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ABSTRACT

The computation of numerical solutions to elastohydrodynamic lubrication problems is
only possible on fine meshes by using a combination of multigrid and multilevel tech-
niques. In this paper we show how the parallelisation of both multigrid and multilevel
multi-integration for these problems may be accomplished and discuss the scalability
of the resulting code. A performance model of the solver is constructed and used to
perform an analysis of the results obtained. Results are shown with good speed-ups
and excellent scalability for distributed memory architectures and in agreement with
the model.

Keywords: Elastohydrodynamic lubrication distributed memory parallelism scalability

INTRODUCTION

Parallelisation of scientific engineering codes has proved to be particularly useful when-
ever either results are needed quickly or the memory requirements are too large to be
handled in serial. In the case of solvers for the important engineering problem of elas-
tohydrodynamic lubrication (EHL) both these situtations can arise. The EHL regime
occurs in journal bearings and gears, where, under severe loads in the presence of a
lubricant, there may be a very large pressure exerted on a very small area, often up to
3 G Pa. This causes the shape of the contacting surfaces to deform and flatten out at
the centre of the contact. There are also significant changes in the behaviour of the
lubricant in this area, for example it may take on glass-like properties [1].

The computational challenge in solving such problems is considerable. Although
the time dependent partial differential and integral equations apply only in one or two
space dimensions, they have a dense sparsity pattern and are highly nonlinear. One of
the problems of current interest is to calculate the frictional characteristics of measured
surface roughness profiles. This has been successfully undertaken for one dimensional
line contact cases, e.g. [2, 3]. Tackling the more realistic 2d case has been recognised
as one of the immediate challenges in tribology [4]. In order to do this spatial meshes
of 106 × 106 points may be needed. This means that 1012 dense nonlinear equations
may need to be solved. This challenge is beyond a single workstation at present and
requires the use of parallel computers. Given that at present calculations using more
than 1000×1000 mesh points are rare to the best of the authors’ knowledge, the need
for a better understanding of how parallelism may be applied is obvious.

This paper will address the parallel solution of EHL problems by first describ-
ing the numerical problem to be solved with both the governing equations and a brief
introduction to the solution methods used being covered. The multilevel techniques
used will be highlighted, along with the reasons why they make effective parallelisa-
tion such a communication intensive process. The parallel approaches we have taken
are then explained and analysed by means of a performance model. The results sec-
tion demonstrates how effective these approaches have been in obtaining remarkably
good speed-ups and scalabilities, given the amount of global communication present.
The good agreement between the calculated efficiencies and those predicted by the
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performance model provides a way of predicting the scalability of larger problems on
architectures with more processors. The paper is concluded with some suggestions for
further work in this field.

SERIAL PROCESSOR SOLUTION METHODS

Full details of both the EHL problem and the serial solution methods used are described
in the book by Venner and Lubrecht [5] and with details specific to the discussion here
given by Goodyer in [6].

Governing equations

The EHL case is governed by two main sets of equations, namely those concerning
physical behaviour of the contact, and those governing the changes in the lubricant.
The solution variables which must be calculated are the pressure profile P, across the
domain, the surface geometry H, the viscosity η and the density ρ. The pressure distri-
bution is described by the Reynolds Equation see [5], given in non-dimensional form
by:

∂

∂X

(

ρH3

ηλ

∂P
∂X

)

+
∂

∂Y

(

ρH3

ηλ

∂P
∂Y

)

−
us(T )
us(0)

∂(ρH)
∂X

−
∂(ρH)
∂T

= 0 , (1)

where us is the sum of the surface speeds in the X-direction at non-dimensional time T ,
λ is a non-dimensional constant, and X and Y are the non-dimensional coordinate di-
rections, The standard non-dimensionalisation means that the contact has unit Hertzian
radius, and that the maximum Hertzian pressure is represented by P=1. The boundary
conditions for pressure are such that P=0. For the outflow boundary, once the lubricant
has passed through the centre of the contact it will form a free boundary, the cavitation
boundary, beyond which there is no contiguous film of lubricant. The non-dimensional
film thickness, H, is given by:

H(X, Y) = H00 +
X2

2
+

Y2

2
+ R(X, Y) +

2
π2

∫ ∞

−∞

∫ ∞

−∞

P(X′, Y ′) dX′dY ′
√

(X − X′)2 + (Y − Y ′)2
, (2)

where H00 is the central offset film thickness, which defines the relative positions of
the surfaces if no deformation was to occur. The two parabolic terms represent the
undeformed shape of the surface, and R is the roughness profile. The double integral
defines the deformation of the surface due to the pressure distribution across the entire
domain.

The conservation law for the applied force (the Force Balance Equation) is given
by:

∫ ∞

−∞

∫ ∞

−∞

P(X, Y) dXdY =
2π
3
. (3)

Since an isothermal, generalised Newtonian lubricant model is being used in this
work, only expressions for the density and viscosity will be required. The density
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Figure 1: (a) Typical pressure values across an EHL point contact (b) Typical film
thickness

model chosen is that of Dowson and Higginson, see [5], which takes into account the
compressibility of the lubricant:

ρ(P) =
0.59 × 109 + 1.34phP

0.59 × 109 + phP
, (4)

where ph is the maximum Hertzian pressure.
The viscosity model used is the Roelands pressure-viscosity relation, see [5]:

η(P) = e

{

αp0
zi

[

−1+
(

1+
phP
p0

)zi
]}

, (5)

where η0 is the viscosity at ambient pressure, p0 is a constant (typically 1.98 × 108),
zi is the pressure viscosity index, taken as zi = 0.68 and α is the pressure viscosity
coefficient.

Numerical methods

The nature of the EHL problem means that there are three very different areas of the
domain when calculating pressure. Firstly, the cavitation region is the area of the
solution beyond the free boundary where the Reynolds Equation is not valid. Secondly,
in the centre of the domain is the contact area, where the pressure rises sharply to
reach its maximum peak in a near Hertzian shape. EHL pressure profiles do differ
from purely hydrodynamic ones in that there is also the presence of a large ridge on
the pressure peak, towards the outflow boundary, as can be seen in Figure 1 where the
3D non-dimensional pressure profile is shown as well as the film thickness along the
centre line. which shows the shape of the contact along the centreline. The deformation
away from the original surface geometry is clearly visible, and it can be seen that there
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is a constriction in the contact towards the outflow, which coincides with a position
between the pressure spike and the cavitation boundary. Finally, in the non-contact
region the pressure is very small compared to the contact region.

The methods used for solving for the pressure, the film thickness and the lubricant
properties on a mesh of NX by NY points with a mesh spacing of ∆X and ∆Y in X and
Y respectively, are now described in turn.

