region it is necessary
to have the boundary value updates for adjoining processors. Each processor will perform a send
and a receive of Nk

X pressure points to and from adjoining processors. Similarly, the communication
requirements for viscosity and density along with the film thickness are limited to filling the ghost
points over processor boundaries; hence the cost of performing each of these is the same as for the
pressure given in Equation (39).

MLMI communications requirements

The multi-integration solver to calculate the deformation requires communications down to the coarsest
grid and back up. The level on which the deformation is to be calculated is denoted by keval and that of
the coarsest level used in the multi-integration solver (hence the level on which a multi-summation is
performed) is denoted by ksum, where keval < ksum.

The sixth-order smoothing operations defined by Equation (22) used mean that the overlap between
partitions consists of at least four rows of ghost cells above and four below. These are needed for both
the coarsening of the pressure and kernel and also of the restriction of the deformations back to the fine
grid.

The communications are broken down into three main parts: the coarsening, the refinement and the
grid alignment. This last part comes from the attempt to equidistribute work between processors, given
by the difference between Equations (35) and (36). The overall cost of this is small as the difference
between Sk

p and T k
p will rarely be more than a couple of rows for fine meshes or large numbers of

processors. These transfers are also performed by non-blocking local communications.
The coarsening work is divided between the coarsening of the kernel and the coarsening of the

pressures. The kernel actually requires coarsening by two different procedures, namely injection and
high-order coarsening.

Straight injection is used in the multi-summation of Equation (23). The injected kernel, therefore,
requires global broadcasting on the coarsest grid.

Sixth-order coarsened kernels are required for the correction of the calculated deformations
computed using Equations (26) and (27). The sixth-order versions are therefore only required to be
valid up to the width of the correction patch. This means that only the first two processor’s partitions
are will be required; however, these must be replicated to all the other processors on all grid levels in
order to compute the corrections.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

384 C. E. GOODYER AND M. BERZINS

Figure 4. Information owned and required, per processor.

MLMI coarse mesh halos

For the correction part of the MLMI solver it is necessary to use a multi-summation of all points within
a much larger radius than are used in the sixth-order coarsening of the MLMI solver. The difficulty is
that halos of size 4+ log N on the coarsest grid correspond to halos of between 12 and 20 points on
the finest grids used in the line contact solution domains. These larger requirements are needed for both
the coarsened pressure and the coarsened kernel functions. An inexpensive message passing interface
method for dealing with these halos will now be shown.

The information per processor is as shown in Figure 4 for four processors. In this diagram each
processor owns a subset of the information it requires. For example, processor 3 knows all of the
values for rows b3 to c3 but actually needs all the information for a3 to d3, i.e. the 20 row halos on
either side which are owned by processors 1 to 4.

The proposed solution for this to share the information on the required rows with all of the other
processors, and then gather back the information, a row at a time. Since each row is needed by multiple
processors, it is necessary to know where we are intending to send that row if global broadcasts are to
be avoided.

The algorithm for processor i is as follows.

• Distribute arrays a and d –
2 ×MPI AllGather

• for j = ∅, np (i
= j)

if (bi > aj && ci < dj)
for k = MAX(bi, aj) to MIN (ci, dj)

MPI ISend row k to proc j, tag k

• for k = ai to di (i
= j)

MPI IRecv row k from ANY, tag k

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 385

This changes the communication costs from np processors doing a Bcast (i.e. 2np messages per
processor sent and received of length N2/np) to 2 AllGathers (i.e. 2np messages, length 2 ints) and
twice the correction box length Isends of length N .

The benefit of this communication method is that when it is used for the sixth-order
coarsening/refinement halos it enables the efficient gathering information from multiple processors,
and distribution to a local neighbourhood of processors, rather than the exchange of information only
between adjacent processors.

Refinement of the calculated deformations from kcoarse back to keval are again done via half grids.
These transfers require only the ghost cell rows needed for the sixth-order refinement. Hence, the
bottom three rows need to be sent to the processor calculating the partition below and the top two rows
to the partition calculating above.

