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ADAPTIVE TIMESTEPPING FOR ELASTOHYDRODYNAMIC
LUBRICATION SOLVERS∗

C. E. GOODYER† AND M. BERZINS‡

Abstract. The application of variable-step time-integration techniques in a method of lines
approach for the numerical solution of transient elastohydrodynamic lubrication calculations is de-
scribed. Spatial discretization of the coupled integro-differential equations leads to a system of
differential-algebraic equations in time. At each timestep a large system of nonlinear equations of
104–107 variables is solved by using multigrid methods and multilevel multi-integration. The applica-
tion of temporal error control methods is considered with reference to both the differential-algebraic
formulation of the system to be solved and the multigrid-based nonlinear equation solver to be used.
The error control method used takes account of the magnitude of the spatial error present by using
a local time error control based on the magnitude of this error. This approach is shown to be bene-
ficial in reducing the computational work required. Experimental results on a variety of lubrication
problems, including a challenging rough surface problem, are used to display the effectiveness of the
methods.
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1. Introduction. Elastohydrodynamic lubrication (EHL) problems arise in the
mathematical modeling of highly loaded components undergoing deformation when
lubricated by fluids such as oil. In particular, EHL may occur in journal bearings and
gears where a load is applied on a very small contact area. This load causes pressures
of up to 3 GPa and hence elastic deformation of the solid metal contact. Under these
extreme conditions lubricating oil may have a glass-like consistency. EHL problems
are most often modeled by nonlinear coupled integro-differential equations which re-
quire the use of numerical methods. Such EHL problems are of practical industrial
interest but as the demand is for fast and robust solvers for increasingly more compli-
cated problems, the ability to reduce the work needed for individual problems is thus
paramount. A thorough background of EHL models and computations is provided
by [38].

Numerical solutions have been computed since Petrusevich in 1951 [28], and finite
difference, and to a lesser extent finite elements (see, e.g., [41]), have been used since
then. The biggest advances have come from Lubrecht et al. with the application
of multigrid in 1986 [24, 25, 36, 38] and multilevel multi-integration in 1990 [2, 38].
Since then the emphasis has largely been on solving more realistic and hence more
physically challenging problems rather than further algorithmic developments. Most
of the results are still computed by using a fixed regular grid and a fixed timestep
with multilevel methods.

The need to move EHL simulations closer to the design process for both oils
and components requires ever more complex problems to be formulated and solved;
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Fig. 1.1. Typical solution for pressure across an EHL point contact.

see, e.g., [14]. These problems vary from transient cases, with variable loading and
contact speeds, through complicated rheological behavior, to solutions incorporating
surface features and, ultimately, true roughness. This requires that the solvers being
used must be designed to be extensible to meshes of tens or hundreds of thousands of
points in each direction and that the solutions can be obtained sufficiently quickly and
reliably for problems with the order of 107–108 variables. Part of the need for large
meshes is that, even in one dimension, mesh spacings as small as 10−5 are needed to
obtain converged solution values of a pressure spike [17]. The industrial requirement is
to be able to make accurate predictions of friction and for this in the case of measured
surface roughness large meshes are needed.

EHL problems possess three very different characteristics in different areas of the
domain. The cavitation region is the area of the solution beyond the free boundary
where the Reynolds equation is not valid. In the center of the domain is the contact
area, where the pressure rises sharply to reach its maximum peak in a near Hertzian
shape. EHL pressure profiles differ significantly from those in hydrodynamic cases
with no surface deformation in that there is a ridge on the outflow side of the pressure
peak. This can be seen in Figure 1.1 where a three-dimensional representation of the
pressure profile is shown. Finally, in the noncontact region the pressure is very small
compared to the contact region.

The deformation of the surface can be seen in Figure 1.2 which shows the shape
of the contact along the centerline. The deformation of the original surface geometry
is clearly visible. It can be seen that there is a constriction in the contact toward the
outflow, which coincides with a position between the pressure spike and the cavitation
boundary. At the outflow boundary a free boundary is formed representing the pres-
ence of a cavitation region where bubbles have formed in the lubricant film. The cases
considered here always use a thin film approximation and are for the two-dimensional
point contact case. In this work we shall restrict our discussion to the time dependent
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Fig. 1.2. Typical solution for film thickness along the centerline of an EHL point contact.

circular point contact cases and consider how to vary the timestep within the context
of the multilevel multigrid solver, taking account of the spatial error present. The first
results for adaptive timestepping in EHL solutions were presented by Goodyer et al.
[13, 16]. More recently Watremetz et al. [39] have presented an alternative method of
timestepping based on considering the physical situation rather than any measure of
the truncation error.

As larger and larger EHL problems are solved or greater spatial accuracy is used
it becomes more important to use a timestepping approach that reflects the spatial
error present. This is particularly true for problems with very large numbers of points.

For example, in a benchmark parallel EHL calculation 250 million mesh points
have been used by extending the techniques used in [18]. In this paper we thus look at
the issue of developing an appropriate timestepping solver and error control method.
In resolving this issue it is important to cast the discretized equations as a differential-
algebraic system. This allows error estimation procedures from differential-algebraic
equation (DAE) theory to be combined with both the multilevel multigrid solver and
an estimate of the spatial error to obtain an efficient timesteping scheme. DAE theory
also provides insight regarding which variables should be used in a local error test and
which should be excluded. The DAE framework also makes it easier to understand
how to choose the appropriate classes of time-integration methods and thus makes
it easier to understand how to extend the approach described below to use high or
variable order methods. In developing the approach described below we are aware
of the tremendous advances made in the global error control of ODEs (see, e.g.,
[5, 9, 23, 26]) and think that such methods offer tremendous potential for the future.
At present such methods are still sufficiently expensive that we will explore simpler
methods based on attempting to keep the temporal error on a smaller scale than the
spatial error [1, 22].

The rest of this paper is laid out as follows. In section 3 the equation system
describing the problem is explained and the problem is reformulated as a DAE system.
In section 4 a brief explanation of the spatial discretization and time-integration errors
is supplied while section 5 describes the nonlinear equations solver employed. Section 6
describes the general approach we are using for the variable timestep approach, based
on considering the DAE nature of the system. Section 7 describes in detail the error
control mechanism employed in controlling the temporal error given the spatial error
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present. Various examples of the use of variable timestepping are shown in section 8
where results for three very different cases, typical of the situations found in real
transient EHL contacts, are presented, including consideration of the reduction in
solution times.