Pressure

The Reynolds Equation discretisation used in our software is a first order scheme, [7]:

εi− 1
2 , j

(
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i−1, j − Pn

i, j

)
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2 , j
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+
εi, j− 1

2

(
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)
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2

(
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)

(∆Y)2

−
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ure f

ρn
i, jH

n
i, j − ρ

n
i−1, jH

n
i−1, j

∆X
−
ρn

i, jH
n
i, j − ρ

n−1
i, j Hn−1

i, j

∆T
= 0 (6)

where n is the current timestep, and

εi± 1
2 , j =

εni±1, j + ε
n
i, j

2
, εi, j± 1

2
=
εni, j±1 + ε

n
i, j

2
, (7)

where εi, j =
a3 ph

6η0R2
xus(0)

ρi, jH
3
i, j

ηi, j

The discretisations above are all very much aligned along the flow direction, i.e.
parallel to the X-axis. The contributions from terms perpendicular to this axis are
small. All the fast EHL solution techniques take advantage of this polarisation and
tend to solve along mesh lines in the flow direction.

The three distinct regions described above require different numerical schemes to
be employed when solving the Reynolds Equation. In the non-contact region a Gauss-
Seidel line relaxation scheme is used; in the contact region a Jacobi line scheme is
employed and in the cavitation region the Christopherson approach is used [8], where
all calculated negative pressures are set to be zero.

The scope of the relaxation scheme used involves employing both the Gauss-Seidel
and the Jacobi line relaxation schemes on the same grid, but without any overlap, de-
pending on the position of the grid point (i, j) on the computational domain. The two
relaxation schemes are employed as follows:

Given an approximation P̃i, j and the associated approximation H̃i, j to the pressure
Pi, j and the film thickness Hi, j respectively, a new approximation Pi, j is computed using

Pi, j = P̃i, j + w∆Pi, j (8)

where w is a damping factor, which is critical to ensure convergence of the method.
On the line Y = j, the correction terms ∆Pi, j (i = 1, . . . ,NX) are solved simulta-

neously using a system of equations created at each grid point (i, j). Depending on
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the solution at the grid point (i, j), either the Gauss-Seidel or the Jacobi schemes are
employed. If the grid point (i, j) lies in the non-contact region of the computational do-
main, then the Gauss-Seidel scheme is employed and the equation at this grid is given
by

∂ L̃i, j

∂P̃i−2, j
∆Pi−2, j +

∂ L̃i, j

∂P̃i−1, j
∆Pi−1, j +

∂ L̃i, j

∂P̃i, j
∆Pi, j +

∂ L̃i, j

∂P̃i+1, j
∆Pi+1, j

∂ L̃i, j

∂P̃i+2, j
∆Pi+2, j = ri, j (9)

where, L̃i, j = L(P̃i, j) = ri, j.
This system is solved using a pentadiagonal approximation to the Jacobian matrix

along the line. Since the matrix entries in the full Jacobian are small away from (i, j)
then making this penta-diagonal approximation [6], does not hamper convergence and
allows much faster solution times.

The residual at the point (i, j), ri, j, is given by

ri, j = εi− 1
2 , j

(P̃i−1, j − P̃i, j) + εi+ 1
2 , j

(P̃i+1, j − P̃i, j) + h2
x h−2

y (εi, j− 1
2
(Pi, j−1 − P̃i, j)

+εi, j+ 1
2
(P̃i, j+1 − P̃i, j)) − hx(ρi, jH̃i, j − ρi−1, jH̃i−1, j) . (10)

However, if the grid point (i, j) lies in the contact region of the computational domain,
then the Jacobi scheme is employed and the equation at this grid point is as given by
equation (9) except for the residual in which Pi, j−1 is replaced by P̃i, j−1. As the Jacobi
and Gauss-Seidel schemes used do not converge quickly on fine grids, multigrid is
often used to accelerate convergence and is summarised in the next section.

Film thickness calculation

The film thickness calculation, once discretised, has the form:

Hi, j = H00 +
X2

i

2
+

Y2
j

2
+ Ri, j + δ

keval

i, j (11)

where

δkeval

i, j = ∆X∆Y
NX
∑

k=1

NY
∑

l=1

Ki, j, k, lP
keval

k, l , (12)

where K is the film thickness kernel matrix, approximating the double integral of equa-
tion (2), where the superscript keval corresponds to the grid of NX by NY points and
where the factor ∆X∆Y is a scaling factor to give mesh independence to the K.... coef-
ficients. Hence for every mesh point, (i, j), the deformation term is a multi-summation
of the pressures at all the other points in the computational domain. As this calculation
is O(N4) where N = NY = NX , the cost is reduced to O(N2 ln N2) by using the mul-
tilevel multi-integration technique of Brandt and Lubrecht [9] as described in the next
section.

The calculation of H00 in equation (11) is accomplished by relaxation of the Force
Balance Equation (3), according to:

H00 ← H00 − c

















2π
3
− ∆X∆Y

NX
∑

i=1

NY
∑

j=1

Pi, j

















, (13)
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for all mesh points (i, j), where c is a small relaxation parameter. The mathematical
basis justifying this update is described in [10]

In the context of EHL calculations one smoothing cycle is said to be the sequence
of updating all the pressures, Pi, j, and film thickness values Hi, j, along with the corre-
sponding density and viscosity values.

Multigrid and Multilevel Multi-integration techniques

The multilevel methods of Lubrecht, Brandt and Venner [5, 9, 11] have proved very
successful in computing solutions to EHL problems quickly. There are two main mul-
tilevel components; the Full Approximation Scheme (FAS) multigrid is used to solve
the nonlinear equations, whilst for the fast solution of equation (11) multilevel multi-
integration (MLMI) is used.

Multigrid

The point contact EHL solver described here uses a hierarchy of regular multigrid
meshes of size Nk

x × Nk
x elements, where Nk

x = 2k + 1. The level of refinement of the
mesh can then be referred to as being grid level k. Due to symmetry about the line
Y = 0 it is only be necessary to solve on half of the computational domain. Since
different grid resolutions have different smoothing properties this means we can elim-
inate errors quicker than by just working on the finest throughout. The multigrid Full
Approximation Scheme (FAS), [12], aims to solve the nonlinear system

L
k(Pk) = f k, (14)

where Lk is a discrete approximation such as that of equation (6) to the differential
operator L defined by equation (1). The solution to equation (14) obtained by an
iterative method is denoted by ũk approximates the exact solution u with a residual
defined by

rk = f k
− L

kP̃
k
. (15)

After relaxing the system of equation on grid k to get an approximation ũk , a represen-
tation of this on a coarser grid, j, can be formed using a suitable coarsening operator,
I j
k . On this coarser grid a system of equations in the same form as (14) can be formed

as
L

jP̂
j
= f̂ j, (16)

where P̂
j
= I j

k P̃
k
+e j and f̂ j = L j(I j

k P̃
k
)+ I j

krk. By solving equation (16) we can obtain
a coarse grid correction to the solution on grid k which, using a suitable operator Ik

j

P̃
k
← P̃

k
+ Ik

j (P
k
− I j

k P̃
k
). (17)

where P
j
is the calculated approximation to P̂

j
as in equation (16).