MLMI coarse mesh broadcasts

On the coarsest mesh of the MLMI iteration it is necessary to communicate the coarsened pressures
and kernel functions to all the processors. This is because on the coarsest grid a multi-summation
of the product of these two arrays is needed. Whilst the relevant arrays of coarsened kernels may be
stored on each processor, the extra memory requirements of saving coarsened kernels solutions would
also become highly prohibitive as both coarse and fine grids become increasingly refined. The need to
broadcast the coarse grid pressures on every solve makes it just as easy to broadcast the kernel too.

Force balance calculation

In the solution of the force balance equation (13), parallel communication is restricted to global
broadcasts of each processor’s contribution to the H00 correction, as defined by Equations (20) and (21),
on both fine and coarse grids every time the pressure is coarsened in the multigrid cycle. There is also
a global broadcast of each processor’s sum of pressures on the coarsest grids. These broadcast values
are then combined on each processor to update H00 identically.

Each processor sends one double precision number out and receives np − 1 back for every grid
giving a combined communication cost of

VCH00
comm = (kdif + 1)(3α0 log(np)) (40)

Combining the communications costs

A summary of the communications costs are given in Table I. Gathering together these costs for the
combined V-cycle and associated MLMI calculations gives the communications costs of the parallel
multigrid algorithm and of the multilevel integration. Excluding the deformation calculation, for each
processor the following costs are incurred on grid level k in a multigrid V-cycle:

VCnon-def
comm =

kf∑
k=kc

[12γ MG
k (α0 + β2Nk

X)+ 3α0 log(np)] (41)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

386 C. E. GOODYER AND M. BERZINS

Table I. Communications cost on grid k.

Calculation Operation When used Length Messages in/out

V-cycle
Force balance All Reduce Each coarsening 1 1
Viscosity Isend/Irecv Each smooth Nk

X 2

Density Isend/Irecv Each smooth Nk
X

2

Pressure calculation Isend/Irecv Each smooth Nk
X 2

local gather Each smooth Nk
X

24

MLMI cycle
Kernel coarsening Bcast (from P0) Each grid 8×Mk

X 1
and half-grid

Pressure coarsening local gather Per grid Mk
X 24

Per half-grid Mk
X

12

Coarse grid multisummation Bcast Each MLMI Rcoarse 2np

Deformation prolong local gather Each grid Mk
X 10

and half-grid

In a V(3,1,30) cycle, defining

γ MG
k =

{
npre + npost + 2= 6, k
= kc

ncoarse = 30, k = kc
(42)

this can then be substituted into (41) which gives

VCnon-def
comm = 72α0(kdif + 5)+ 144β(2kf + 2kc+1)+ 3α0 log(np)kdif. (43)

The MLMI costs for the calculation on grid k are given by the following equation:

VMLMIk
comm = local gather of rows+ local gather all reduces

+ kernel broadcasts from p0 for correction patches

+ coarsest grid kernel and pressure

=
k∑

ki=kc+1

γ
ki

MI(α0 + βM
ki

X)+
k∑

ki=kc+1

4(α0 + 3β log(np)M
ki

X)

+
k∑

ki=kc

2[α0 + 3 log(np)(α0 + 8M
ki

X)] + 2np

{
α0 + 3 log(np)

[
α0 + (M

ki

X)2

np

]}
(44)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 387

Taking these terms in sequence, and noting that γ
ki

MI is the number of rows sent plus the number of rows
received on grid ki (i.e. 24+ 12+ 10+ 10= 56) and k̄dif = ki − kc, gives, after much simplification,

VMLMIk
comm = 2α0(62k̄dif + 6k̄dif log(np)+ np + 3np log(np))

+ 8βMk
X(14+ 15 log(np))− 2βMkc

X (28+ 30 log(np)− 3 log(np)Mkc

X) (45)

The MLMI costs over a complete V-cycle are then given by

VCMLMI
comm =

kf∑
k=kc+1

6VMLMIkcomm + 30[2npα(1 + 3 log(np))+ 6β log(np)(Mkc

X)2]

= 12α0np(1+ 3 log(np))(kdif + 5)+ 62α0(1+ log(np))(kf kf+1 − kckc+1 − 2kckdif)

+ 12β[2Mkf

X (14+ 15 log(np))+ 6Mkc

X (3 log(np)Mkc

X − 14− 15 log(np))] (46)