2. Notation. The following notation of EHL variables will be used throughout
the rest of the paper.

A surface roughness amplitude a halfwidth of Hertzian contact
G undeformed surface geometry H nondimensional film thickness
H00 film thickness central offset K film thickness kernel matrix
P nondimensional pressure ph maximum Hertzian pressure
p0 viscosity parameter Rx reduced radius of curvature
T dimensionless time us sum of velocities of contacts
W surface roughness wavelength Xd surface roughness pattern center
X, Y dimensionless coordinates z viscosity index
α pressure viscosity index ε coefficient in Reynolds eqn.
λ coefficient in Reynolds eqn. η0 viscosity at ambient pressure
η̄ nondimensional viscosity Φ variable load factor
ψ convergence test parameter ρ0 density at ambient pressure
ρ̄ nondimensional density

3. PDE system. The equations governing the EHL point contact are given, in
nondimensional form, by the following six equations which are derived in standard
texts such as [12, Chapter 4] and [38, Chapters 5 and 6]. The first is the Reynolds
equation, which is based on fluid mass conservation and a thin film fluid flow approx-
imation:

∂

∂ X

(
ρH3

ηλus(0)

∂ P

∂ X

)
+

∂

∂ Y

(
ρH3

ηλus(0)

∂ P

∂ Y

)
− us(T )

us(0)

∂ (ρH)

∂ X
− ∂ (ρH)

∂ T
= 0,(3.1)

where λ is given by

λ =
6 η0 R

2
x

a3 ph
,(3.2)

and where the other symbols are defined in section 2. The two rightmost terms of (3.1)
are known as the wedge and squeeze terms, respectively. The boundary conditions
are that the pressure is zero at all boundaries and at the outflow of the free boundary
there are zero pressure derivatives; see [12, Chapter 11].

Second, the film thickness equation,

H(X,Y ) = H00 + G(X,Y, T ) +
2

π2

∫ ∞

−∞

∫ ∞

−∞

P (X
′
, Y

′
) dX

′
dY

′√
(X −X ′)2 + (Y − Y ′)2

,(3.3)

may be used to compute the contact shape for a known applied pressure distribution.
This equation consists of three parts: the offset film thickness or mutual approach,
H00, which is the separation of the solids assuming zero deformation; given unde-
formed geometry G(X,Y, T ), which is generally parabolic, although will also include
any roughness features on the surfaces; and the deformation term. The deformation
integral is derived by assuming linear, elastic deformation of the two semi-infinite half
spaces.
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Finally, the force balance equation,∫ ∞

−∞

∫ ∞

−∞
P (X,Y ) dX dY =

2π

3
,(3.4)

is the constraint equation through which the applied force is implemented in non-
dimensional form, as in (1.36)–(1.38) of [38]. By satisfying this conservation equation,
the applied load of the case in question is guaranteed to be the calculated total pressure
across the numerical solution.

The role of the force balance equation is quite complex in that without this
extra equation there is one more degree of freedom than there are equations. The
unknown variable is H00 which does not, however, appear directly in (3.4). A standard
approach in EHL calculations (see, e.g., [38, equation (6.53)]) is to define an iteration
for H00 using the residual of the discrete approximation to (3.4). This iteration is
defined in (5.1) below, for example. A full explanation of how this iteration may be
justified is given below in section 5. A brief explanation is that the discrete pressure
integral in a discrete version of (3.4) is identical to an integral involving H00 and
the film thicknesses. This identity may be seen by using the inverse of the discrete
film thickness and pressure relationship defined by the discrete version of (3.3); see
section 5 below.

A slightly modified form of this equation will be used in section 8.3 in conjunction
with time varying loads.

The lubricant model used is that of a generalized Newtonian fluid. The viscosity
model is the Roelands equation [29],

η(P ) = exp

{
αp0

z

[
−1 +

(
1 +

Pph
p0

)z]}
.(3.5)

The density is defined using the Dowson and Higginson relation [6]:

ρ(P ) =

(
1 +

5.8 × 10−10 Pph
1 + 1.7 × 10−9 Pph

)
.(3.6)

It is worth remarking that the theoretical properties of the solution to these equations
are not well understood. One notable exception is the finite element analysis of Wu
and Oden [41, 42, 43] who considered lightly loaded EHL cases. One theoretical
issue, addressed by Stenger, for example [33, 34], is that the film thickness H(x, y) is
uniquely defined by the pressure P (x, y) via (3.3).

These equations are also precursors of equations involving rough surface geome-
tries and/or non-Newtonian thermal effects; see, e.g., [10, 17].

3.1. Example reversal of entrainment. A typical example of a time depen-
dent EHL problem is the test case of reversal of entrainment described in [30]. This
situation corresponds to flow in one direction changing to the corresponding flow in
the opposite direction over a short time period. This change is represented as a lin-
ear decrease in velocity. For the example from [30] it corresponds to oil entrainment
changing from 0.05ms−1 to −0.05ms−1 in 0.2s.

A key feature of this example is the saucer of viscous fluid that forms at the point
of reversal (0.1s) and proceeds across the domain (toward the new outflow) before the
deformation pattern readopts its characteristic horseshoe shape. All physical param-
eters are as given in [30], with the standard nondimensionalized quantities as given
in Table 3.1. Figure 3.1 shows the central and minimum film thicknesses during this
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Table 3.1

Nondimensionalized parameters for reversal example.

Parameter Value

Viscosity index, α 2.1×10−8 Pa−1

Maximum Hertzian pressure, ph 0.45GPa
Initial sum of rolling speeds, us(0) 0.1ms−1

Nondimensional coefficient, λ 0.056
Material parameter, G 2961
Load parameter, W 6.58×108

Speed parameter, U 1.47×109

Moes parameter, M 52.2
Moes parameter, L 6.9
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Fig. 3.1. Central and minimum film thicknesses for reversal of entrainment.

example. The points on the line indicate where timesteps have been taken. This test
case will be used to demonstrate the issues that arise during the development of the
timestepping algorithms. Comparisons of numerical solutions against experimental
results are given by Goodyer [13].

