
Chapter 12

Solving Computationally Intensive
Engineering Problems on the Grid Using
Problem Solving Environments

12.1 Introduction

The present rapidly changing state of Grid computing is that the technologies, resources, and
applications used in grid computing all have tremendous diversity [1]. In particular the appli-
cations are diverse and encompass many different computing techniques. The common theme
between them all is that computing power away from local resources is required, and that these
applications envisage the need to use distributed resources. With any application the results
achieved should be the most important part, and Grid technologies should be employed to facili-
tate getting faster results to harder problems.

Grid applications which are computationally intensive and collaborative in terms of the sci-
entific community examining the results lead to two important questions [2]. First, how can
knowledge and insight be acquired quickly from an application that may be running on a dis-
tributed resource rather than on the users’ desktop machine. The second, how can these results
be effectively shared between potentially geographically disparate scientists who may well have
very different areas of expertise. Both of these questions are particularly relevant when the Grid
application is being run by non traditional users who may not have computational science back-
grounds, and who may be from a broad range of disciplines.

While a commonly held belief in the Grid community is that the Web Portal will allow appli-
cations to be run from any computer, it may also be true that the Web need not be the only portal
into the Grid. The Web interface may be simple, but the outputs returned are constrained by
the same “bare bones” nature of the environment. Users from all backgrounds are now used to
high quality 3-D visualizations, from graphics on news programmes to high quality animations
shown during talks. The Grid has the ability to provide these same quality outputs, but the inter-
action method may need to be driven by the demands of visualization software which provides an
important way of extracting knowledge from large datasets. In this work we describe the stages
necessary to provide real-time desktop visualization of results for a parallel Grid application
computed via problem-solving environments (PSEs). Apart from the visualization, the biggest
advantage of using a PSE is the ability to use computational steering. In traditional applications,
the input parameters are set and not often changed while the code is running. By making the
input parameters available in the PSE, it is possible to change the problem being solved after the

284



Introduction 285

simulation has been started. This means that the visual feedback from the output visualizations
can help to guide further inputs, either away from failing computations or toward better investi-
gation of more exciting parameter regions. The benefits of computational steering as a means of
improving the solution procedure go back to one of the first demonstrations of steering by Haber
and McNabb [3] in 1989.

Recent work by Brodlie et al. [4] shows how collaboration between scientists using PSEs can
be achieved through various methods such as (i) sharing the display of the PSE, (ii) sharing the
output visualisations once they have reached the PSE, and finally (iii) sharing the access to the
simulation allowing steering from any user. The first of these can be done using technologies such
as Virtual Network Computing,1 (VNC) which allows any internet connected computer to view
and interact with the desktop on a single machine. This can be useful for shared demonstrations
such as in Access Grid Ref here sessions, where conversation may revolve around the computed
results. Sharing of data is possible through technologies such as COVISA [5], which has a client-
server approach enabling sharing of parameters, formatted datasets, or even geometry within
IRIS Explorer. In this work we focus on the third type of collaboration in the final section of the
chapter.

Although the example used here is computationally demanding and lends itself to parallel
solution techniques, the approach taken here will be to illustrate, through the code development,
the use of distributed and shared memory parallelization techniques as will the use of Grid job
management. Using the Grid as HPC on-demand for large, complex applications will inevitably
involve the use of parallel programming techniques within the application [6]. The Grid will
be presented in terms of getting seamless, interactive, on-demand access to high-performance
computing (HPC) resources, and how applications may be extended beyond conventional HPC
considerations.

The rest of the chapter describes the series of stages necessary to transform a typical applica-
tion into a fully Grid-enabled one, operating from within a problem-solving environment. These
stages will be further explained with a series of example PSEs outlining the technical enhance-
ments necessary for transforming an engineering code into one which fully exploits the benefits
of Grid technology.

In Section 12.2, the basic components of a PSE are described in detail, along with some con-
sideration of the options available in choosing the package within which the PSE is to be built.
The case studies focus on IRIS Explorer and SCIRun, although other options exist including the
use of packages such as Cactus,2 MATLAB,3 AVS,4 and OpenDX.5 These are a mixture of open
source and proprietary software, but the principles for developing in one system transfer well
into the others. Other example PSEs using these systems can be found in work by Brodlie et
al. [7] for IRIS Explorer; Johnson et al. [8] for SCIRun; Allen et al. [9] for Cactus; Kierzenka

1http://www.realvnc.com or http://www.tightvnc.com

2http://www.cactuscode.org

3http://www.mathworks.com/products/matlab

4http://help.avs.com/AVS5

5http://www.opendx.org



286 12. Solving Computationally Intensive Engineering Problems

and Shampine [10] for MATLAB; and, Treinish [11] for OpenDX. More tailor-made solutions
include the ICENI project [12], and the RealityGrid project using VTK6 [13].

In Section 12.2.1, we describe how a traditional code for a demanding mechanical engineering
problem has been embedded for use within a PSE. In this study we also consider some of the
issues to do with like, how embedded simulations are managed. This example is not necessarily
Grid-aware, but sets up the necessary framework for the later applications discussed.

The idea of running the PSE on the Grid and doing the rendering locally, as described in the
second example, does not optimise the resources effectively. The greatest leap in Grid computing
for PSEs comes when the local machine running the PSE, authenticates with a Grid resource
and handles the communication with this separate resource. We describe the mechanisms for
doing this in Section 12.4 and in the accompanying PSE Example. Particularly relevant here
are the measures for communicating input and output data between the desktop PSE and Grid
simulation.