The total communications cost of a V-cycle is given by adding Equations (43) and (46) to give

VCcomm =+12β[2Mkf

X (14+ 15 log(np))+ 6Mkc

X (3 log(np)Mkc

X − 14− 15 log(np))]
= α0[72(kdif + 5)+ 3 log(np)kdif + 12np(1+ 3 log(np))(kdif + 5)

+ 62(1+ log(np))(kf kf+1 − kckc+1 − 2kckdif)]
+ 12β[12(2kf + 2kc+1)+ 2Mkf

X (14+ 15 log(np))

+ 6Mkc

X (3 log(np)Mkc

X − 14− 15 log(np))] (47)

Memory costs

The efficient distribution of the memory requirements for the EHL code was challenging in that
the trade-offs between memory and global communication (e.g. due to the coarse grid kernel) were
both very important. Only once the communication algorithm had been constructed could the parallel
memory issues be tackled. The need to reach as fine a grid as possible meant that the memory allocation
model needed to be efficient since the presence of the coarser meshes will cause the memory per
processor to grow by more than the extra resolution needed for the finest grid alone. In fact, being able
to efficiently use the memory for large numbers of processors on fine grid cases is perhaps equally
important as the parallel algorithm scaling. These factors will be discussed in the next section.

Defining the standard processor share on a grid j to be

Rj = NY

np

× NX

then it is possible to define the size of almost all the storage to arrays of size

Dj =Rj + 2NX

The factor of 2 represents one row above and below to be passed to neighbouring processors.
The only important exceptions that may be greater than this are as follows:

• pressure
Dj

P =Rj + 17× 2(NX + 16)

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

388 C. E. GOODYER AND M. BERZINS

Table II. Comparison of timings for increasing numbers of processors on fine grid level Ktot =
257× 257 with the coarsest grid as shown.

Snowdon NGS MemoryNumber of Ksum
np Time Efficiency Time Efficiency MB Iso-memory grid used

1 12.87 1.00 9.09 1.00 12 1.00 33× 33
2 6.45 1.00 4.93 0.92 7 0.86 33× 33
4 4.34 0.74 3.60 0.63 5 0.60 33× 33
8 3.79 0.42 3.27 0.35 3 0.50 33× 33

16 5.01 0.16 4.61 0.12 3 0.25 33× 33
32 9.70 0.04 6.09 0.05 3 0.13 65× 65
64 16.19 0.01 9.19 0.02 4 0.05 128× 128

128 29.89 0.00 17.49 0.00 4 0.02 256× 256

• deformation
Dj

δ =Rj + 4× 2(NX + 16)

• MLMI kernel
Dj

k =Rj + 4× 2(NX + 16)

• MLMI corrections
Dj

corr = 9× (NX + 16)

Some other work arrays are larger than Rj but are only needed for the grid being used; hence, their
total size is constrained to Rfinest rather than

∑finest
j=coarse Rj .

RESULTS

In this section computational results are presented for the example EHL test problem, which
corresponds to the calculation of the initial steady state conditions of the example of reversal solved by
Scales et al. [26]. These are compared with the theoretical predictions of our model in the following
section.

In all of the solutions to follow, the numerical solver successfully converged on all grids with all
numbers of processors tested without producing ‘incorrect’ solutions. The parallel code has been tested
on a variety of machines. The two architectures reproduced here are both distributed memory Linux
clusters. The first, Snowdon, has up to 128 dual processor nodes containing two Intel P4 2.2 GHz Xeon
processors with 0.5 MB of secondary cache and 2 GB of physical memory, with all nodes connected
via Myrinet 2000. The second machine, NGS, is the Leeds node of the U.K.’s National Grid Service,
which is similar to Snowdon but with processor speeds of 3.06 GHz. The Intel compiler has been used
on both machines, with identical optimization levels.

Results are shown in Tables II–VIII for grids from 257× 257 to 16 285× 16 285 points. All timings
are for FMG followed by 10 multigrid V-cycles using the coarsest possible grids allowed, from a

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 389

Table III. Comparison of timings for increasing numbers of processors on fine grid level Ktot =
513 × 513 with the coarsest grid as shown.