4. Spatial and temporal discretization. Spatial discretization of the EHL
system defined by (3.1)–(3.6) leads to a system of DAEs [3]. Defining the vector of
film thicknesses across the whole domain, H, and its multiple by the density ρ in a
pointwise manner by

[H]k = Hi, j for k = i + (j − 1) ×NX ,(4.1) [
ρH

]
k

= ρi, jHi, j , i = 1, . . . , NX ,

j = 1, . . . , NY ,

with the vector of pressures, P , likewise, then the first order upwind finite difference
in space, implicit Euler in time, discretization of the Reynolds equation (3.1) is given
by

(εni−1, j + εni, j)(P
n
i−1, j − Pn

i, j) + (εni+1, j + εni, j)(P
n
i+1, j − Pn

i, j)

2(ΔX)2

+
(εni, j−1 + εni, j)(P

n
i, j−1 − Pn

i, j) + (εni, j+1 + εni, j)(P
n
i, j+1 − Pn

i, j)

2(ΔY )2
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−us(T )

uref

ρni, jH
n
i, j − ρni−1, jH

n
i−1, j

ΔX
−

ρni, jH
n
i, j − ρn−1

i, j Hn−1
i, j

ΔT
= 0,(4.2)

where the superscript n denotes values at time tn. The boundary conditions are that
all exterior boundaries have P = 0 and the line j = 1 is a symmetry condition in the
Y direction. It is important to remark that once the entrainment direction has been

reversed, the upwind direction of the discretization of the wedge term ∂ (ρH)
∂ X needs to

be changed to reflect the changing flow direction.
The discretized forms of (3.3)–(3.6) are

Hi, j = H00 + Gi,j +

NX∑
k=1

NY∑
l=1

Ki, j, k, lPk, l,(4.3)

2π

3
= ΔXΔY

NX∑
i=1

NY∑
j=1

Pi, j ,(4.4)

ρi, j =
0.59 × 109 + 1.34phPi, j

0.59 × 109 + phPi, j
,(4.5)

and ηi, j = e

{
αp0
z

[
−1+

(
1+

phPi, j
p0

)z]}
,(4.6)

with all symbols as defined previously.
It is important to stress that the dependence of the film thickness Hi, j at any

point on the pressure values at every mesh point Pk, l means that the sparsity pattern
of the discrete nonlinear equations is dense in every case. When this dependence
is combined with the nonlinear nature of the viscosity and density the result is a
computationally challenging problem.

In (4.2) a first order upwind discretization of both first order derivatives is shown.
Alternative schemes have been used by Venner and Lubrecht [38] and Wijnant [40].
Both methods again require the leading coefficients of both the wedge and squeeze
terms to be one. Optimal use of these second order schemes rely on having a fixed
relationship between the spatial and temporal timestep sizes, which, in an adaptive
time-integration code, is no longer the case. These second order schemes are, in our
experience, somewhat less stable when applied across a wide variety of cases.

4.1. DAE formulation. In order to apply DAE algorithms, theory, and error
indicators it is helpful to recast the discretized EHL equations as DAEs. This is
important as the form of the DAEs makes a significant difference to the algorithms
that can be employed both for solution and for error estimation.

The differential-algebraic form of the discretized EHL equations may be written
as

F 1(P , ρH) −
[
ρH

]′
= 0,(4.7)

the film thickness equation, (3.3), by

F 2(P ,H) = 0,(4.8)

and the density equation, (3.6), by

F 3(P , ρ) = 0,(4.9)
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where ′ denotes differentiation in time. These can then be combined to define a DAE
system for UT = (PT, HT) by

F (U,U ′, t) = 0.(4.10)

In the above case the DAE aspect arises from the lack of a temporal derivative
of pressure in (4.7)–(4.9). Issues affecting the differences between solving ODE and
DAE systems are discussed in detail in [3]. The authors have computational evidence

that the EHL system is index one for regular meshes but need to show that
∂F

2

∂P is

nonsingular in general.
The index of a DAE is defined as the minimum number of times that all or

part of (4.10) must be differentiated with respect to T in order to determine U ′ as a
continuous function of U and T [3]. Thus to find the index of the EHL DAE system
given by (4.10), it is necessary to first differentiate (4.8) with respect to T to get

∂F 2

∂P

dP

dT
+

∂F 2

∂H

dH

dT
= 0.(4.11)

Hence, if (
∂F

2

∂H )−1 exists, this gives an expression for dH
dT . Similarly, differentiating

(4.9) gives

∂F 3

∂P

dP

dT
+

∂F 3

∂ρ

dρ

dT
= 0,(4.12)

which gives an explicit expression for dρ
dT if

∂F
3

∂ρ is nonsingular.

Note that (4.7) may also be written as

dρH

dT
= H

dρ

dT
+ ρ

dH

dT
= F 1(P , ρH);(4.13)

then expressions for P ′, H ′, and ρ ′ have been obtained in one differentiation step.
Hence, the index of the transient EHL problem is one, provided both the aforemen-
tioned inverses exist.

The calculation of the density, ρ, is entirely local, leading to a diagonal Jacobian

matrix,
∂F 3

∂P
dP
dT . This matrix is nonsingular provided that none of the diagonal entries

given by

∂ρi,j
∂Pi,j

=
∂

∂Pi,j

(
0.59 × 109 + 1.34phPi,j

0.59 × 109 + phPi,j

)
(4.14)

=
0.2006 × 109ph

(0.59 × 109 + phPi,j)
2(4.15)

are nonzero. For physical, nonnegative pressures, P , this matrix is invertible.
The invertibility of ∂F2

∂P is much harder to establish. This is because the kernel
matrix K is dense, and hence simple analysis is not possible. A computational inves-
tigation into the properties of this matrix showed that it was numerically nonsingular.
Unfortunately, due to the very large size of the matrices involved, it was only possible
to numerically investigate cases up to grid size 33×33, which remains far short of the
fine mesh cases, with more than 1000×1000 points.
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5. Nonlinear equations solution method. The methods used for solving for
the pressure, the film thickness, and the lubricant properties are now described in
turn. In order to obtain solutions to EHL problems quickly it has proved necessary
[36, 38] to use multilevel and multigrid methods. Standard texts such as Briggs [4] and
Trottenberg, Oosterlee, and Schüller [35] provide descriptions of multigrid methods.