The final stage in the evolution of the Grid-enabled PSE is to remove the dependencies between
the desktop and the Grid processes. This is done through the launched process having an extra
library attached which handles all the communication with the simulation. This means that once
launched, the Grid process need not have any “listeners” but equally it may have many who
will be able to see the same results and steer the application. These extensions are described in
Section 12.5. The final example describes how such a simulation may be set up, and why such
an application is ideally suited for a Grid environment beyond traditional HPC needs.

We conclude in Section 12.6 and consider some of the features which still need implementing.
The most obvious issue which we are not attempting to cover in this work is that of brokering.
Intelligent brokering, the automatic choice of the best Grid resource for the particular application
is still some way off, although many test projects are considering these issues. We have only
considered the case that the PSE user can use the standard tools to make the choice of resources,
coupled with personal knowledge of the resources required for the application in question.

12.2 Problem-solving Environments (PSE)

One aspect of the advent of Grid computing is that users are now able to access much more
powerful resources to perform larger simulations. Since the number of people performing such
calculations is not decreasing, then the contention for these resources is also increasing. If the
Grid moves to a “commodity computing” phase where each CPU second is chargeable then
effective management of simulations will also become an economic factor.

Problem-Solving Environments (PSEs) combine several important processes into one body.
The actual application, be it a numerical solver, as used in this chapter, or data–Grid style search,
e.g. [14], is only one component in an environment, which has access to visualization tools for
the output results generated. It also has the ability to set input parameters for the application,
and hence can provide a user-friendly interface to a complex problem. The PSE therefore has
synchronous computation and visualization. There are three ways in which even basic PSEs are
advantageous: the input parameters can all be set, or adjusted at run time; the solver is included
as an important part of the PSE and hence it can be possible to change solution methods, if
appropriate; and finally the visualization is an innate component of the package, and results can
be visualized and studied as the calculation proceeds. Computational steering gives the PSE

6http://public.kitware.com/VTK



Problem-solving Environments (PSE) 287

another advantage over traditional solution methods because this allows the test problem and/or
the solution methods to be updated during the calculation. The user, thus, “closes the loop” of
the interactive visually-driven solution procedure [15].

The choice of visualization techniques to be used will obviously depend on the data being
generated by the application. The number of dimensions of any solution dataset will guide the
user toward different techniques. For example one-dimensional results are easily visualized on a
graph, but two-dimensional cases allow use of techniques such as contouring or projection into a
third dimension. Once three-dimensional cases are considered isosurfacing, slicing, and volume
rendering are all standard techniques. Whichever technique is chosen, the visualization system
is always more useful with sensible colouring schemes and the ability to rotate the rendered
geometry in three-dimensional space. The PSEs should have the ability for the experienced visu-
alization engineer to construct detailed, informative representations of the data generated. For
the PSE user it is often the case that they have no desire to learn how to use the intricacies of
the chosen environment, but simply to use it as an experimentation tool, pushing buttons and
dragging widgets within predefined ranges.

In the introduction, various frameworks for building PSEs were mentioned. In this chapter the
examples concentrate on two of these, namely IRIS Explorer [16] and SCIRun [17]. The former
is proprietary software from NAG,7 whilst the latter is open source, available online. The choice
of framework is intended to be supportive rather than prescriptive, and the techniques used in
this chapter can be extended to any of the other options. The general appearance of PSEs is often
as a workflow diagram, with different tasks connected together. In PSE terminology, elements
of workflow are typically referred to as modules connected by a dataflow pipeline. Whilst not
all these tasks may be on the Grid it will be seen how the location of the work should feel
independent to the user.

Development of the application user interface should not require changes to the application
software, but merely the input and output interfaces. The generation of output data structures for
the chosen visualization environment is perhaps the most complicated step, although in our expe-
rience, once coded, these mechanisms tend to be very portable between different applications.
This, therefore, has the important advantage that the simulation can be developed quite indepen-
dently of the details relating to the PSE, but allows the PSE user interface to be exploited.

12.2.1 Computational Steering in IRIS Explorer for EHL Problems

Computational steering is the procedure by which the user can interact and guide the simulation
once it has started. General information regarding the requirements for computational steering is
discussed by Mulder et al. [18], who assess a selection of frameworks in regard to a set of criteria
they consider desirable for building PSEs. The key part to doing steering within a Grid setting is
communicating information to and from applications which are already running. Other examples
of this style of working within a Grid setting are provided in the RealityGrid project [19] and in
the gViz project [20]. Described briefly, allowing the user to examine the output results enables
decisions to be made about future computations. By having the input parameters as accessible
widgets on the screen, the user can alter as many or as few of them as they like between runs.
Having the application check back to the user interface regularly means that updated parame-
ters can take effect very quickly, hence enabling steering to facilitate learning. The parameters

7http://www.nag.co.uk/



288 12. Solving Computationally Intensive Engineering Problems

controlled need not always be computational inputs, but could even be manual dynamic load
balancing, for example.

The numerical problem selected motivating our need for using a PSE is that of elastohydrody-
namic lubrication (EHL) in, for example, journal bearings or gears. This mechanical
engineering problem requires sophisticated numerical techniques to be applied in order to obtain
solutions quickly. The history of the field is detailed out in papers such as [21]; much infor-
mation about the numerical techniques currently used to obtain fast, stable solutions is given in
both [22] and [23], the latter of which describes in great detail the precise methods used in the
code employed in this work. The numerical code used for solving EHL problems used in this
chapter is described in detail in [23], and it is used by Shell Global Solutions industrially.