Snowdon NGS MemoryNumber of Ksum
np Time Efficiency Time Efficiency MB Iso-memory grid used

1 45.71 1.00 32.10 1.00 46 1.00 33 × 33
2 22.32 1.02 17.21 0.93 24 0.96 33 × 33
4 13.53 0.85 10.52 0.76 14 0.82 33 × 33
8 9.42 0.61 7.82 0.51 8 0.72 33 × 33

16 9.86 0.29 9.46 0.21 6 0.48 33 × 33
32 16.02 0.09 9.96 0.10 5 0.29 65 × 65
64 25.98 0.03 15.24 0.03 5 0.14 128 × 128

128 135.11 0.00 70.23 0.00 9 0.04 256 × 256

Table IV. Comparison of timings for increasing numbers of processors on fine grid level Ktot =
1025 × 1025 with the coarsest grid as shown.

Snowdon NGS MemoryNumber of Ksum
np Time Efficiency Time Efficiency MB Iso-memory grid used

1 174.23 1.00 121.82 1.00 178 1.00 33× 33
2 84.15 1.04 64.28 0.95 92 0.97 33× 33
4 48.66 0.90 36.04 0.85 48 0.93 33× 33
8 28.54 0.76 21.48 0.71 26 0.86 33× 33

16 22.24 0.49 18.69 0.41 15 0.74 65× 65
32 28.24 0.19 17.09 0.22 10 0.56 65× 65
64 42.12 0.06 23.36 0.08 9 0.31 128× 128

128 226.76 0.01 108.26 0.01 12 0.12 256× 256

coarsest level as given in the final column of each table. The efficiencies are compared against the case
using the lowest number of processors that would fit into the 2 GB memory of each node. This means
that the efficiencies for 128 processors have a finer coarsest mesh than that used for lower numbers
of processors. This only harms the performance since the computational cost on the coarsest mesh is
O(N4), as discussed earlier.

The above results are representative of the true speed-ups possible due to parallelism when using
many processors. The scalability of the code can also be assessed by considering how the solution time
is affected when the problem size is increased at the same rate as the number of processors used to solve
the problem. For the EHL problem as solved here, doubling the number of points in the domain does
not double the work required as the multigrid method itself is assumed to be O(N2) whilst the MLMI
solver is O(N2 ln N2). However, bearing these facts in mind it is not unreasonable to still compare
grid levels k on np processors against grid k + 1 on 4np, since each grid has four times the number of
mesh points.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

390 C. E. GOODYER AND M. BERZINS

Table V. Comparison of timings for increasing numbers of processors on fine grid level Ktot =
2049 × 2049 with the coarsest grid as shown.

Snowdon NGS MemoryNumber of Ksum
np Time Efficiency Time Efficiency MB Iso-memory grid used

1 672.86 1.00 514.10 1.00 705 1.00 65× 65
2 367.77 0.91 253.87 1.01 357 0.99 65× 65
4 174.39 0.96 133.57 0.96 182 0.97 65× 65
8 102.61 0.82 73.97 0.87 95 0.93 65× 65

16 66.27 0.63 42.36 0.76 51 0.86 65× 65
32 78.76 0.27 35.64 0.45 29 0.76 65× 65
64 125.86 0.08 40.87 0.20 20 0.55 128 × 128

128 314.63 0.02 155.51 0.03 19 0.29 256 × 256

Table VI. Comparison of timings for increasing numbers of processors on fine grid level Ktot =
4097 × 4094 with the coarsest grid as shown.

Snowdon NGS MemoryNumber of Ksum
np Time Efficiency Time Efficiency MB Iso-memory grid used

1 — — 2807 65× 65
2 1520.87 1.00 1073.58 1.00 1413 0.99 65× 65
4 701.71 1.08 554.05 0.97 713 0.98 65× 65
8 402.81 0.94 278.07 0.97 363 0.97 65× 65

16 228.59 0.83 146.91 0.91 188 0.93 65× 65
32 163.25 0.58 98.67 0.68 101 0.87 65× 65
64 142.93 0.33 79.96 0.42 59 0.74 128× 128

128 410.41 0.06 237.40 0.07 41 0.53 256× 256

Table VII. Comparison of timings for increasing numbers of processors on fine grid level Ktot =
8193 × 8193 with the coarsest grid as shown.