For cases with regular meshes of 2k+1 points in each direction then all the mesh
points on grid level k-1 are coincident with points on level k. This means simple inter-
grid operators I j

k and Ik
j can be defined, either by injection or weighted interpolation of

neighbouring points, [12].
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By repeated application of the coarse grid correction process described by equa-
tion (17) the solution scheme can be built up to be solved on the hierarchy of grids.
Assuming that the same iterative process can be used to solve the coarse grid system as
the fine grid system, then the finest grid will be used to smooth the highest frequency
errors, and progressively coarser grids used to smooth errors of progressively lower fre-
quencies (coarsening), before returning to get an updated solution on the finest mesh
(prolongation). The smoothing cycles done before coarsening are called pre-smooths
and those done after prolongation and correction of the solution are referred to as post-
smooths.

The simplest multigrid cycle is the V-cycle. An initial approximation on the finest
grid has ν1 pre-smooths before being coarsened. This is then repeated until the coars-
est mesh is reached where ν0 smoothing cycles are done. The solution on the next
finer mesh is then corrected according to equation (17) before having ν2 post-smooths.
Again this process is repeated until a corrected, smoothed solution is reached on the
finest mesh. This V-cycle is known as a V(ν1,ν2)-cycle. Typical values for ν1 and ν2 are
three or less, although ν0 may be much larger in order to obtain a much better coarse
grid solution.

In EHL calculations the number of Newton iterations per smoothing step in the code
described here is typically σnewt = 2. In a multigrid V(σpre,σpost) cycle the Reynolds
Equation is solved σRe times per level, where

σRe = σpre + σpost + 1 (18)

Denoting this number of solves per level to be

σtot = (σRe) × σnewt (19)

and noting that on the coarsest grid typically many more smooths will be done, say
σcoarse = 30.

The process of Full Multigrid (FMG) is designed to eliminate the large errors which
initially exist on the fine grid, by starting on the coarsest grid. FMG uses the same
multigrid techniques and V-cycles as described above on each of the coarse grids. At
the end of each set of V-cycles the computed solution is then prolonged up to the next
finest grid level and the process is repeated until the finest grid is reached.

In-depth descriptions of how multigrid is applied to EHL problems can be found
in [6] and [5]. For example the multigrid method has to be modified to deal with
the free boundary at the edge of the cavitation region. If information is allowed to
propagate from the cavitation region into the pressure positive region in the coarsening
or prolonging stages, or if the solution on a coarser grid moves the cavitation boundary
one coarse mesh point into the cavitation region, then stalling may occur [13]. This
problem is eliminated by not applying multigrid near the boundary at the risk of slower
convergence of solution boundary values.

The other major difference in the multigrid EHL solver is concerned with the iter-
ation for H00, and hence updating the Force Balance Equation (3). This value of H00

is only ever corrected once per multigrid cycle, using equation (13) and this is done
on the coarsest grid. Appropriate corrections from finer levels are necessary to ensure
that it is the applied force, as defined by equation (3) on the finest grid which is being
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conserved, rather than that on coarser grids, e.g. [5]. The inclusion of the force balance
equation is done through a relaxation of the H00 parameter, as given in equation (13).
This is clearly a global operation. This relaxation only ever takes place on the coarsest
grid and so the actual update is given by

H00 ← H00 − c





















2π
3
− (∆X)k (∆Y)k

Nk
X

∑

i=1

Nk
Y

∑

j=1

Pk
i, j + τ

k





















, (20)

for where grid corrections τ are defined by

τk−1 = τk + (∆X)k (∆Y)k
Nk

X
∑

i=1

Nk
Y

∑

j=1

Pk
i, j − (∆X)k−1 (∆Y)k−1

Nk−1
X

∑

i=1

Nk−1
Y

∑

j=1

P
k−1
i, j , (21)

with Pk
i, j and P

k−1
i, j defined as the fine and coarse grid approximations to the pressure

solution on grids k and k − 1 respectively, similar to equation (17).

Multilevel Multi-integration

The most computationally expensive part of any EHL calculation is the potentially
N2 evaluation of the double summation in equation (11) for each of N2 mesh points.
Brandt and Lubrecht [9] developed multilevel multi-integration (MLMI) in order to
reduce such a calculation from O(N4) to O(N2 ln N2).

MLMI assumes that the kernel matrix, as defined in equation (12), K represents the
discretisation of a smooth kernel function, at least greater than a small distance away
from the point (i, j). This means that provided suitably accurate restriction operators
are used then the multi-summation can be performed on a coarser grid than keval as
defined by equation (11), say ksum. A hierarchy of grids is therefore again used to
calculate the deformation on a grid keval. If the keval

6 ksum then the multi-summation
given by equation (11) will be performed. However keval > ksum then MLMI will be
used.

The relationship between a multigrid V-cycle and an MLMI cycle is shown dia-
grammatically Figure 2. In contrast to the multigrid method the most striking change
is that there is no calculation other than the multi-summation on the coarsest grid, and
the correction stages, meaning almost all the work is in grid transfer operations.

The method can be thus be reduced to four main operations:

(i) Coarsening the pressure solution and the kernel matrix to grid ksum . These
transfer operators are denoted here by Jk

j for transfer from grid j to grid k, with

Jk
j =

(

J j
k

)T
. The grid transfer operations for both the coarsening and refinement

stages are done with 6th order interpolation operators are used which cover most
cases feasible for point contact EHL cases, with a slightly larger correction patch
for very fine grids. The stencil used in this work is given by [5] as

PI =
−25Pi−2 + 150Pi−1 + 256Pi + 150Pi+1 − 25Pi+2 + 3Pi+3

512
, (22)

where PI on grid k − 1 is coincident with Pi on the grid k.
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Figure 2: Example of a V-cycle with MLMI at each stage

(ii) Performing the multi-summation on grid ksum to calculate an approximate
deformation At all the points (I, J) of grid ksum there are coincident points (i, j)
on grid keval and hence the coarse grid multi-summation is given by

δksum

I, J = (∆X∆Y)
nksum

x
∑

k=1

nksum
y
∑

l=1

Kksum

I, J, k, l J
ksum

keval P
keval

i, j (23)

= (∆X∆Y)(keval−ksum)
nksum

x
∑

k=1

nksum
y
∑

l=1

Kkeval

i, j, k, l J
ksum

keval P
keval

i, j (24)

(iii) Interpolation of the calculated deformation back to the finer grids . This is
simply the reverse of the process in (i), [5].