A typical user of this EHL software would be an engineer wanting to establish solution pro-
files for a particular lubricant under certain operating conditions. Traditionally this would have
involved multiple compilations and simulations, with postprocessing of data. With a PSE the
instant visual feedback could be quickly used to tune the parameter sets to give the desired
results. At this stage, say, a more demanding transient problem could be tackled. The required
changes to transform this stand alone software into a PSE application are set out below.

For this example of PSE the framework chosen was NAG’s IRIS Explorer [16] product. There
has been earlier work employing IRIS Explorer for the development of PSEs, such as Wright et
al. [24]. IRIS Explorer is marketed by NAG as a “advanced visual programming environment”
for “developing customized visualization applications.”8 Although the IRIS Explorer workflow
diagram shows data travelling between elements along “wires,” large scale transfer of data is
avoided by passing pointers to structures of known types stored in the shared memory arena.

The standard workflow pattern in IRIS Explorer is, normally, a data set either being read in or
generated and then control passes to the next module (or modules) downstream. These in turn
execute, provided they have all their required inputs and control passes again. If a required input
is missing then the module will wait until it is received before executing. If a multiprocessor-
shared memory resource is used, then simultaneous module firings will be done on separate
processors. This is because IRIS Explorer starts each module as an entirely separate process in
the computer. It will be seen how this has both positive and negative consequences, but most
importantly will be shown how this can add to the Grid-enabled nature of the software.

The simulation code has been implemented as one module containing the entirety of the
numerical solver. The module’s control panel is used to set a selection of engineering and numer-
ical characteristics of the problem to be solved. Furthermore, extra information may be provided
to the solver through the use of extra input modules, as shown in Fig. 12.1. This has the effect of
allowing the user to build up the model of choice through easy interfaces, rather than being faced
with large numbers of inputs over which they have no interest. Once the module has completed
execution, the datasets of the calculated output profiles are sent down the map for visualization.

The PSE-enabled version of the software has been developed from the original Fortran code by
adding an interface routine written in C. The generation of all the IRIS Explorer data structures
and communication is done through the Application Programming Interface (API) which is well
documented for both C and Fortran. The design of the module’s user interface is usually done
through the Module Builder which allows the widgets to be positioned through a visual inter-
face, rather than by writing code. The Module Builder will also generate the necessary wrapper

8http://www.nag.co.uk/



Parallel PSE Applications 289

FIGURE 12.1. The PSE running in IRIS Explorer.

codes for complete control of the module’s firing pattern and communication of data through the
workflow pipeline, and these require no alteration by a developer.

Computational steering is implemented in IRIS Explorer using the looping mechanisms pro-
vided. Rather than saving results to disk at the end of a run, the work arrays inside the software
can be declared as static and hence the previous results are automatically available for use on
the next run. A solution used in this manner may provide a good initial estimate for a differently
loaded case, or be interpolated for a change of domain size.

The use of the Hyperscribe module [25] would allow another layer of steering to be included.
This module stores datasets or variables on disk for future usage, at the user’s discretion. If the
entire work arrays, previously saved as static, were stored based on the problem’s input charac-
teristics then a suite of previously calculated solutions could be created for future invocations of
the PSE on separate occasions, or even by other users.

12.3 Parallel PSE Applications

The style of PSE creation described in the previous section is appropriate for applications which
run on a standard PC, where the solution process is sufficiently quick so that the desired steer-
ing can produce visible changes instantly, e.g., the pollution demonstrator described in Walkley



290 12. Solving Computationally Intensive Engineering Problems

et al. [26]. It is, however, the basic building block for the rest of the work described here on
constructing Grid-enabled PSEs. Interactivity has been obtained, visualizations rendered, and
theoretically trivial parallelism on the PSE level may have occurred since the different simu-
lation and visualization processes should be occurring independently, hence, a multiprocessor
machine should enable simultaneous execution. The next stage has to allow the simulation itself
to be run in parallel.

Working in the framework of the simulation as an embedded module means that far greater
consideration must be given to the actual fabric of the environment in which the PSE is built.
For example, as was explained above, IRIS Explorer has each module in the dataflow pipeline
as a separate process. Since these processes are launched internally from IRIS Explorer and the
processes themselves are wrapped in generated code to communicate with the IRIS Explorer
user interface, then launching one of these modules using MPI [27] is not an option currently
available. Instead shared memory techniques have been used. In this section the use of shared
memory parallelism using SCIRun will be explored.

12.3.1 Parallel Shared Memory Computation within SCIRun

The SCIRun has been developed by the SCI group at the University of Utah as a computational
workbench for visual programming [17] and has now been released as open-source software.
SCIRun was developed originally for calculations in computational medicine [28], but has since
been extended to many other applications.

FIGURE 12.2. Parallel threaded EHL PSE running in SCIRun.



Parallel PSE Applications 291

The overall appearance of SCIRun is similar to that of IRIS Explorer, as can be seen in
Fig. 12.2, where the implementation of the EHL problem explained in Example PSE 1, can
be seen working. The module firing algorithm in SCIRun probes the workflow diagram from the
desired point of execution so that all elements have all the information they need to run, before
then sending the information downstream and firing those modules. This means that upstream
elements will be fired if they need to supply information to any other element. Similarly all the
downstream modules directly affected by the firing will be made aware that new data will be
coming.

A SCIRun is a multi-threaded program, and hence a single process, with (at least) one thread
for each launched module. Therefore, every module can have access to all same data without
the use of shared memory. This has the advantage that there is more memory available for the
generation of datasets to pass between modules, and the disadvantage that any operating system
limits on the memory available to a single process apply to the entirety of SCIRun, meaning that
calculation and visualization are all included in the same maximum space allocation defined by
the system. It also means that any variables declared as static in one invocation of a module will
be the same as used in other invocations, since the operating system cannot differentiate between
the two.