Snowdon NGS MemoryNumber of Ksum
np Time Efficiency Time Efficiency MB Iso-memory grid used

1 — — 11 202
8 1798.74 1.00 1147.41 1.00 1424 0.98 65 × 65

16 952.35 0.94 586.60 0.98 725 0.97 65 × 65
32 551.11 0.82 357.94 0.80 375 0.93 65 × 65
64 338.32 0.66 233.18 0.62 202 0.87 128 × 128

128 640.33 0.18 338.47 0.21 119 0.74 256 × 256

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 391

Table VIII. Comparison of timings for increasing numbers of processors on fine grid level Ktot =
16 385 × 16 385 with the coarsest grid as shown.

Snowdon NGS MemoryNumber of Ksum
np Time Efficiency Time Efficiency MB Iso-memory grid used

1 — — 44 761
32 2092.52 1.00 1310.16 1.00 1449 0.97 65× 65
64 1365.05 0.77 774.59 0.85 751 0.93 128× 128

128 1297.46 0.40 672.61 0.49 406 0.86 256× 256

Table IX. Comparison of timings on increasing fine grid level with coarse grid always 257× 257. For each
case three timings are shown: the broadcasts for the multi-summation (top), the local gather timings (middle)

and the other computation and local communication (bottom).

Np 513 × 513 1025 × 1025 2049 × 2049 4097 × 4097 8193 × 8193 16 385 × 16 385

32 4.04 5.60 7.48 9.49 11.77 13.82
2.55 6.16 14.84 42.84 119.56 386.28

226.30 317.20 440.14 683.35 1265.46 3409.13

64 7.09 10.02 13.48 17.01 19.94 24.99
3.12 7.43 15.42 40.17 98.40 334.82

185.07 244.40 339.51 492.40 881.34 1922.91

128 — 17.14 22.99 29.29 35.54 42.37
— 9.19 19.13 39.57 92.78 210.37
— 183.61 250.07 319.19 529.75 1030.94

Another set of results worth comparing are those for a fixed coarsest mesh. Here we have used an
alternatively compiled version to break down the timings into three parts, namely that for the broadcasts
before the multi-summation, the local gather operations during the MLMI deformation calculation and
the rest of the computation and local communication. These results are shown in Table IX for the
coarsest grid used of 257× 257 points. It can be seen how increasing the fine grid for a fixed number
of processors leads to good scaling of the broadcasts and the computation; however, the local gather
cost is growing fastest. Meanwhile, with increasing numbers of processors it is only the broadcast time
which grows as expected with the main performance cost showing a good scaling.

Looking again at Tables II–VIII it is possible to assess how successful the use of the distributed
memory on the system has been. It is seen that in all cases the iso-memory figure, given by

Iso-memory= memory with one processor

memory with np processors
(48)

is significantly better than the computational efficiency. More importantly, on the finest meshes for
which the memory model was devised, i.e. those grids which could not have been stored completely

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

392 C. E. GOODYER AND M. BERZINS

on a single node, then the memory efficiency is good even when high numbers of processors are being
used. These figures lead us to believe that the code would be extensible to successfully run on much
larger systems for much finer problems.

PERFORMANCE MODEL COMPARISON

In this section we draw together the communications and computations costs presented earlier and
compare them against the experimental results achieved. We then use these results to make further
predictions about how scalable the code may be on a finer grid with more processors.

The efficiency of the model we have defined using

E = VCcost

VCcost + VCcomm × np

(49)

for np processors, and VCcost and VCcomm defined using Equations (33) and (47), respectively.
The results of the computational experiments on Snowdon, shown in Tables II–VIII, are compared

against the performance model in Figure 5 where appropriate values of α0, β and γ are chosen. For all
of the cases we have used the same coarsest grid as was usable in the minimum processor case for
comparison purposes, and it is against these results that the model has been compared.

It can be clearly seen what a close correlation there is between the two sets of results. This is
especially pleasing since only the main computational elements have been included in the model, and
estimates of the operations counts were made independently of the parallel timings.