In solving the Reynolds equation it is important to make use of different numer-
ical schemes to reflect the different physical situation in each of the three different
regions [13]. In the noncontact region a Gauss–Seidel line relaxation scheme is used;
in the contact region a Jacobi line scheme is employed (see Nurgat, Berzins, and
Scales [27]) rather than the distributed scheme of Venner [36]. In the cavitation re-
gion the Christopherson approach is used [7] to set all calculated negative pressures
to zero.

The film thickness calculation, (3.3) once discretized, has the form given in (4.3).
Hence for every mesh point, (i, j), the deformation term is a multi-summation of the
pressures at all the other points in the computational domain. This calculation is
therefore extremely expensive to compute exactly as it is O(N2

XN2
Y ) operations. We

therefore use the multilevel multi-integration technique of Brandt and Lubrecht [2],
which is described fully by Venner and Lubrecht [38], to reduce this calculation to
O(NXNY lnNX lnNY ) operations.

The calculation of H00 in (4.3) is accomplished by relaxation of the force balance
equation (3.4), according to

H00 ← H00 − c

(
2π

3
− ΔXΔY

NX∑
i=1

NY∑
j=1

Pi,j

)
,(5.1)

for all mesh points (i, j), where c is a small relaxation parameter; see [38, p. 148] and
[12, p. 365].

At first sight it is unclear exactly how this equation may be justified. Write (4.3)
and (4.4) in vector form as

H = H00 e + G + KP,(5.2)

2π

3
= ΔXΔY eTP ,(5.3)

where e is the vector whose components are all one, G is the vector whose components
are Gi,j , and K is the matrix whose entries are composed of the elements Ki,j,k,l.
Define the vector y as the solution of the system of equations

Ky = e.(5.4)

Hence

yT = eT K−1.(5.5)

It is worth remarking that although we do not know if K has an inverse we can easily
attempt to compute y numerically. It then follows that the constraint equation (5.3)
may be written by using (5.2) and (5.5) as

2π

3
= ΔXΔY yT (H −H00 e−G).(5.6)
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Although it would be possible to store and save yT and e, it is easier to use an iterative
method. Applying a standard Newton–Jacobi-type procedure to calculate H00 from
this equation with relaxation factor λ then gives

H00 ← H00 − c

(
2π

3
− ΔXΔY yT (H −H00e−G)

)
,(5.7)

where

c =
λ

ΔXΔY yT e
.(5.8)

Equations (5.1) and (5.7) are easily seen to be equivalent using (5.2). Computational
experience suggests that c must be small and be chosen with some care.

One smoothing cycle is said to be the sequence of updating all the pressures, Pi,j ,
and film thickness values, Hi,j , along with the corresponding density and viscosity
values.

In any implicit time-integration process it is important to ensure that the starting
guess on a timestep is a good prediction. We therefore use linear extrapolation of
the pressure, film thickness, and H00 solutions from the previous two steps. This
prediction typically brings the root mean square residual at the start of the timestep
down by an order of magnitude and possibly suggests that higher order methods might
make an impact in time integration. Although it is possible to calculate H(0)(tn)

directly from the predicted pressure solution, P (0)(tn), this does not lead to any
noticeable improvements.

The solution method employed, described in [27] and [13], iteratively solves for
pressure before updating the film thickness. One addition for the time dependent
case is that the method for testing for convergence of the nonlinear iteration is the
well-known (see, e.g., [3]) convergence test of [31]. In this test the iteration cycle on
a timestep is continued until

ψ

1 − ψ

∥∥H(m+1)(tn) −H(m)(tn)
∥∥ < 0.33tol,(5.9)

where tol is the time-integration error tolerance, and m is the iteration number. This
also requires the definition of an estimate for the rate of convergence, ψ,

ψ =

(∥∥H(m+1)(tn) −H(m)(tn)
∥∥∥∥H(1)(tn) −H(0)(tn)

∥∥
) 1

m

,(5.10)

with a suitable norm, ‖ · ‖, which we define below. An additional source of difficulty
for EHL solvers is that it is often necessary to solve a steady state problem to calculate
the initial conditions.

6. Local error estimation. For transient EHL calculations the choice of correct
timestep size is critical. If the timestep is too large then important physical features
may be missed should they fall between successive steps. Equally, choosing a very
small stepsize may, at best, lead to a large amount of computational work for very
small changes in the solution and, at worst, result in solutions diverging, for example,
due to the magnification of temporal gradients. This is due not to the stability of the
problem but to the convergence properties of the nonlinear solver described in detail
in [13]. The strategy used here comes from [13] but a similar approach has been
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used by Gaskell et al. [11] more recently. There are also issues unique to EHL-based
multigrid solvers. For example, should the timestep become very small, then any
corrections made may amplify, rather than reduce, the errors in the solution unless
very small underrelaxation parameters are used in the multigrid solver.

6.1. Choice of variables. One of the central issues in the numerical solution of
DAEs is the proper estimation of the error and which variables to include or exclude
in the error test [3]. In this case there is a choice as to whether it is the errors in P
or in H which are controlled. Intuitively, because the system given by (4.7) is solved
for P and (4.8) is solved for H using this P , it seems sensible to control the errors in
P . However, it is the contact region where the most change is taking place, and this
is dominated by the wedge and squeeze terms in (3.1) which involve derivatives of H.
Experiments have confirmed that controlling these errors requires significantly less
work per timestep and fewer timesteps are required. The error tests will therefore be
formulated for variable H. The difference between the magnitudes of the local errors
in H and P is shown in the next subsection.

6.2. Calculating the local error estimate. Once the convergence test of (5.9)
has been satisfied, a local error calculation is undertaken to establish a new timestep
size. The size and nonlinearity of the systems of nonlinear equations to be solved at
each timestep preclude the use of LU linear equation solvers to estimate the DAE local
error by means of an extra backsolve [3, p. 147]. Instead, a multigrid-based iterative
approach will be used to estimate the local error over the step. In estimating the local
error we rely on the types of methods used by Brenan et al. [3] in our software, while
recognizing that there are many alternatives.