and

(iv) Correction of the deformation around the kernel’s singularity . The singular
kernel at the point (i, j) requires a local correction to the deformation calculated
around this point on the coarser grid ksum. This correction needs to be done over
as small a correction patch as possible and hence the multi-summation must be
performed on each grid in the refining process back to grid keval. The number of
points in this region for correction in each dimension is given by [5] as

m = 3 + ln(n), (25)

which thus defines Ωsing. The correction comes in two parts, namely subtrac-
tion of the contributions already included in the deformation from the coincident
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points on the coarse grid, and then the inclusion of the contributions from the
finer grid. Mathematically these are given by:

δksum

I, J ← δ
ksum

I, J + (∆X∆Y)(keval−ksum)
∑

(i, j)∈Ωsing

(

Kkeval

2I, 2J, k, l − K̃keval

2I, 2J, k, l

)

Pkeval

k, l , (26)

for the correction at coincident points, and

δkeval

i, j =
[

Jkeval

ksum δ
ksum

·

]

i
+ (∆X∆Y)(keval−ksum)

∑

(i, j)∈Ωsing

(

Kkeval

i, j, k, l − K̃keval

i, j, k, l

)

Pkeval

k, l , (27)

for the non-coincident points, where K̃keval

i, j, k, l is the kernel function on the coarse

mesh ksum interpolated back onto the fine mesh keval see Section 5.7.3 of [5].

In the code implementation both coarsening and refining methods are done via “half-
grids” where only one dimension is coarsened at a time. This means that the algorithm
above can be iteratively applied in alternating directions for two dimensional cases. A
full description of this method is given in [5].

SERIAL COMPUTATIONAL COMPLEXITY

In this section the computational costs of the multigrid algorithm and of the multilevel
multi-integration are estimated.

Let us define the total number of grids used in the solution scheme to be

ktot = k f ine
− kcoarse + 1, kdi f = k f ine

− kcoarse (28)

and that the number of grid points in the x and y directions is defined by

Nk
X = Nk

Y = 2k + 1. (29)

Also for notational convenience let

kc = kcoarse (30)

and
k f = k f ine . (31)

V-cycle Computation Costs

We are using a V(3,1) cycle with 4 smooths on each non coarse grid and 30 smooths
on the coarsest grid. For each processor the following costs are incurred on grid level
k:

• Banded line solve for Reynolds equation: Nk
Y × O

(

52Nk
X

)

;

• Viscosity and density calculations, each O(Nk
X Nk

Y ) but involve expensive power
and exponential calculations;
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• Grid transfer operations, O(Nk
X Nk

Y );

• Calculation of the deformation using MLMI.

There are also additional calculations of the viscosity, density and deformation during
the grid transfer operations which are almost the total cost of an extra smooth.

The V-cycle computational cost is thus given by:

VCcost ≈

k f
∑

k=kc

γMG
k

[

κvcNk
X Nk

Y + VCmlmi
cost

]

(32)

where γMG
k = 6 except for the coarsest mesh where γMG

kcoarse
= 30, and κvc is a constant

denoting the number of operations done to compute a single point.
The cost of the MLMI calculation, VCmlmi

cost , can be broken into three parts. First

the multi-summation has a computational cost of O
(

[

Mkc

X Mkc

Y

]2
)

. The corrections to

each point during the refinement sequence on each grid are almost independent of grid
level, given from equation (25), O

[

(3 + ln MX)(3 + ln MY )Mk
X Mk

Y

]

Grid transfer oper-
ators are of similar cost to the transfer operators in the V-cycle however with higher
multipliers since there are now the extra ghost points, half grids are used as well and
also the transfer operators are of a higher order: O

(

Mk
X Mk

Y

)

. The MLMI cycle compu-
tational cost may therefore be approximated by:

VCmlmi
cost ≈ κsum

[

(

Mkc

X Mkc

Y

)2
]

+

K
∑

k=kc+1

Mk
X Mk

Y

[

κtrans + κcorr

(

3 + log
(

Mk
X

)) (

3 + log
(

Mk
Y

))]

, (33)

where κtrans, κcorr and κsum are measures of the number of operations needed for each
pointwise calculation. In the model results presented later we evaluate this sum ex-
plicitly but for reasons of brevity of the algebra such an expansion is not presented
here.

Our serial experiments have shown that it is possible to make estimates for each of
the κ. values. The value of κvc is estimated at 1456. κsum is countable from the code,
and the value agrees with our experimental value of 7. The values of κtrans and κcorr

are similarly taken to be 48 and 5 respectively. These values will be used in the later
comparisons between the parallel model efficiency and the observed parallel efficiency
of the code.

PARALLELISATION OF MULTILEVEL EHL SOLVER

The starting point for the parallelisation of the method described above is the large
amount of work done on parallel multigrid methods and work by the authors on shared
memory machines, [14]. Discussions as to why the parallelisation of the already com-
putationally optimal multigrid algorithm does not produce high efficiencies are given
by McBryan et al. [15], Llorente et al. [16, 17] and Tuminaro and Womble [18]. The
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main problems are the frequency with which coarse grids are encountered meaning
that there are very high communications costs relative to the computation. This is es-
pecially true once the critical level has been reached, namely the coarse grid where
each processor has the smallest non-trivial amount of computation. The choice left is
whether to use the critical level as the coarsest in the multilevel scheme; to agglomer-
ate, by moving all the work to a single processor as in Linden et al. [19,20]; or to have
idle processors, such as used by Brown et al. [21]. Even for the simple application
considered in [21] the algorithm scaled better for 1-d lines solved in serial. Prieto et
al. [22] noted that they used the critical level as their coarsest grid due to load balanc-
ing issues and that agglomeration “is more suitable to pointwise relaxation”. However
some codes, such as the NAS benchmark, do scale relatively well [23].

In the case of EHL problems the addition of MLMI causes extra difficulties as even
more work is done at coarse mesh levels. It is already known that existing MLMI type
operations may not scale well, [24]. In particular, since no significant computation
is done during the MLMI coarsening, the communication costs of this process are a
significant factor in terms of parallel efficiency. The key issue is thus that as we go to
coarser grids the communications costs do not decrease as quickly as the computational
costs, due to this extra overhead. In the explanation that follows it will be seen how
the high order coarsening strategy required means that the communication halos are
large, typically on the coarsest meshes even larger than a processor’s own work array.
Also there are global operations that require global knowledge, and local operations
that require broadcasts from a small number of processors.

Besides the work described above, the only known previous parallel EHL solver
was presented by Arenaz et al. [25] although, like the early work shown in [6] the
time savings came from the parallelisation of the multi-summation, since neither used
MLMI.