Such close agreement, even on a high number of processors with the finest meshes being used,
gives us good confidence in being able to make predictions of how the solution algorithm may behave
on finer grids with more processors being used. What we are able to learn from the model, and the
other results concerning memory and the breakdown of timings, is that the efficiency of the parallel
code at larger numbers of processors will be good for even finer grids than have been tackled thus far.
The iso-memory results indicate that we ought to be able to fit the memory requirements into that
available for a single node, assuming that the memory per node is not significantly less than is currently
available.

In Figure 6 we see how the performance model expects the software to behave on grids finer than
those for which we have experimental results, and also on more processors. The assumption has
been made that these problems will fit into the locally available memory regardless of the number
of processors used (since we are using a hypothetical extension to a real computer system supplying
the α0, β and γ values); hence the coarsest grid used has been kept fixed at 257× 257 points.
The coarsest grids used have all been increased following the same rules as in our current experimental
rules. What the results show is that the parallel performance of the code is expected to peak at
65 537× 65 537 points. Beyond this grid the global operations on these very long rows will have
become too expensive for the best scalability. This is evidenced by looking at the growth of the
communications costs in Table IX, in particular the growth in the local gather costs for cases with
the same number of unknowns per node. However, the model does show that 50% efficiency may
be possible for real surface roughness cases of over 1010 mesh points on 128 large memory nodes.
These efficiencies would appear improved if the minimum number of processors necessary was larger,
as would currently be the case.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 393

 0

 0.2

 0.4

 0.6

 0.8

 1

 128 64 32 16 8 4 2 1

E
ffi

ci
en

cy

Number of processors

Points per grid
Model 257x257
Model 513x513
Model 1025x1025
Model 2049x2049
Model 4097x4097
Model 8193x8193

Actual 257x257
Actual 513x513
Actual 1025x1025
Actual 2049x2049
Actual 4097x4097
Actual 8193x8193

Model 16 385x16 385 Actual 16 385x16 385

Figure 5. Comparison of the performance model to the actual parallel experiments.

Clearly the predictions from this particular model only apply to an idealized extension to one
machine, and future architectures will differ in terms of speeds of processors and communications
as well as memory size.

The use of the model to test the alternative parallelization strategies is now a viable option. The use
of block rather than stripwise partitioning could be analyzed with less work than would be needed to
implement the necessary changes to the software. The growth in the costs of the local gathers for high
processor numbers could also be reduced through analyzing the model more closely.

CONCLUSIONS

In this paper we have shown that a demanding numerical problem, which is both highly intensive
in terms of communication and requires significant global communications, has been successfully
parallelized. Communication costs have been limited through use of non-blocking local directives,
and the memory requirements per process have been significantly reduced.

The overall speed-up of the code is excellent, especially on higher grid resolutions, such as will be
required to tackle real surface roughness problems. The scalability has been shown to be similarly good
with comparable results when increasing the problem size and numbers of processors whilst utilizing
the same coarsest MLMI level.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

394 C. E. GOODYER AND M. BERZINS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1024 512 256 128 64 32 16 8 4 2 1

E
ffi

ci
en

cy

Number of processors

Points per grid

Model 32 769x32 769
Model 16 385x16 385

Model 262 145x262 145

Model 65 537x65 537 Model 8193x8193
Model 131 073x131 073

Figure 6. Performance model prediction for very fine grids and high numbers of processors.

A parallel model has been presented that shows very similar behaviour to the computational results
obtained. It has been seen how the change of coarsest grid used due to the multigrid critical level
changing makes an impact on performance while still giving good scalability when the fine mesh is
varied relative to the coarse grid used.

We have now been able to solve the largest EHL point contact cases that the authors know about.
The future holds three main directions for this work. It is clear that to tackle very fine mesh levels,
large amounts of physical memory are required on the individual computers. To progress further on the
distributed architectures available then the computational model developed here could be analyzed in
great detail to develop more efficient communications models for large numbers of processors.

The second direction is to start using these very fine meshes to solve real surface roughness problems.
To solve these accurately in a transient manner will probably require spatial adaptivity [27] and variable
timestepping [10,28] to be introduced to the parallel solver. These problems may thus require even
larger machines to be employed to handle such enormous meshes quickly, and hence moving to meta-
computing on the Grid will seem an obvious next stage.