First let us consider the Reynolds equation (4.7). Following the derivation given
in [3, section 5.4], the system given by (4.7) can be considered, for the implicit Euler
scheme used here, as

ρM (Pn+1)Hn+1 − ρM (Pn)Hn

ΔT
− F 1(Pn+1, Hn+1) = 0,(6.1)

where ρM (P ) is a diagonal matrix with the ith diagonal entry consisting of the func-
tion ρ(.) evaluated using the ith pressure value. The true solution at timestep n + 1
satisfies

ρM (P (tn+1))H (tn+1) − ρM (P (tn))H(tn) − TE

ΔT
− F 1(P (tn+1), H(tn+1)) = 0,

(6.2)

where TE is the local truncation error, defined by

TE = [ρM (P )H]
′′ (ΔT )2

2
.(6.3)

In estimating the truncation error, TE, our experiments have shown that the variation
of the density is not as important as that of the film thickness. One may therefore
consider treating the truncation error simply as ρMH ′′ and estimate it using the usual
difference between predicted and corrected values; see [3]. Thus the estimated value
denoted by TEa is

TEa =
ρM (Pn+1)

2
(Hn+1 −H

(0)
n+1).(6.4)
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In estimating the growth in local error from tn to tn+1 we assume that the error at
tn is zero and consequently that Pn = P (tn) and that Hn = H(tn). The local errors
in pressure and film thickness are defined by leH and le P as

le P = Pn+1 − P̃n+1,

leH = Hn+1 − H̃n+1,(6.5)

where P̃n+1 and H̃n+1 are the values of the local solution to the equations with the
computed values at tn as the initial values.

This therefore leads to the following equation for the local errors leH and le P :

ρM (P̃ (tn+1))H̃ (tn+1) − ρM (P̃ (tn))H̃(tn)

ΔT
− F 1(P̃ (tn+1), H̃(tn+1))= TEa,

F 2(P̃ (tn+1), H̃(tn+1)) = 0.(6.6)

This equation may then be solved for P̃ and H̃ using the standard EHL multigrid

algorithm with right-hand side ρ
2ΔT (Hn+1 −H

(0)
n+1).

In the case of the film thickness equation (4.3) since there is no transient term
present, it can easily shown that neither the geometry nor H00 is present in the local
error calculation, hence giving

leH −KleP = 0.(6.7)

This gives us a relationship between the local errors in H and P , where K is the film
thickness integration kernel matrix.

The cost of this local error calculation on a timestep is that two or three more
multigrid V-cycles are carried out to obtain solutions, P̃ and H̃, to the local error
problem. This number of additional cycles is about one fifth of the total number of
multigrid cycles.

Once these new solutions are calculated, an estimate of the total local error in H
may be defined as

‖leH‖ω = ‖H̃n+1 −Hn+1‖ω.(6.8)

The chosen norm, ‖ · ‖ω, is a weighted root mean square L2-norm, as used in the
software package DASSL, described in [3], defined by

‖H‖ω =

√√√√ 1

NXNY

NX∑
i=1

Ny∑
j=1

(
Hi,j

ωi,j

)2

,(6.9)

with weights ωi,j defined by

ωi,j = ATOL + H
(0)
i,j RTOL.(6.10)

These weights are themselves, therefore, given in terms of the predicted solution at

that mesh point on that timestep, H
(0)
i,j , and the absolute and relative error tolerances,

ATOL and RTOL, which will be defined in the next section.
Returning to the relationship between the local errors in P and H given in (6.7)

and taking norms give

‖leH‖ω ≤ ‖K‖ ‖le P‖ω(6.11)
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Fig. 6.1. Ratio of ‖leH‖ω/ ‖le P‖ω.

for an appropriate matrix norm ‖.‖. Examples of estimates of the values of this norm
are shown below for the problem described in section 3.1. Figure 6.1 shows that the
ratio of these errors satisfies

‖leH‖ω/ ‖le P‖ω ≤ 4(6.12)

for calculations such as those in section 8. It is straightforward to monitor the ratio
defined by the left-hand side of (6.12) during the calculation.

The local error test employed is then

‖H̃n+1 −Hn+1‖ω ≤ 1.(6.13)

Once this is true the stepsize change ratio is calculated by

r = (2‖leH‖ω)
−1
k+1 ,(6.14)

with k being the order of the method [32]. The new stepsize should then be chosen
to be

ΔTn+1 = rΔTn,(6.15)

subject to some standard limitations concerning maximum permissible stepsize. For
example, if the error is small, e.g., r > 1.5 in (6.14), then the stepsize may be increased
for the next timestep. If r < 0.9, then either the stepsize is reduced for the following
step or, if the current step is considered to have failed, the current timestep may be
retaken with a new stepsize. In between these extremes the stepsize is left unchanged.
Stepsize increases are allowed only every two steps, but decreases are allowed on every
step as is common in a number of time-integration codes. The main issue now is how
to choose RTOL and ATOL so that they reflect the underlying spatial discretization
errors.

7. Space and time error estimation and balancing. The general issue of
controlling the global error in time dependent PDE calculations remains problematic
despite many recent successful algorithms based upon adjoint methods; see [5, 26].
Adjoint methods are also important for EHL problems in that they provide a means
of controlling the error in quantities of interest such as friction [20]. The key issue
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for large scale engineering calculations is the cost of the estimation algorithms. The
counterargument is that without incurring this cost there is no sure way of understand-
ing the accuracy of the solution. Nevertheless for problems for which even computing
any solution is a formidable challenge and an expensive use of computer time the
option of using the adjoint-based error control algorithms cost is unattractive. For
example, the algorithm of [5] requires one preliminary integration with a coarse tol-
erance, storage of solution values and then two adjoint integration techniques before
the main integration is started.

In this section we consider less expensive options which take into account the
magnitude of the spatial error based on the approach of [1, 22] but modified still
further to reduce computational costs.