Parallelism can be easily achieved on SCIRun, thanks to its threaded structure. SCIRun has
its own implementation of threads that can be easily incorporated into a user’s code. The use
of threads means a shared memory machine must be used, but within these constraints the par-
allel performance for numerical calculations is very good. Next generation packages, such as
Uintah [29], use a combination of MPI and threads to achieve massively parallel scientific com-
putations on terascale computing platforms.

Since SCIRun is written as a single threaded process, it has added flexibility with regard to the
rewiring of workflow elements during execution. For the EHL problem, when a transient case
is run, the output datasets are prepared and released down the pipeline for visualization at the
end of each time step. With more than one solution variable being solved for, there is obviously a
choice as to what is visualized at anytime. In SCIRun, these changes can be made “on the fly.” For
example, if the pressure solution was being visualized, then it is possible to change to a surface
geometry plot between time steps. This is an important feature since it allows the user to learn
and experiment interactively, whilst still making excellent use of the allocated Grid resources.

12.3.2 Shared Memory Parallel Computation Grid Architecture

In developing the shared memory Grid software architecture, it should be noted, however, that
running the entire PSE remotely is not always a good idea. The main reason for this is that the
final rendering should be done locally whenever possible to allow full utilization of the local
graphics hardware. Minimizing the network traffic between simulation and display is another
factor which must be considered. For examples, with large datasets for visualization, then doing
this work on a Grid resource will be very advantageous. Considering the size of datasets to be
transferred over the intervening network between generation, visualization and rendering are
very important, as are the connectivity rates. This can be illustrated by the scenario demon-
strated in Fig. 12.3. Here we are imagining the computationally intensive part being done on
Grid Resource 1, but the visualization is done on Grid Resource 2. Often, all communication
with nodes of such resources has to be channelled through a head node. Within the resource
the communication will use the fast interconnects, or shared memory, but between resources the



292 12. Solving Computationally Intensive Engineering Problems

SHARED MEMORY

Headnode 1 Headnode 2

GRID RESOURCE 1
GRID RESOURCE 2

BROKER

User’s
local

desktop

FIGURE 12.3. Example Grid architecture diagram, with different workflow elements on distributed
resources.

communication will be at a lower rate. If the native architecture of Grid Resource 1 can be used
for the visualization tasks, too, then the overall performance of the application may be substan-
tially enhanced. This scenario emphasizes the difficulties in accurately brokering the entire Grid
application, as the broker would need some idea of the data transfer rates between the machines,
the size of the datasets to be generated, and an idea of the regularity of the rate at which these are
produced.

One way in which manual distribution of work between resources has been implemented in
IRIS Explorer is through the use of remote hosts. Work by Wood et al. [20] has extended the
standard access methods to include secure Grid-aware authenticated connections.

12.4 Grid-enabled Workflow

To extend the parallelism options available away from shared memory, it must be possible to
launch jobs onto remote distributed resources. These resources will now, typically be managed
by Grid-aware scheduling software, and hence interaction with this middleware must be done as
transparently to the user as possible.



Grid-enabled Workflow 293

The methods described here use the standard Globus9 [30] tools for Grid job management,
including file input and output. We shall assume that the necessary Globus certification process
has already been undertaken before launching the PSE. The brokering is, as described previously,
done through user selection based on knowledge of the resources currently available.

The key remaining steps to getting the PSE having elements run on distributed resources are
(i) launching the job onto a remote resource, (ii) communicating information back to the PSE
detailing the location where the job is running, and (iii) communication of steering and output
information to and from this job. These three steps are possible using a variety of approaches, of
which we shall describe two.

In order to launch the job onto the resource it is often necessary to have a good understanding
of the specification of that resource, and knowledge of the schedulers on that resource. For exam-
ple, a parallel job launched through Globus requires extra information for the local scheduler to
best use the native MPI or shared memory options. Unfortunately, the idea of Globus providing
transparent access to heterogeneous resources through a simple command is reliant on the appli-
cation writer to have enough information about the options to write the user interface and to hide
the unnecessary details from the user. A good example of this is shown in Fig. 12.4 below where
all the authentication details have been hidden behind the “Use Globus” button.

The communication, the location of the running application from the Grid resource back to the
PSE is a surprisingly nontrivial operation. Assuming the job has been submitted using Globus,
typically it will be scheduled from the headnode to one or more nodes under its control. This
internal node will then be the location with which the PSE will need to communicate informa-
tion. This location will then need to be passed out of the Grid resource, such that the PSE can
obtain the information and commence communication of data. This is typically done either with
a direct socket connection, or by using a Web service. The Web service directory approach has
the advantage that the location will be available for other users to connect to, or for a central
store of running applications with separate input and output streams which the PSE may wish to
connect to, and steer, independently. Using a Web service is also useful when the Grid job may
be waiting in a queueing system. The advantage of the direct connection is that the connection
back to the PSE can be instantaneous on job startup rather than requiring the polling of the Web
service. The security of each of these methods is reliant on either the socket connection being
encrypted or secure authentication to the web service. The direct socket style of connection is
described in Example PSE 3, with the Grid directory style in Section 12.5.

9http://www.globus.org

FIGURE 12.4. Grid enabling options for an IRIS Explorer PSE.



294 12. Solving Computationally Intensive Engineering Problems

The final stage is the communication between the PSE and the Grid application. Again it
is possible to do this using direct connections or using a Web services approach. The biggest
disadvantage of using the latter is that the Web service must be polled to discover if any new
output data has been posted, rather than the direct connection method which can wait “listening”
for a new dataset to start arriving. It is this latter method which is considered in the rest of the
chapter.