A final idea to be considered will be for improving the current solver by having varying numbers
of processors per grid. This would eradicate the need to use finer coarsest grids in the calculation
if some processors could be ‘switched out’ for grid levels where too many processors are present.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

PARALLELIZATION AND SCALABILITY ISSUES OF A MULTILEVEL EHL SOLVER 395

The ideas of how best to use idle processors are discussed in works such as [12,29]. These ideas
could be combined with adaptive refinement [28], potentially even using parallel algebraic multigrids
[30–32]. However, this would need much further work to be done into MLMI on adaptive grids.

ACKNOWLEDGEMENTS

The authors wish to thank Roger Fairlie, Laurence Scales, Shell Global Solutions and EPSRC.

REFERENCES

1. Alsaad M, Bair S, Sanborn DM, Winer WO. Glass transitions in lubricants: Its relation to elastohydrodynamic lubrication
(EHD). ASME Journal of Lubrication Technology 1978; 100:404–417.

2. Evans HP, Snidle RW. Analysis of micro-elastohydrodynamic lubrication for engineering contacts. Tribology International
1996; 29(8):659–667.

3. Fang N, Chang L, Johnston GJ. Some insights into micro-EHL pressures. ASME Journal of Tribology 1999;
121(3):473–480.

4. Spikes H. Tribology research in the twenty-first century. Tribology International 2001; 34:789–799.
5. Venner CH, Lubrecht AA. Multilevel Methods in Lubrication. Elsevier: Amsterdam, 2000.
6. Goodyer CE. Adaptive numerical methods for elastohydrodynamic lubrication. PhD Thesis, University of Leeds, Leeds,

U.K., 2001.
7. Nurgat E, Berzins M, Scales LE. Solving EHL problems using iterative, multigrid and homotopy methods. ASME Journal

of Tribology 1999; 121(1):28–34.
8. Dowson D, Taylor CM. Cavitation in bearings. Annual Review of Fluid Mechanics 1979; 11:35–66.
9. Brandt A, Lubrecht AA. Multilevel matrix multiplication and fast solution of integral equations. Journal of Computational

Physics 1990; 90:348–370.
10. Goodyer CE, Berzins M. Adaptive timestepping for elastohydrodynamic lubrication solvers. SIAM Journal on Scientific

Computing 2006; 28:626–650.
11. Venner CH. Multilevel solution of the EHL line and point contact problems. PhD Thesis, University of Twente, Enschede,

The Netherlands, 1991.
12. Trottenberg U, Oosterlee C, Schuller A. Multigrid. Academic Press: New York, 2001.
13. Goodyer CE, Fairlie R, Berzins M, Scales LE. An in-depth investigation of the multigrid approach for steady and transient

EHL problems. Thinning Films and Tribological Interfaces: Proceedings of the 26th Leeds–Lyon Symposium on Tribology,
Dowson D et al. (eds.). Elsevier: Amsterdam, 2000; 95–102.

14. Goodyer CE, Wood J, Berzins M. A parallel Grid based PSE for EHL problems. Proceedings of the 6th International
Conference on Applied Parallel Computing and Advanced Scientific Computing (PARA 2002) (Lecture Notes in Computer
Science, vol. 2367), Fagerholm J, Haataja J, Jarvinen J, Lyly M, Rback P, Savolainen V (eds.). Springer: Berlin, 2002;
523–532.

15. McBryan OA, Frederickson PO, Linden J, Schuller A, Solchenbach K, Stuben K, Thole C-A, Trottenberg U. Multigrid
methods on parallel computers—a survey of recent developments. Impact of Computing in Science and Engineering 1991;
3:1–75.

16. Llorente IM, Prieto-Matı́as M, Diskin B. An efficient parallel multigrid solver for 3-d convection-dominated problems,
Technical Report TR-2000-29, ICASE, 2000.

17. Llorente M, Tirado F, Vázquez L. Some aspects about the scalability of scientific applications on parallel computers.
Parallel Computing 1996; 22:1169–1195.

18. Tuminaro RS, Womble DE. Analysis of the multigrid FMV cycle on large-scale parallel machines. SIAM Journal of
Scientific Computation 1993; 14(5):1159–1173.