Let the continuous equation system, defined by (3.1)–(3.6), have an exact solution
u(x, y, t) together with a vector of values of this solution at spatial grid points at time t
u(t), and the discretized equation system, defined by (4.10), have exact solution U(t).
If, at time t, the numerical approximation to the solution of the system is Ũ(t), then
the total error, E(t), is defined by

E(t) = u(t) − Ũ(t)

= (u(t) − U(t)) + (U(t) − Ũ(t))

= e(t) + g(t),(7.1)

where e(t) = u− U represents the vector of spatial discretization errors on the mesh
points, and g(t) = U − Ũ is the global error in the time integration. Given that a
solution has been discretized in space to a particular degree of accuracy, e(t), it is not
worth solving the transient part to a much higher degree of accuracy, but equally this
transient error g(t) must not degrade the spatial accuracy.

The control of the global error using adjoint methods is an active area; see [5, 9,
23, 26]. The optimal choice of timestep is governed by successfully relating the spatial
error of the solution, with the time error. It has been shown (see, e.g., [1, 22]) that
controlling the local (temporal) error per step, so that the local growth in time of the
spatial error dominates, provides a practical reliable algorithm for balancing these
errors. The disadvantage is that the strong theoretical basis of the adjoint methods
is lacking. This form of error control, in all the experiments we have conducted, has
done a good job of balancing the spatial and temporal errors. However, in common
with the results of [1], it is the case that it is relatively expensive in terms of the
number of timesteps taken.

In order to reduce computation times a modified approach is thus taken so that
instead of controlling the local error in time so that it is a fraction of the growth in the
spatial error we control the local error so that it is a fraction of the spatial discretiza-
tion error. The approach used is like the extrapolation approach of section 3.1 of [22]
in that the fine mesh solution is used to estimate the error in a coarser mesh and
then extrapolation is used to estimate the error on the fine mesh. Using the approach
in these papers yields a simple extrapolation-based estimate of the first order spatial
error in the fine mesh solution given by

ei,j(t) ≈ H̃i,j(t) − H̃I,J(t),(7.2)

where (i,j) is the fine grid point coincident with the coarse grid point (I,J).
The error control algorithm of [22, equation (3.10)] is then given by defining

‖leH‖ω < ε
∥∥en+1 − en

∥∥
ω
,(7.3)
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Fig. 7.1. Comparison of errors in the minimum film thickness through reversal using different
error control strategies.

where ‖ · ‖ω is a weighted root mean square L2-norm, as used in (6.9). Using the
approximation

‖en+1 − en‖ω ≈ Δt

∥∥∥∥∂e∂t
∥∥∥∥
ω

(7.4)

allows the error control approximation to be written as a local error per unit step.
Assuming that the spatial error may be expanded in powers of Δx and that Δx=Δy,

∥∥∥∥∂e∂t
∥∥∥∥
ω

≈ Δxp

∥∥∥∥∥∂Ẽ∂t
∥∥∥∥∥
ω

,(7.5)

where p = 1 is the power of Δx in the spatial error; thus the error control can be
approximated, as in [1, 22], by

‖leH‖ω < ε0 Δxp Δt

∥∥∥∥∥∂Ẽ∂t
∥∥∥∥∥
ω

,(7.6)

where ε0 = 0.1 or 0.3. Although the efficiency could be increased by using a larger
value of ε0, a possible alternative to (7.3) is then given by

‖leH‖ω < ε1 Δxp ‖Ẽ‖ω.(7.7)

This approach adapts the timestep so that the local time error is a fraction of the
spatial error estimate defined as in (7.7).

In order to assess the effectiveness of this approach an experiment was conducted
using the two error controls on the test problem described in section 3.1. In this
experiment a high-accuracy solution is computed using meshes of both 65×65 and
129×129 points and a small uniform timestep of ΔXf/32, where ΔXf is from the
finer resolution case. In comparing the methods the values of ε0 = 0.1 and ε1 = 0.1
were used on the 129×129 case. A comparison solution with the 65×65 point case is
also included as this shows the effect of increasing mesh resolution. Figure 7.1 shows
the percentage “errors” against this high accuracy solution in the key quantity of
Hcen, the minimum film thickness, as the contact goes through the nonlinear reversal
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Table 7.1

Computational performance comparison between different error control methods.

Grid Error control Timesteps Iterations
dimension method taken required
129×129 Fixed - small ΔT 36998 324065
129×129 Variable - using (7.7) 36628 111580
129×129 Variable - using (7.3) 140 2640
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Fig. 7.2. Comparison of timestep sizes for reversal of entrainment.

phase of the calculation. The results show that in the first half of the simulation the
errors using (7.7) are about 50% smaller than those using (7.3) relative to the tiny
timestep case, but in the second half they are comparable. The figure concentrates on
the important region around reversal. The computational cost of the three methods is
demonstrated in Table 7.1. This table shows that the modified error control defined by
(7.3) is a fraction of the cost of the approach defined by (7.7). This cost differential is
reflected by the timesteps used by the two approaches as is shown in Figure 7.2. This
figure compares the timestep sizes for the method of (7.3) (denoted as our method)
with ε = 0.1 with the method of (7.7) with values of ε between 0.3 and 3. These
values of ε are slightly larger than those used in the error balancing experiments of
[1, 22]. The significant feature of these comparison experiments is that the error in a
key quantity of interest, the central film thickness, is computed equally accurately in
all cases, showing that the temporal error has been kept small. It is interesting to also
see the variation in the timestep as the parameter ε in (7.3) is modified. This is shown
in Figure 7.3 where it can be seen that the proposed method of step selection gives
similar patterns of change. We have seen that sometimes using (7.7) may result in
periods of relatively small steps without gaining additional accuracy. This seems to be
related to the interplay between spatial and temporal error resulting in convergence
difficulties for the multigrid solver.

The error control algorithm is implemented in the choice of the tolerances RTOL
and ATOL being chosen at time t to be dynamically defined by

ATOL =
1

10

√√√√ 1

NC
XNC

Y

NC
X∑

I=1

NC
Y∑

J=1

[
H̃i,j(t) − H̃I,J(t)

]2
(7.8)
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and

RTOL = ATOL(7.9)

for fine mesh points (i, j) with coincident coarse points (I, J).