One final consideration needs to be given to Grid resources where the internal nodes are not
visible to the network outside. In this scenario it is necessary to build a proxy service which
manages authenticated connections for services running on that resource. This will run on the
headnode, such as shown in Fig. 12.3, and will manage connections for all services on that
resource. Such communication bottlenecks are unfortunate, but it is hoped that in future systems,
administrators will be able to design more efficient, secure solutions.

12.4.1 Grid-enabled Simulation Using IRIS Explorer

This section describes the expansion of the embedded serial implementation from Section 12.2.1
to a distributed memory, parallel version, as described in Goodyer et al. [31], which is
Grid-enabled. To the user, the user interface in IRIS Explorer will still look identical to that
shown in Fig. 12.1. The change to the PSE is all implemented within the application module,
which is now solely the user interface to the simulation running on the Grid. The additional Grid
information required are all confined to only a few extra inputs, such as shown in Fig. 12.4.
These are namely the destination, i.e., the selected Grid destination, which we typically have as
a user choice from the available resources [32]; the destination executable, to choose which of
the available services to run; and, finally the username, which simply acts as an identifier tag in
any Web service directory produced.

When the job on the remote machine is started, communication between the launching IRIS
Explorer module and the launched Grid process is done through sockets. The launched process
knows where to connect to, by means of extra flags passed to it when it is started. Once contact
has been established, the launched process then is the dominant communicator, with the launcher
as the listener. When the launched process needs data from the PSE, e.g., control parameters for
the simulation, it sends a request to the listener who packs the values up into a data array of
predefined size and structure, and sends it to the Grid process.

Similarly, output data is packaged by the Grid process and sent to the listener. The received
data is then formatted into the relevant output data types which are released down the pipeline
for visualization.

Extra input modules are added before the Grid module poses few problems. The incoming data
is packed into arrays which are sent to the Grid module, as with the control parameters. Since
these input modules need not always be present, then there must be a default set of parameters
for cases where they are not connected so that the application can operate accordingly.

Having completed the requested number of job, the Grid process does not terminate but reg-
ularly polls the associated PSE module until it is requested to perform the computation. This
eliminates the cost of starting up a job on the Grid, and also means that results from the previous
iteration can still be stored in local memory or filestore, for future use.

During computationally intensive simulations it used to be the case that the simulation module
spent considerable amounts of time “firing.” Since the work is being done outside the PSE, this
is no longer the case and, so firings only occur when new data is received, be it from changes to
input parameters or through the receipt of output data. Whereas input data was only ever available



Asynchronous Steering of Grid Applications 295

to the simulation at the start of execution it may now be requested at any time, and hence the
opportunity for steering the calculation is increased. This may not always be sensible, so care
must be taken when constructing the communication over which parameters can be allowed to
change during the solution process.

Part of the rationale for use of the Grid is to gain access to remote-parallel machines. Infor-
mation about the parallel requirements can be incorporated into the launching mechanism. To
accomplish this, two more options must be added to the user interface: one detailing the number
of processors and one confirming the launch process for the parallel job. As was explained in
the previous section, parallel Grid jobs using Globus do need substantially more information at
startup, and sensible communication back to the PSE must only be attempted from one of the
processors. The attempt, as ever, in developing PSEs, is to try and hide as much of this as possible
away from users.

12.5 Asynchronous Steering of Grid Applications

The method of Grid enabling the PSE described in the previous section with direct socket con-
nections from Grid resource to PSE works well, provided that the simulation you are running
is sufficiently fast and that results are available whilst the user watches. The additional demands
from Grid-enabled PSEs come when the job has a long initial set up, or when the chosen resource
is too busy to schedule the job for immediate execution. This leads to the idea of wanting to
launch the job and then having the ability to connect to it later on, potentially allowing asyn-
chronous steering. The functionality required to do this means that the job must be running in a
known location, and must be ready to accept new users as well as to continue when said users
leave the PSE.

These abilities have been central to the gViz project [20], which is part of the UK e-Science
Core Programme. The central theme is that a gViz library is attached to the running simulation.
This spawns extra threads for “listening” to incoming communication, and “output” of datasets
while the main application generates the results as before. This is intended to act as a much more
generic environment for programming Grid-enabled applications.

The PSE modules that attach to the Grid also have the gViz library attached and are able to
interact with the simulation by posting and receiving messages via the gViz library. The local-to-
remote communication is again done via either sockets or Web services.

Resource discovery and job launching is accomplished using the methods described in Sec-
tion 12.4. The posting of the socket address or other access information to a Web service provides
a central way for any new users to connect to previously running simulations. These options are
very useful if there are multiple jobs running or a distributed resource is being used.

Output data from the simulations is expected to be stored centrally with the application. This
means that whenever a user joins the simulation they get all the relevant output data as well as the
current steering parameters. Since this data is stored in a raw format and the “packaging up” into
appropriate formats for output is done at the client end, it has been possible to simultaneously
connect a single simulation running on a Grid resource to PSEs in-built using IRIS Explorer,
SCIRun, and VTK. The updating of steering parameters, when one side changes a value, can be
done transparently and the data is flushed down the map (network) when new data is generated
by the application. In this way the simulation and the PSE are now almost disjoint entities but
the PSE still retains in full control.



296 12. Solving Computationally Intensive Engineering Problems

12.5.1 Fully Distributed Grid Applications

In this section we will expand the numerical solver presented earlier to be the full engineering
environment used by Shell, as described in [33, 34]. This application is an optimization problem
intended to best match experimental results against numerical simulation of lubricant behaviour.
This involves typically thousands of evaluations of groups of, between 36 and 100 independent
test parameters.