19. Linden J, Lonsdale G, Ritzdorf H, Schuller A. Block-structured multigrid for the Navier–Stokes equations: Experiences and
scalability question. Proceedings of the Conference on Parallel Computational Fluid Dynamics 1992. Elsevier: Amsterdam,
1992.

20. Linden J, Lonsdale G, Ritzdorf H, Schuller A. Scalability aspects of parallel multigrid. Future Generation Computer
Systems 1994; 10(4):429–449.

21. Brown PN, Falgout RD, Jones JE. Semicoarsening multigrid on distributed memory machines. SIAM Journal on Scientific
Computing 2000; 21(5):1823–1834.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

396 C. E. GOODYER AND M. BERZINS

22. Prieto M, Montero RS, Llorente IG. A parallel multigrid solver for viscous flows on anisotropic structured grids. Technical
Report 2001–34, ICASE Report, 2001.

23. Chamberlain BL, Deitz S, Snyder L. A comparative study of the NAS benchmark across parallel languages and
architectures. Proceedings of the ACM Conference on Supercomputing. ACM Press: New York, 2000 (CD-ROM).

24. Izaguirre JA, Hampton SS, Matthey T. Parallel multigrid summation for the N -body problem. Journal of Parallel and
Distributed Computing 2005; 65(8):949–962.

25. Arenaz M, Doallo R, Touriño J, Vázquez C. Efficient parallel numerical solver for the elastohydrodynamic Reynolds–Hertz
problem. Parallel Computing 2000; 27:1743–1765.

26. Scales LE, Rycroft JE, Horswill NR, Williamson BP. Simulation and observation of transient effects in elastohydrodynamic
lubrication. SP-1182, SAE International Fuels and Lubricants Meeting, Dearborn, Michigan, 1996; 23–34.

27. Goodyer CE, Fairlie R, Berzins M, Scales LE. Adaptive techniques for elastohydrodynamic lubrication solvers, tribology
research: From model experiment to industrial problem. Proceedings of the 27th Leeds–Lyon Symposium on Tribology,
Dalmaz G et al. (eds.). Elsevier: Amsterdam, 2001.

28. Goodyer CE, Fairlie R, Berzins M, Scales LE. Adaptive mesh methods for elastohydrodynamic lubrication. ECCOMAS
CFD 2001: Computational Fluid Dynamics Conference Proceedings. Institute of Mathematics and its Applications, 2001
(CD-ROM).

29. Jones J, McCormick S. Parallel multigrid methods. Parallel Numerical Algorithms (NASA/LaRC Interdisciplinary Series
in Science and Engineering, vol. 4), Keyes D, Sameh A, Venkatakrishnan V (eds.). Kluwer: Dordrecht, 1997; 203–224.

30. Brandt A. Algebraic multigrid theory: The symmetric case. Applied Mathematics and Computation 1986; 19(1–4):23–56.
31. Leary AJ, Falgout RD, Henson VE, Jones JE, Manteuffel TA, McCormick SF, Miranda GN, Ruge JW. Robustness and

scalability of algebraic multigrid. SIAM Journal on Scientific Computing 2000; 21(5):1886–1908.
32. Yang UM. Parallel algebraic multigrid methods high performance preconditioners. Numerical Solutions of PDEs on

Parallel Computers (Lecture Notes in Computational Science and Engineering), Bruaser AM, Bjrstad P, Tveito S (eds.).
Springer: Berlin, 2005; 209–236.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:369–396
DOI: 10.1002/cpe

	INTRODUCTION
	SERIAL PROCESSOR SOLUTION METHODS
	Governing equations
	Numerical methods
	Pressure
	Film thickness calculation

	Multigrid and MLMI techniques
	Multigrid
	MLMI

	SERIAL COMPUTATIONAL COMPLEXITY
	V-cycle computation costs

	PARALLELIZATION OF MULTILEVEL EHL SOLVER
	Stripwise domain decomposition

	PARALLEL COMPUTATIONAL COMPLEXITY
	Communication costs
	Pressure and fluid calculations
	MLMI communications requirements
	MLMI coarse mesh halos
	MLMI coarse mesh broadcasts
	Force balance calculation
	Combining the communications costs
	Memory costs

	RESULTS
	PERFORMANCE MODEL COMPARISON
	CONCLUSIONS