8. Examples. In this section we present examples of some typical, challenging,
transient EHL cases. The first example in section 8.1 is that of reversal of entrainment.
Second in section 8.2 is the overrolling of a single surface roughness feature. In
section 8.3 we consider the situation where the load is varying. Finally, in section 8.4
the presence of a measured surface roughness pattern is simulated.

8.1. Reversal of entrainment. A clear example of the benefits of using vari-
able timesteps can be seen in the case of the reversal of entrainment problem defined
in section 3.1. In Figure 8.1(a) the points on the line indicate where timesteps have
been taken. It can be seen that these are clustered around reversal and just after,
as was desired. The actual timestep sizes can be seen in Figure 8.1(b) alongside the
values of r, the stepsize change ratio. It was explained above that there can be ad-
vantages in not changing the stepsize too often. Choosing the new stepsize based on
an a priori error test cannot guarantee that the new stepsize will be valid for more
than one timestep. Thus having the range of values for r in (6.14) where the stepsize
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Table 8.1

Computational performance comparison between fixed and variable timestepping codes.

Grid Fixed/ Time Iterations
dimension variable taken (s) required

65×65 Fixed 677 3386
65×65 Variable 458 1763

129×129 Fixed 1948 5139
129×129 Variable 1260 1604

Table 8.2

Film thickness (FT) comparisons at two reference times between fixed and variable timestepping
codes.

Film thickness
×10−8 m

t = 0.1 s
Min FT Cen FT

t = tmin ≈ 0.108 s
Min FT Cen FT

65×65 fixed 1.71 9.34 1.24 9.66
65×65 variable 1.81 9.41 1.28 9.80

129×129 fixed 2.51 9.29 1.97 9.87
129×129 variable 2.52 9.33 1.99 9.95

remains unchanged is important. The size of this region also governs how often the
stepsize can change because if it is too small then the stepsize may be successively
increased and decreased. This “chattering” effect, well known in the ODE commu-
nity, may cause instabilities in the solution. This region is considered, for example,
by Shampine and Gordon [32] and Hairer, Nørsett, and Wanner [19]. It is the range
of values calculated for r in the error test, for which r should be set to 1 in (6.15).

The use of variable timestepping may require more cycles per timestep, but
through the larger stepsizes these are being done considerably less often. It is also
possible to limit the number of iterations per timestep if the convergence of individual
steps is failing to satisfy the convergence test (5.9) quickly enough.

One of the stated aims for the use of variable timestepping was a reduction in
the required computational time. Table 8.1 shows the computational time compar-
ison between run times for fixed step (ΔT = ΔX) and variable timestep sizes. To
confirm the validity of the results obtained, central and minimum film thicknesses are
compared in Table 8.2 at two reference times: the point of reversal (t = 0.1 s) and
the time that the minimum film thickness is achieved (t = tmin ≈ 0.108 s). At these
times the minimum film thickness is an order of magnitude less than the initial steady
state. It is clear that the significant saving in computational work described produces
results of similar accuracy.

8.2. Surface features. Following the experimental work of Kaneta, Sakai, and
Nishikawa [21], Venner and Lubrecht [37] solved this transient example of a transverse
ridge proceeding from left to right through the domain. For the local error control
method to be considered effective it should be able to capture periods of rapid change
in surface roughness cases where the relative importance of the asperity changes as it
progresses through the contact. The undeformed geometry is given by

G(X,Y, T ) =
X2

2
+

Y 2

2
−A× 10

−10
(

X−Xd
W

)2

cos

(
2π

X −Xd

W

)
,(8.1)
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Table 8.3

Parameters used for transverse ridge example, after Venner and Lubrecht [37].

Parameter Value Parameter Value

E′ 1.17×1011 Pa Moes parameter, M 233
α 2.2×10−8 Pa−1 Moes parameter, L 5.42
η0 1.22 Pa s material parameter, G 2.62×103

us 0.0215 m s−1 speed parameter, U 8.8×10−12

Rx 0.0127 m load parameter, W 2.0×10−6

a 1.84×10−4 m ridge amplitude, A 0.075
ph 0.54×109 Pa ridge wavelength, W 0.7
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Fig. 8.2. Timestep sizes and stepsize change ratio during overrolling of a transverse ridge using
variable timestepping.

where A is the dimensionless amplitude of the ridge, W is the dimensionless wave-
length of the ridge, and Xd(T ) is the dimensionless position of the ridge given by

Xd(T ) = Xd(0) +
2u2T

us
.(8.2)

The parameters are as given in Table 8.3 with the ridge entering from the left-hand side
of the domain, with Xd(0) = −2.5, and then progressing through the domain. They
correspond to a ridge of height 0.2 μm and a width of 0.07 mm, approximately what
was used by Kaneta, Sakai, and Nishikawa, and precisely what was used by Venner
and Lubrecht. Initially the ridge is outside the area of influence on the solution, and
the timestep is expected to be larger than the optimal timestep as the ridge passes
through the contact region. Once the ridge has entered the cavitation region no
further transient effects should be present, and hence the solutions should return to
the steady state conditions, and the timestep size should increase.

The physical solutions obtained were as shown by Venner and Lubrecht [37],
and hence the only part of interest is the timestep information. In Figure 8.2(a)
the timestep size is shown. As expected it does rise to a maximum which then falls
as the ridge enters the contact area at T = 1.5. This remains fairly constant until
the ridge enters the cavitation region just after T = 3.5. Once out of the contact
area the solution returns to steady state conditions and the timestep size increases
dramatically. Consideration of the stepsize change parameter, r, in Figure 8.2(b)
reveals how satisfactory the selected timestep size is, as the ridge passes through the
contact area. The desire to increase the stepsize both initially and after overrolling is
contrasted against the reduction in timestep size between T = 1 and T = 2.
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Fig. 8.3. (i) Shock loading from 0.45 to 0.90 GPa in 0.02 s and (ii) unloading from 0.45 to
0.22 GPa in 0.02 s.

8.3. Shock loading. The example of shock loading models the kind of change
to the physical conditions experienced by the teeth on gears during meshing. Two
kinds will be demonstrated in this section: shock loading and shock unloading. The
load changes are of much greater amplitude than the oscillating loads investigated by
Wijnant [40], and the timescale is very short.