The independent nature of these calculations makes this type of application ideal for paral-
lelism at the solver level. The small amounts of communication necessary between runs make
the Grid setting a very appropriate resource. The optimizer itself can be greatly helped by using
the PSE to guide the solutions out of local minima and this, in turn, will improve the performance
and increase the effective power of the Grid.

The overall schematic of the optimizer is shown in Fig. 12.5. This indicates the distributed
nature of the entire application. Whilst only one person needs to authenticate via Globus and
start the Grid job, other collaborators may connect direct to the Grid job once they know where
it has been launched. The Grid Master process handles all the connections to steering and output
information, and is the central point for the distributed application underneath to communicate
back to. Each individual instance of the numerical solver can still be running in parallel with
communication between instances only between the smaller groups of head nodes. The paral-
lelization of this work is described fully in [34] with just the gViz-enabled PSE described below.

For Grid applications, perhaps the most interesting part comes from the ability to utilize
metacomputing techniques. Through the use of MPICH–G2 [35], the Globus-enabled, Grid-
aware version of the message passing standard [27], it is possible to exploit the Grid as a col-
lection of smaller resources to accomplish large HPC tasks. The MPICH–G2 passes messages
in a manner which reflects the topology of the Grid to maximize efficiency of communication.
This means that each instance of the computationally expensive, communication heavy numer-

Simulation
Controller

Simulation
Controller

Simulation
Controller

Simulation
Controller

CollaboratorCollaborator Grid launcher

GRID MASTER

Slave Slave

Slave Slave

Slave Slave

Slave Slave

Slave Slave

Slave Slave

Slave Slave

Slave Slave

       Globus    authentication
 managing   input / output

FIGURE 12.5. Schematic of the Grid-enabled Optimisation PSE.



Asynchronous Steering of Grid Applications 297

FIGURE 12.6. IRIS Explorer map of the optimisation PSE. Data–flow represented by wires between
modules.

ical solver can be run on a single resource with all the messages handled by the fast-internal
mechanisms; whereas the less frequent, synchronization communications at the end of each opti-
mization iteration can be performed using the slower TCP/IP messages. In this manner it is
possible to fully utilize many much smaller resources than would be typically available in tradi-
tional HPC applications.

An example of a typical map for the PSE is shown in Fig. 12.6, where the data–flow pipeline,
generally from left to right is clearly visible. The majority of the modules are used in the visual-
ization process and hence only the three modules on the left are described here.

The first module in the map interrogates a Grid information (GIIS) server to analyze the avail-
able resources and their current statuses [32]. The user can then select a resource and choose a
suitable launch method, including launching the job onto the Grid using Globus. For this work
we have extended the gViz library to include parallel launch mechanisms, including writing a
parallel job submission script or Globus resource specification language (RSL) script which then
gets submitted to Sun Grid Engine for scheduling onto a suitable node. When the job is spawned
a socket connection back to the PSE is made telling the launching application which node of
the Grid resource the simulation will be communicating from. Information about this node and
port is then passed to the next two modules in the map which handle the steering inputs, and the
receipt of the data for visualization. Knowledge of where the simulation is running also allows
any other user access to the simulation through the gViz libraries. This means that one person,
with Grid certification, say, can start the simulation and other collaborators around the world can
then all see the results of that simulation and help to steer the computation [26, 32]. In fact, the
person who originally launched the Grid job need not actually be involved from that point on.

The steering module has several uses. Firstly it shows the current best set of values found by
the simplex, along with RF . This allows a user access to individual numbers from the simulation
rather than much larger data sets for visualization purposes. These numbers can also be used
for steering. For example it is possible to resubmit this current best set to the optimizer once



298 12. Solving Computationally Intensive Engineering Problems

a minimum has been found. The NAG library will then build a new simplex around this previous
minimum potentially allowing it to escape from local minima. Similarly, a different point in the
search space can be specified away from where the optimizer has previously searched. Finally,
as mentioned, the accuracy can be changed. A method we have implemented here is the ability
to turn on (or off) the thermal components of the solution. The thermal solve is much more
expensive but adds greater accuracy to the friction results obtained, especially for cases where
more heat is generated [36].

Communication from the PSE to the simulation is done through the gViz libraries. At suitable
points the simulation will check if any new input data has been received. If a steering request is
for additional accuracy, say, then these changes can be introduced without changing the points of
the current simplex and would therefore only apply to future calculations. If, on the other hand, a
new simplex was requested then the NAG libraries do not allow movement of the current simplex
points and hence use of the communication flag inside the routine will cause the optimization
routine to drop out of the NAG routines and then the new simplex is submitted.

The visualization module communicates with the simulation to receive all the data sets for
visualization. These are then packaged up into standard IRIS Explorer data types and sent down
the rest of the map for visualization. When the full data sets are being shown then more infor-
mation needs to be returned from the parallel nodes than is necessary for just the optimization
process. The root process which is communicating with any attached users also needs to retain
full copies of all output data previously generated so that any listeners joining the simulation
later get the full set of results rather than just those generated from that stage.

The full optimization run generates hierarchies of multivariate data. Full descriptions of the
data sets returned are described in [34], along with how the different techniques give added
information to the user. Here we will content ourselves to simply show how the effect of steering
can improve the quality of solutions obtained. In Fig. 12.7, we see the behavior of the variables
changed by the optimizer over the course of the entire process. The first graph shown has the
optimizer progressing without any steering, the second has a new simplex formed after the 30th
improvement to the best point in the simplex. It can be clearly seen how this has encouraged the
optimizer to a very different point in the search space which turns out to be a better overall result.