Stripwise Domain Decomposition

Assuming we are on multigrid level k then the half domain on which the solution is
calculated is 2k+1+1× 2k+1 points, i.e. Nk

X×Nk
Y . The solution methods described above

rely on a line solve in the direction of the fluid flow. This makes it natural to consider
a stripwise decomposition, parallel to the direction of fluid flow. The decomposition
explained below may not be ideal for parallel efficiency but is that used in the serial
codes and is probably necessary for realistically fast EHL solutions when using the

present relaxation schemes. The partitioning is such that
Nk

Y
np

rows are thus allocated to

each processor. Since the top row, j = Nk
Y is a boundary line then not all solution vari-

ables are calculated here, meaning that if np, the total number of processors used, is of
the form 2n then the effective load balancing is heuristically equal between processors.
Therefore the number points allocated to processor p = 0, . . . , np−1 for computation
are:

S
k
p = Nk

X ×
Nk

Y − 1

np
. (34)

The assignment of the set Sk
p is not the only memory requirement per processor.

Many of the calculations need more information than is contained in Sk
p. For instance,
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the solution of the discrete Reynolds Equation (6) requires density, viscosity, film thick-
ness and pressure values at adjacent rows which may be located in Sk

p±1. The require-
ments of the deformation calculation are discussed in more detail below.

The MLMI solve also uses a hierarchy of grids used to accelerate the calculation of
the deformation. It was explained in the Multilevel Multi-integration Schemes Section
above how it is necessary to use sixth order interpolation operators in multi-integration.
These operators act on the coarsening of the pressure, the coarsening of the kernel ma-
trix used in the correction area, and also the refinement of the deformations calculated
on the coarser grids. These sixth order schemes therefore require up to three rows of
ghost cells.

The use of the multigrid method means that each processor will need to calculate
the solution of 1

np
th of each grid used. This means the inter-grid transfer operators must

also scale easily. This has been accomplished by ensuring that inter-processor bound-
aries occur on mesh lines on the coarsest multigrid used, say k=C. This is again easily
accomplished by choosing np to be of the form 2n. Using parallelism with MLMI does,
however place additional constraints on the parallelism strategies used. The halos re-
quired on a grid mean that, for an efficient algorithm in terms of memory usage, it has
been necessary for each processor to have a more complex message passing structure
to receive these dummy points from multiple processors. We have not implemented
agglomeration-style techniques and so all processors are never idle. This, in turn,
means that the level of coarsest grid used for both multigrid and MLMI is restricted
by the need for each processor to have a non-trivial amount of work.

Other memory costs in the MLMI solve are incurred by the multi-summation hav-
ing to be performed on grids C6k6ksum. This means that on each of these grids there
must be enough computational memory allocated for the complete pressure and ker-
nel solutions to be stored. Also, in the entire multi-integration solve extra cells are
used to extend the domain on each level for use in the sixth-order coarsening routines.
Given this higher order method uses four extra points over every edge the domain is
thus extended to be Mk

X × Mk
Y = (Nk

X + 8) × (Nk
Y + 8) points. Therefore the number of

points chosen for the multi-integration calculations are not as given in equation (34),
but actually

T
k
p = Mk

X ×
Mk

Y

np
(35)

and hence there must be a small amount of realignment of data done at both the start
and end of each deformation calculation.

PARALLEL COMPUTATIONAL COMPLEXITY

In this section the computational and communication costs of the parallel multigrid
algorithm and of the multilevel integration are calculated. By combining these it will
be possible to form a theoretical model of performance and scalability which will be
able to be compared against the actual scalability of the software.

Assuming that we have np processors then, since all the computation has been
parallelised, we can simply take the relevant fraction of the serial cost given by equa-
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tion (32), as follows:

VCparallel
cost =

1
np

k f
∑

k=kc

γMG
k

{

κvcNk
X Nk

Y + κsum

[

(

Mkc

X Mkc

Y

)2
]

+

k
∑

K=kc+1

MK
X MK

Y

[

κtrans + κcorr

(

3 + log
(

MK
X

)) (

3 + log
(

MK
Y

))]















.

(36)

Communication costs

Some communications requirements, such as the size of halos, have already been cov-
ered when discussing the partitioning of the domain. Here we cover the specific costs
associated with the parallel implementation in detail. In describing these costs it is im-
portant to note that the communications costs from the top and bottom processors are
approximately one half of the costs of the interior processors, although this has been
neglected in the analysis to follow. The communications model used is the standard ap-
proximation in which the cost of sending Nx data items from one processor to another
as denoted by CNX is defined by

C send
NX
= α0 + βNX (37)

where α0 ≈ 10−5, β ≈ 2.510−8 and the cost of a floating point operation γ ≈ 10−10 on
the machine for which we compare the model against the experimental results below.
Clearly the number of communications and their associated costs are governed by the
number of grid levels used in the multilevel scheme.

The communications model used for a broadcast of N data items from one proces-
sor to all the others is denoted by CBCast

N is defined by

CBcast
N = α0 + 3log(p)(βN + α1) (38)

where α1 = 10−6. Let us define the total number of grids used in the solution scheme
to be ktot = kfine− kcoarse + 1.

In the parallel EHL code there are three parts to the communication pattern:

• Multigrid for the pressure and the fluid model;

• Multi-integration for film thickness evaluations;

• Force balance calculation to compute H00;

which are addressed in turn in the next three sections.

Pressure and fluid calculations

In the Numerical Methods Section it was explained how two different numerical schemes
are used for the update for pressure, in and out of the contact region. For the Gauss-
Seidel region it is necessary to have the boundary value updates for adjoining proces-
sors. Each processor will do a send and a receive of Nk

X pressure points to and from
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adjoining processors. Similarly, the communication requirements for viscosity and
density along with the film thickness are limited to filling the ghost points over proces-
sor boundaries, hence the cost of doing each of these is the same as for the pressure
given in equation (38).

MLMI communications requirements

The multi-integration solve to calculate the deformation requires communications down
to the coarsest grid and back up. The level on which the deformation is to be calcu-
lated is denoted by keval and that the coarsest level used in the multi-integration solve,
(hence the level on which a multi-summation is performed), is denoted by ksum, where
keval < ksum.

The sixth order smoothing operations defined by equation (22) used mean that the
overlap between partitions consists of at least four rows of ghost cells above and four
below. These are needed for both the coarsening of the pressure and kernel and also of
the restriction of the deformations back to the fine grid.

The communications are broken down into three main parts: the coarsening, the re-
finement and the grid alignment. This last part comes from the attempt to equidistribute
work between processors, given by the difference between Equations (34) and (35).
The overall cost of this is small as the difference between Sk

p and T k
p will rarely be

more than a couple of rows for fine meshes or large numbers of processors. These
transfers are also done by non-blocking local communications.

The coarsening work is divided between the coarsening of the kernel and the coars-
ening of the pressures. The kernel actually requires coarsening by two different proce-
dures, namely injection and high order coarsening.