The examples to be considered here both start from the initial conditions of the
reversal example, shown in Table 3.1. The loading will take place by increasing the
maximum Hertzian pressure to double its initial value for loading, or by halving it for
the unloading case. Since this calculation is done using nondimensionalized versions
of the equations as explained in section 3, it is the initial load against which the
parameters are defined. In the nondimensionalization process the applied load is
normally assumed to be constant, and thus, in the case of a varying load, a change
to the conservation equation, (3.4), is necessary. This entails a modified right-hand
side, hence changing the target sum of pressures. Thus (3.4) becomes

2π

3
Φ =

∫ ∞

−∞

∫ ∞

−∞
P (X,Y ) dXdY,(8.3)

where the variable load, Φ, is given by

Φ =

⎧⎨
⎩

1, t ≤ 0s,
1 + 450t, 0 ≤ t ≤ 0.02s,
10, t > 0.02s,

⎫⎬
⎭for increasing loading,(8.4)

Φ =

⎧⎨
⎩

1, t ≤ 0s,
1 − 45t, 0 ≤ t ≤ 0.02s,
1
10 , t > 0.02s,

⎫⎬
⎭for decreasing loading.(8.5)

Pressure solutions for the two cases are very different. The centerline pressure is
shown at selected timesteps in Figure 8.3, with the arrow indicating the direction of
increasing time of solution plots. The increase in both the size of the contact area
and maximum pressure is evident.

The unloading example has a very different behavior, as shown in the right side
of Figure 8.3, because the problem has dropped out of the EHL regime to just being
hydrodynamically lubricated instead. This means that the pressure spike has com-
pletely disappeared, and the deformation is now minimal, with no sidelobes present
at all.
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Fig. 8.4. Shock loading and unloading: Stepsize change ratios.

Fig. 8.5. Roughness pattern applied across contact.

The timestep size is chosen based on the local error estimate which in turn depends
on derivatives of the solution. It is therefore expected that when the system has
reached the final steady state solution beyond 0.02 s the timestep should be much
larger than in the initial stages. For the shock loading example the stepsize change
ratio, r, is shown on the left of Figure 8.4. It can be clearly seen that the timestep
does not increase until after the end of the loading period.

The stepsize change ratios for the shock unloading example is shown on the right
side of Figure 8.4. Similar behavior to the shock loading case can be observed, al-
though with a significantly less smooth increase in the timestep size.

8.4. Real surface roughness. A recent facet of EHL research has been the
solution of problems with real surface roughness by a number of research groups; see,
e.g., [8]. On a microscopic scale real surfaces of contacts are not defined by parabolas,
nor are any features, such as bumps and dents, perfectly geometric shapes. In fact
the surface is covered in small asperities. In an EHL contact the deformation of the
solid will seek to smooth out these irregularities, and hence the pressure profile will
be related to the local surface geometry. In fact for each individual asperity being
flattened it is possible to see that it has its own EHL contact problem—just on a
much smaller physical scale.

For this example we have imposed the measured roughness pattern shown in
Figure 8.5 onto one of the surfaces. This therefore rolls through the contact over time,
in the same manner as the surface feature simulated in section 8.2. An example, with
the amplitude of the roughness applied at a nominal 25%, is shown in Figure 8.6.
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(a) Contact shape (b) Pressure profile

Fig. 8.6. Roughness pattern applied across contact.
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Fig. 8.7. Timestep size for different amplitudes of roughness.
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In the previous examples it has been shown how the use of variable timestepping
increases the efficiency of the solver without damaging the accuracy. For surface
roughness cases the situation is slightly different in that variable timestepping will
allow the tracking of the progression of each asperity through the domain. This is
shown well in Figure 8.7 where the timestep size is monitored for increasing roughness
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amplitudes. It can be seen how the selected timestep size diminishes as the contacts
become less smooth, as we would expect.

The increase in accuracy that may be attained through the use of temporal adap-
tivity is shown in Figure 8.8, which shows the contrast in film thickness solution
values at the center of the contact region. It is clearly seen how the fixed timestep
approach both diverges from the variable timestepping solution and also misses out
on the subtimestep scale features.

9. Conclusions. In this paper we have shown how a variable timestep approach
has been used to provide an efficient method for solving transient EHL problems. It
has been explained how the adaptive methods proposed fit into the standard multilevel
schemes used for numerical solutions to EHL problems.

Variable timestepping has been shown, by experiments, to substantially reduce
the required work while maintaining the same level of solution accuracy. The over-
head in calculating new stepsizes is small, relative to the increase in performance.
Changing the stepsize away from ΔT , within predefined limits, has been seen to pose
no problems for the solver.

Examples of representative transient EHL situations have been considered, cov-
ering three different physical changes. The problem of reversal of entrainment was
showcased and compared against the experimental results of Scales et al. [30]. The
progression of the disc of highly viscous lubricant through the center of the contact
just after reversal was automatically picked up by the variable timestep approach,
and the results were shown to be just as accurate as for fixed timesteps.

The problem of surface roughness has been considered. It was seen how the
overrolling of a single surface feature required small steps while the asperity passes
through the center of the contact. One conclusion to be drawn from this example
could be that for cases with real surface roughness, the timestep could be expected to
be constant throughout. In the example of a full surface roughness pattern it has been
seen how this level of constant timestep is related to the amplitude of the roughness
pattern and may be much smaller than the mesh size. It is in cases like this where
grid adaptation [15, 17] will be very beneficial.

The other case considered was that of shock loading, where the loading on the
contact changed dramatically over a very short length of time. Again it was seen how
the timesteps were very small as the major changes in the loading changed, but as
the system reached a steady state the allowable timestep size increased.

The grid adaptation techniques shown to be beneficial in [15, 17] have not been
included, hence allowing the advantages of the variable timestepping methods to be
considered independently of other factors. Similarly the advantages of parallelism
[14, 18] have also been neglected since they have no impact on the accuracy of the
solution obtained.

Future work in this area should consider the use of adjoint-based approaches with
regard to the direct estimation and control of errors in quantities such as the central
and minimum film thicknesses, or other quantities of interest such as the friction
[17, 20].
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