12.6 Conclusions and Future Directions

The use of problem-solving environments provide a visually striking and powerful tool for both
developers and users of application code. The visualizations provided allow real-time evaluation
of the results generated, and computational steering enables interactivity with running simula-
tions. The use of PSEs will grow as even computationally light applications benefit from such
techniques.

The use of Grid technologies increases the usefulness of the PSE as it potentially allows access
to a much richer computational space which may provide the opportunity to learn about the
application more quickly. More work is obviously required in the middleware between the PSE
and the simulation. Projects such as gViz are providing these interfaces in a way which should
be as transparent to the user as possible.

Future challenges relating to PSEs and the Grid mirror those issues affecting general Grid use:
resource discovery, resource access, and security. These future directions are discussed briefly
below.



Conclusions and Future Directions 299

Discovery of resources requires more than just knowing what machines are available. Knowl-
edge of the architecture itself governs which executables will and will not run, but further
knowledge is required for use of library functions, etc. Brokering of the resource choice will
always be an issue, but if varying pecuniary charging models are applied to different resources
then these considerations will need to be built in too.

The challenges regarding access extend beyond the authorization to use a resource. When a
PSE job is submitted, it may be sensible for immediate access to be provided. This may require
special queueing arrangements to be introduced on local machines, rather than the job scheduling
software starting the job in the middle of the night, potentially waiting for input. Access is also
an issue regarding the connectivity between the PSE and the resource: if the nodes where the job
is running are not visible from the desktop, an intermediary staging server should be provided
at the interface between the systems. Access to information regarding running simulations will
need a standard location, such as a Web service, on each resource to enable users to fully know
what is available.

Finally, security of access to information has not been fully developed thus far in the construc-
tion of the PSEs. Whilst secure transfer of data between PSE and Grid is possible, authenticated
via Globus certificates, this encryption is computationally expensive. Also, since the infrastruc-
ture has been built in gViz to allow multiple collaborators, then the issues concerning who will
have access to any running simulations needs to be fully addressed. This authorization should
probably be tied to the information in the Web service listing of the jobs. Thus, while the use
of Grid-based PSEs with computational steering and parallelism is an attractive way to solve
computationally intensive problems, there remain many challenges to be addressed before such
a paradigm is routinely and widely used.

(a) No steering (b) Steering after 30 iterations

FIGURE 12.7. Progression of optimizer showing relative change of best solution found to initial guess.
Each line represents a different variable.



300 12. Solving Computationally Intensive Engineering Problems

Acknowledgments. This work was funded by EPSRC and through the UK e-Science Core Pro-
gramme. Thanks are also due to Jason Wood for providing the gViz library used in this work,
and Laurence Scales from Shell Global Solutions for work on the lubrication project.

References

[1] I. Foster, and C. Kesselman, The Grid 2: The Blueprint for a New Computing Infrastructure (Elsevier,
2004)

[2] F. Berman, G.C. Fox, and A.J.G. Hey, Grid Computing: Making the Global Infrastructure a Reality
(Wiley, 2003)

[3] R.B. Haber, D.A. McNabb, Eliminating Distance in Scientific Computing: An Experiment in Televi-
sualization, International Journal of Supercomputer Applications 4, 71–89 (1990)

[4] K.W. Brodlie, D.A. Duce, J.R. Gallop, J.P.R.B. Walton, and J.D. Wood, Distributed and collaborative
Visualization—State of the Art Report, Computer Graphics Forum 23, 223–251 (2004).

[5] J. Wood, H. Wright, and K.W. Brodlie, Collaborative Visualization, in Proceedings of IEEE Visual-
ization 97 (1997), pp. 253–259

[6] C.E. Goodyer, M. Berzins, Eclipse and Ellipse: PSEs for EHL solutions using IRIS Explorer and
SCIRun, in Computational Science, ICCS 2002 Part I, Lecture Notes in Computer Science, Vol. 2329,
ed. by Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (Springer, 2002), pp. 521–530

[7] K.W. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, A. Gay, GRASPARC—A Problem-solving
Environment Integrating Computation and Visualization, in IEEE Visualization (IEEE, 1993), pp.
102–109

[8] C.R. Johnson, M. Berzins, L. Zhukov, R. Coffey, SCIRun: Application to Atmospheric Dispersion
Problems Using Unstructured Meshes, in Numerical Methods for Fluid Mechanics VI. ICFD ’98,
Oxford ed. by Banies, M.J. (1998), pp. 111–122

[9] G. Allen, E. Seidel, J. Shalf, Scientific Computing on the Grid, Byte 24–32 Spring (2002)
[10] J. Kierzenka, F., S.L.: A BVP Solver Based on Residual Control and the Matlab PSE, ACM Transac-

tions on Mathematical Software 27, 299–316 (2001)
[11] L.A, Treinish, Interactive, Web-based Three-dimensional Visualizations of Operational Mesoscale

Weather Models, in Proceedings of the Eighteenth International Conference on Interactive Information
and Processing Systems for Meteorology, Oceanography and Hydrology, American Meteorological
Society (2002), pp. J159–161

[12] N. Furmento, W. Lee, A. Mayer, S. Newhouse, J. Darlington, ICENI: An Open Grid Service Archi-
tecture Implemented with Jini, in Proceedings of SuperComputing 2002 (2002)

[13] J. Chin, J. Harting, S. Jha, P. Coveney, A. Porter, S.Pickles, Steering in Computational Science:
Mesoscale Modelling and Simulation, Contemporary Physics 44, 417–434 (2003)