Straight injection is used in the multi-summation of equation (23). The injected
kernel, therefore, requires global broadcasting on the coarsest grid.

Sixth-order coarsened kernels are required for the correction of the calculated de-
formations computed using equations (26) and (27). The sixth-order versions are there-
fore only required to be valid up to the width of the correction patch. This means that
only the first two processor’s partitions are will be required, however these must be
replicated to all the other processors on all grid levels in order to compute the correc-
tions.

MLMI coarse mesh halos

For the correction part of the multilevel multi-integration solve it is necessary to use a
multi-summation of all points within a much larger radius than are used in the sixth-
order coarsening of the MLMI solve. The difficulty is that halos of size 4+ log N on the
coarsest grid correspond to halos of between 12 and 20 points on the finest grids used
in the line contact solution domains. These larger requirements are needed for both the
coarsened pressure and the coarsened kernel functions. An inexpensive MPI method
for dealing with these halos will now be shown.

The information per processor is as shown in Figure 3 for four processors. In
this diagram each processor owns a subset of the information it requires. For example,
processor 3 knows all the values for rows b3 to c3 but actually needs all the information
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Figure 3: Information owned and required, per processor

for a3 to d3 e.g. the 20 row halos on either side, which are owned, by processors 1 to
4.

The proposed solution for this to share the information on the required rows with all
the other processors, and then gather back the information, a row at a time. Since each
row is needed by multiple processors, it is necessary to know where we are intending
to send that row if global broadcasts are to be avoided.

The algorithm for processor i is

• Distribute arrays a and d –
2 ×MPI AllGather

• for j = 0, np (i , j)

if (bi > a j && ci < d j)

for k = MAX(bi, a j) to MIN (ci, d j)

MPI ISend row k to proc j, tag k

• for k = ai to di (i , j)

MPI IRecv row k from ANY, tag k

This changes the communication costs from np processors doing a Bcast (i.e. 2np

messages per processor sent and received of length N2/np) to 2 AllGathers (i.e. 2np

messages, length 2 ints) and twice the correction box length Isends of length N.
The benefit of this communication method is that when it is used for the sixth-

order coarsening/refinement halos it enables the efficient gathering information from
multiple processors, and distribution to a local neighbourhood of processors, rather
than the exchange of information only between adjacent processors.

Refinement of the calculated deformations from kcoarse back to keval are again
done via half grids. These transfers require only the ghost cell rows needed for the
sixth order refinement. Hence the bottom three rows need to be sent to the processor
calculating the partition below and the top two rows to the partition calculating above.
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Calculation Operation When used Length
Messages

in/out
V-cycle
Force Balance All Reduce each coarsening 1 1
Viscosity Isend/Irecv each smooth Nk

X 2
Density Isend/Irecv each smooth Nk

X 2
Pressure
- calculation Isend/Irecv each smooth Nk

X 2
local gather each smooth Nk

X 24
MLMI cycle

Kernel coarsening Bcast (from P0)
each grid

and half-grid
8×Mk

X 1

Pressure coarsening local gather per grid Mk
X 24

per half-grid Mk
X 12

Coarse grid multisum. Bcast each MLMI Rcoarse 2np

Deformation prolong. local gather
each grid

and half-grid
Mk

X 10

Table I Communications Cost on Grid k

MLMI coarse mesh broadcasts

On the coarsest mesh of the MLMI iteration it is necessary to communicate the coars-
ened pressures and kernel functions to all the processors. This is because on the coars-
est grid a multi-summation of the product of these two arrays is needed. Whilst the
relevant arrays of coarsened kernels may be stored on each processor, the extra mem-
ory requirements of saving coarsened kernels solutions would also become highly pro-
hibitive as both coarse and fine grids become increasingly refined.The need to broadcast
the coarse grid pressures on every solve makes it just as easy to broadcast the kernel
too.

Force balance calculation

In solution of the Force Balance equation (13), parallel communication is restricted
to global broadcasts of each processor’s contribution to the H00 correction, as defined
by equations (20) and (21), on both fine and coarse grids every time the pressure is
coarsened in the multigrid cycle. There is also a global broadcast of each processors
sum of pressures on the coarsest grids. These broadcast values are then combined on
each processor to update H00 identically.

Each processor sends one double precision number out and receives np−1 back for
every grid giving combined communication cost of

VCH00
comm =

(

kdi f + 1
) (

3α0 log(np)
)

(39)

Combining the communications costs

A summary of the communications costs are given in Table I. Gathering together these
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costs for the combined V-cycle and associated MLMI calculations gives the commu-
nications costs of the parallel multigrid algorithm and of the multilevel integration.
Excluding the deformation calculation, for each processor the following costs are in-
curred on grid level k in a multigrid V-cycle are:

VCnon−de f
comm =

k f
∑

k=kc

[

12γMG
k

(

α0 + β2Nk
X

)

+ 3α0 log(p)
]

(40)

=

k f
∑

k=kc

[

12γMG
k α0 + 12βγMG

k Nk
X + 3α0 log(p)

]

(41)

= 12α0

k f
∑

k=kc

γMG
k + 12β

k f
∑

k=kc

γMG
k Nk

X + 3α0 log(p)kdi f . (42)

(43)

Now,

γMG
k =

{

npre + npost + 2, k , kc

ncoarse, k = kc

(44)

which in a V(3,1,30) cycle gives:

γMG
k =

{

6, k , kc

30, k = kc.
(45)

Substituting (42) into (45) gives:

VCnon−de f
comm = 12α0

(

kdi f 6 + 30
)

+ 12β
(

12Nk f

X + 24Nkc

X

)

+ 3α0 log(p)kdi f (46)

= 72α0

(

kdi f + 5
)

+ 144β
(

2k f
+ 2kc+1

)

+ 3α0 log(p)kdi f . (47)

The MLMI costs for the calculation on grid K are given by:

VMLMIK
comm = local gather of rows

+local gather all reduces

+kernel broadcasts from P0 for correction patches

+coarsest grid kernel and pressure

=

K
∑

k=kc+1

γk
MI

(

α0 + βM
k
X

)

+

K
∑

k=kc+1

4
(

α0 + 3β log(p)Mk
X

)

+

K
∑

k=kc

2
[

α0 + 3 log(p)
(

α0 + 8Mk
X

)]

+2p



















α0 + 3 log(p)





















α0 +

(

Mk
X

)2

p







































(48)

= [A] + [B] + [C] + [D] (49)
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Taking these terms in sequence, and noting that γk
MI is the number of rows sent plus the

number of rows received on grid k, i.e. 24+ 12+ 10+ 10 = 56, and kdi f = K − kc gives:

[A] =

K
∑

k=kc+1

γk
MI

(

α0 + βM
k
X

)