[14] P. Watson, Databases and the Grid, in Grid Computing : Making the global infrastructure a reality0,
ed. by. Berman, F., Fox, G.C., Hey, A.J.G., (Wiley, 2003), pp. 363–384

[15] S.G. Parker, C.R. Johnson, SCIRun: A Scientific Programming Environment for Computational Steer-
ing, in Proceedings of Supercomputer ’95, New York, ed. by Meuer, H.W. (Springer-Verlag, 1995)

[16] J.P.R.B. Walton, Now You See It—Interactive Visualisation of Large Datasets, in Applications of
Supercomputers in Engineering III, ed. by Brebbia, C.A., Power, H. (Computatational Mechanics
Publications/Elsevier Applied Science, 1993)

[17] Scientific Computing and Imaging Institute (SCI), SCIRun: A Scientific Computing Problem solving
Environment (2002), http://software.sci.utah.edu/scirun.html

[18] J.D. Mulder, J.J. van Wijk, R. van Liere, A Survey of Computational Steering Environments, Future
Generation Computer Systems 15, 119–129 (1999)

[19] J.M. Brooke, P.V. Coveney, J. Harting, S. Jha, S.M. Pickles, R.L. Pinning, A.R. Porter, Computational
steering in RealityGrid, in Proceedings of the All Hands Meeting 2003, EPSRC, ed. by Cox, S. (2003),
pp. 885–888



References 301

[20] J.W. Wood, K.W. Brodlie, J.P.R. Walton, gViz: Visualization and Computational Steering for
e-Science, in, ed. by Cox, S. Proceedings of the All Hands Meeting 2003, EPSRC (2003), 164–171

[21] D. Dowson, P. Ehret, Past, Present, and Future Studies in Elastohydrodynamics, in Proceedings of the
Institution of Mechanical Engineers Part J, Journal of Engineering Tribology 213, 317–333 (1999)

[22] C.H. Venner, A.A. Lubrecht, Multilevel Methods in Lubrication (Elsevier, 2000)
[23] C.E. Goodyer, Adaptive Numerical Methods for Elastohydrodynamic Lubrication. PhD thesis, Uni-

versity of Leeds, Leeds, England (2001)
[24] H. Wright, K.W. Brodlie, T. David, Navigating High-dimensional Spaces to Support Design Steering,

in VIS 2000 (IEEE, 2000), pp. 291–296
[25] H. Wright, J.P.R.B. Walton, HyperScribe: A Data Management Facility for the Data–flow Visualiza-

tion Pipeline, Technical Report IETR/4, NAG (1996)
[26] M.A. Walkley, J. Wood, K.W. Brodlie, A distributed collaborative problem-solving Environment, in

Computational Science, ICCS 2002 Part I, Lecture Notes in Computer Science, Vol. 2329, ed. by
Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G., (Springer, 2002), pp. 853–861

[27] Message Passing Interface Forum, MPI: A Message-passing Interface Standard, International Journal
of Supercomputer Applications 8, (1994)

[28] C.R. Johnson, S.G. Parker, Applications in Computational Medicine Using SCIRun: A Computational
Steering Programming Environment, in Proceedings of Supercomputer ’95, New York, ed. by Meuer,
H.W. (Springer-Verlag, 1995), pp. 2–19

[29] D. de St. Germain, J. McCorquodale, S. Parker, C.R. Johnson, Uintah: A Massively Parallel Problem
Solving Environment, in Ninth IEEE International Symposium on High Performance and Distributed
Computing (2000)

[30] I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, International Journal of
Supercomputer Applications 11, 115–128 (1997)

[31] C.E. Goodyer, J. Wood, M. Berzins, A parallel Grid-based PSE for EHL problems, in Applied
Parallel Computing, Proceedings of PARA ’02, Lecture Notes in Computer Science, Vol. 2367, ed.
by Fagerholm, J., Haataja, J., Järvinen, J., Lyly, M., Råback, P., Savolainen, V., (Springer, 2002), pp.
523–532

[32] K.W. Brodlie, S. Mason, M. Thompson, M.A. Walkley, J.W. Wood, Reacting to a Crisis: Benefits of
Collaborative Visualization and Computational Steering in a Grid Environment, in Proceedings of
the All Hands Meeting 2002 (2002)

[33] C.E. Goodyer, R. Fairlie, D.E. Hart, M. Berzins, L.E. Scales, Adaptive Techniques for Elastohydrody-
namic Lubrication Solvers, in Transient Processes in Tribology: Proceedings of the 30th Leeds-Lyon
Symposium on Tribology, ed. by Dalmaz et al. (Elsevier, 2004)

[34] C.E. Goodyer, M. Berzins, P.K. Jimack, L.E. Scales, Grid-based Numerical Optimization in a
Problem-solving Environment, in Proceedings of the All Hands Meeting 2003, EPSRC, ed. by Cox,
S. (2003), pp. 854–861

[35] N. Karonis, B. Toonen, I. Foster, MPICH-G2: A Grid-enabled Implementation of the Message Passing
Interface, Journal of Parallel and Distributed Computing 63, 551–563 (2003)

[36] R. Fairlie, C.E. Goodyer, M. Berzins, L.E. Scales, Numerical Modelling of Thermal Effects in Elas-
tohydrodynamic Lubrication Solvers, in Trobological Research and Design for Engineering Systems,
Proceedings of the 29th Leeds-Lyon Symposium on Tribology, ed. by D. Dowson et al. (Elsevier,
2003), pp. 675–683