= 56α0kdi f + 56β
K

∑

k=kc+1

Mk
X

= 56α0kdi f + 56β2MK
X − 56β2Mkc

X (50)

[B] =

K
∑

k=kc+1

4
(

α0 + 3β log(p)Mk
X

)

= 4α0kdi f + 12β log(p)
(

2MK
X − Mkc

X

)

= 4α0kdi f + 24β log(p)MK
X − 12β log(p)Mkc

X (51)

[C] =

K
∑

k=kc

2
[

α0 + 3 log(p)
(

α0 + 8Mk
X

)]

= 2α0kdi f + 6 log(p)αkdi f + 6 log(p)β
(

16MK
X − 8Mkc

X

)

= 2α0kdi f
(

1 + 6 log(p)
)

+ 48β log(p)
(

2MK
X − Mkc

X

)

(52)

[D] = 2p



















α0 + 3 log(p)





















α0 + β

(

Mk
X

)2

p







































= 2pα0
(

1 + 3 log(p)
)

+ 6β log(p)
(

Mkc

X

)2
(53)

Therefore combining (50), (51), (52) and (53) and substituting into (48) gives

VMLMIK
comm =

56α0kdi f +112βMK
X −56βMkc

X

+4α0kdi f +24β log(p)MK
X −12β log(p)Mkc

X

+2α0kdi f
(

1 + 6 log(p)
)

+96β log(p)MK
X −48β log(p)Mkc

X

+2pα0
(

1 + 3 log(p)
)

+6β log(p)
(

Mkc

X

)2

= 2α0

(

62kdi f + 6kdi f log(p) + p + 3p log(p)
)

+8βMK
X

(

14 + 15 log(p)
)

−2βMkc

X

(

28 + 30 log(p) − 3 log(p)Mkc

X

)

(54)
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The MLMI costs over a complete V-cycle are then given by:

VCMLMI =

k f
∑

K=kc

γMG
k VMLMIK

comm

=

k f
∑

K=kc+1

6VMLMIK
comm + 30

[

2pα
(

1 + 3 log(p)
)

+ 6β log(p)
(

Mkc

X

)2
]

= 12α0 p
(

1 + 3 log(p)
)

kdi f

+2α0

k f
∑

K=kc+1

(

62K − 62kc + 6K log(p) − 6kc log(p)
)

+48β
(

14 + 15 log(p)
)

(

2Mk f

X − Mkc

X

)

−12βMkc

X

(

28 + 30 log(p) − 3 log(p)Mkc

X

)

+30
(

2pα
(

1 + 3 log(p)
)

+ 6β log(p)
(

Mkc

X

)2
)

= 12α0 p
(

1 + 3 log(p)
)

kdi f

+2α031
(

1 + log(p)
)

(

k f k f+1
− kckc+1

)

− 62kckdi f
(

1 + log(p)
)

+48β
(

14 + 15 log(p)
)

(

2Mk f

X − Mkc

X

)

−12βMkc

X

(

28 + 30 log(p) − 3 log(p)Mkc

X

)

+30
(

2pα
(

1 + 3 log(p)
)

+ 6β log(p)
(

Mkc

X

)2
)

= 12α0 p
(

1 + 3 log(p)
)

(

kdi f + 5
)

+62α0
(

1 + log(p)
)

(

k f k f+1
− kckc+1

− 2kckdi f

)

+12β
[

2Mk f

X

(

14 + 15 log(p)
)

+

6Mkc

X

(

3 log(p)Mkc

X − 14 − 15 log(p)
)]

(55)

The total communications cost of a V-cycle is given by adding equations (47)
and (55) to give:

VCcomm = 72α0

(

kdi f + 5
)

+144β
(

2k f
+ 2kc+1

)

+3α0 log(p)kdi f

+12α0 p
(

1 + 3 log(p)
)

(

kdi f + 5
)

+62α0
(

1 + log(p)
)

(

k f k f+1
− kckc+1

− 2kckdi f

)

+12β
[

2Mk f

X
(

14 + 15 log(p)
)

+

6Mkc

X

(

3 log(p)Mkc

X − 14 − 15 log(p)
)]

= α0

[

72
(

kdi f + 5
)

+ 3 log(p)kdi f + 12p
(

1 + 3 log(p)
)

(

kdi f + 5
)
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+ 62
(

1 + log(p)
)

(

k f k f+1
− kckc+1

− 2kckdi f

)]

+12β
[

12
(

2k f
+ 2kc+1

)

+ 2Mk f

X
(

14 + 15 log(p)
)

+ 6Mkc

X

(

3 log(p)Mkc

X − 14 − 15 log(p)
)]

. (56)

Memory Costs

The efficient distribution of the memory requirements for the EHL code was challeng-
ing in that the trade-offs between memory and global communication (e.g. due to the
coarse grid kernel). nature of some of the operations described above. Only once the
communication algorithm had been constructed could the parallel memory issues be
tackled. The need to reach as fine a grid as possible meant that the memory allocation
model needed to be efficient since the presence of the coarser meshes will cause the
memory per processor to grow by more than the extra resolution needed for the finest
grid alone. In fact, being able to efficiently use the memory for large numbers of pro-
cessors on fine grid cases is perhaps equally important as the parallel algorithm scaling.
These factors will be discussed in the next section.

Defining the standard processor share on a grid j to be:

R
j =

NY

np
× NX

then it is possible to define the size of almost all the storage to arrays of size

D
j = R j + 2NX

The factor of 2 represents one row above and below to be passed to neighbouring
processors.
The only important exceptions that may be greater than this are as follows:

Pressure D
j
P = R

j + 17 × 2(NX + 16)

Deformation D
j
δ
= R j + 4 × 2(NX + 16)

MLMI Kernel D
j
k = R

j + 4 × 2(NX + 16)

MLMI corrections D
j
corr = 9 × (NX + 16)

Some other work arrays are larger than R j but are only needed for the grid being used,
hence their total size is constrained to R f inest rather than

∑ f inest
j=coarse R

j.

RESULTS

In this section computational results are presented for the example EHL test problem,
which corresponds to the calculation of the initial steady state conditions of the ex-
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Table I: Ktot = 257 × 257
Number of Snowdon NGS Memory Ksum

np Time Effic. Time Effic. Mb Iso-memory Grid Used
1 12.87 1.00 9.09 1.00 12 1.00 33x33
2 6.45 1.00 4.93 0.92 7 0.86 33x33
4 4.34 0.74 3.60 0.63 5 0.60 33x33
8 3.79 0.42 3.27 0.35 3 0.50 33x33
16 5.01 0.16 4.61 0.12 3 0.25 33x33
32 9.70 0.04 6.09 0.05 3 0.13 65x65
64 16.19 0.01 9.19 0.02 4 0.05 128x128

128 29.89 0.00 17.49 0.00 4 0.02 256x256

Table II: Ktot = 513 × 513
Number of Snowdon NGS Memory Ksum

np Time Effic. Time Effic. Mb Iso-memory Grid Used
1 45.71 1.00 32.10 1.00 46 1.00 33x33
2 22.32 1.02 17.21 0.93 24 0.96 33x33
4 13.53 0.85 10.52 0.76 14 0.82 33x33
8 9.42 0.61 7.82 0.51 8 0.72 33x33
16 9.86 0.29 9.46 0.21 6 0.48 33x33
32 16.02 0.09 9.96 0.10 5 0.29 65x65
64 25.98 0.03 15.24 0.03 5 0.14 128x128

128 135.11 0.00 70.23 0.00 9 0.04 256x256

ample of reversal solved by Scales et al. [26]. These are compared to the theoretical
predictions of our model in the following section.

In all the solutions to follow the numerical solver successfully converged on all
grids with all numbers of processors tested without producing ‘incorrect’ solutions.
The parallel code has been tested on a variety of machines. The two architectures
reproduced here are both distributed memory Linux clusters. The first, snowdon, has
up to 128 dual processor nodes containing two Intel P4 2.2GHz Xeon processors with
0.5Mb of secondary cache and 2GB of physical memory, with all nodes connected via
Myrinet 2000. The second machine, NGS, is the Leeds node of the UK’s National Grid
Service, which is similar to snowdon but with processor speeds of 3.06GHz. The Intel
compiler has been used on both machines, with identical optimisation levels.

Results are shown in Tables I to VII for grids All timings are for FMG followed by
10 multigrid V-cycles using the coarsest possible grids allowed, from a coarsest level
as given in the final column of each table. The efficiencies are compared against the
case using the lowest number of processors that would fit into the 2Gb memory of each
node. This means that the efficiencies for 128 processors have a finer coarsest mesh
used than for lower numbers of processors. This only harms the performance since the
computational cost on the coarsest mesh is O(N4) as discussed earlier.

The above results are representative of the true speed-ups possible due to paral-
lelism when using many processors. The scalability of the code can also be assessed
by considering how the solution time is affected when the problem size is increased
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Table III: Ktot = 1025 × 1025
Number of Snowdon NGS Memory Ksum

np Time Effic. Time Effic. Mb Iso-memory Grid Used
1 174.23 1.00 121.82 1.00 178 1.00 33x33
2 84.15 1.04 64.28 0.95 92 0.97 33x33
4 48.66 0.90 36.04 0.85 48 0.93 33x33
8 28.54 0.76 21.48 0.71 26 0.86 33x33

16 22.24 0.49 18.69 0.41 15 0.74 65x65
32 28.24 0.19 17.09 0.22 10 0.56 65x65
64 42.12 0.06 23.36 0.08 9 0.31 128x128

128 226.76 0.01 108.26 0.01 12 0.12 256x256

Table IV: Ktot = 2049 × 2049
Number of Snowdon NGS Memory Ksum

np Time Effic. Time Effic. Mb Iso-memory Grid Used
1 672.86 1.00 514.10 1.00 705 1.00 65x65
2 367.77 0.91 253.87 1.01 357 0.99 65x65
4 174.39 0.96 133.57 0.96 182 0.97 65x65
8 102.61 0.82 73.97 0.87 95 0.93 65x65
16 66.27 0.63 42.36 0.76 51 0.86 65x65
32 78.76 0.27 35.64 0.45 29 0.76 65x65
64 125.86 0.08 40.87 0.20 20 0.55 128x128

128 314.63 0.02 155.51 0.03 19 0.29 256x256

Table V: Ktot = 4097 × 4094
Number of Snowdon NGS Memory Ksum

np Time Effic. Time Effic. Mb Iso-memory Grid Used
1 - - 2807 65x65
2 1520.87 1.00 1073.58 1.00 1413 0.99 65x65
4 701.71 1.08 554.05 0.97 713 0.98 65x65
8 402.81 0.94 278.07 0.97 363 0.97 65x65

16 228.59 0.83 146.91 0.91 188 0.93 65x65
32 163.25 0.58 98.67 0.68 101 0.87 65x65
64 142.93 0.33 79.96 0.42 59 0.74 128x128

128 410.41 0.06 237.40 0.07 41 0.53 256x256

Table VI: Ktot = 8193 × 8193
Number of Snowdon NGS Memory Ksum

np Time Effic. Time Effic. Mb Iso-memory Grid Used
1 - - 11202
8 1798.74 1.00 1147.41 1.00 1424 0.98 65x65

16 952.35 0.94 586.60 0.98 725 0.97 65x65
32 551.11 0.82 357.94 0.80 375 0.93 65x65
64 338.32 0.66 233.18 0.62 202 0.87 128x128

128 640.33 0.18 338.47 0.21 119 0.74 256x256
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Table VII: Ktot = 16385 × 16385
Number of Snowdon NGS Memory Ksum

np Time Effic. Time Effic. Mb Iso-memory Grid Used
1 - - 44761

32 2092.52 1.00 1310.16 1.00 1449 0.97 65x65
64 1365.05 0.77 774.59 0.85 751 0.93 128x128

128 1297.46 0.40 672.61 0.49 406 0.86 256x256

Table VIII: Comparison of timings on increasing fine grid level with coarse grid al-
ways 257x257. For each case three timings are shown: the broadcasts for the multi-
summation (top), the local gather timings (middle) and the other computation and local
communication (bottom)

Np 513×513 1025×1025 2049×2049 4097×4097 8193×8193 16385×16385

32
4.04
2.55

226.30

5.60
6.16

317.20

7.48
14.84

440.14

9.49
42.84

683.35

11.77
119.56

1265.46

13.82
386.28

3409.13

64
7.09
3.12

185.07

10.02
7.43

244.40

13.48
15.42

339.51

17.01
40.17

492.40

19.94
98.40

881.34

24.99
334.82

1922.91

128
-
-
-

17.14
9.19

183.61

22.99
19.13

250.07

29.29
39.57

319.19

35.54
92.78

529.75

42.37
210.37

1030.94

at the same rate as the number of processors used to solve the problem. For the EHL
problem as solved here, doubling the number of points in the domain does not double
the work required as the multigrid method itself is assumed to be O(N2) whilst the
MLMI solve is O(N2lnN2). However, bearing these facts in mind it is not unreasonable
to still compare grid levels k on p processors against grid k+1 on p×4, since each grid
has four times the number of mesh points.

Another set of results worth comparing are those for a fixed coarsest mesh. Here we
have used an alternatively compiled version to break down the timings into three parts,
namely that for the broadcasts before the multi-summation, the local gather operations
during the MLMI deformation calculation and thirdly the rest of the computation and
local communication. These results are shown in Table VIII for the coarsest grid used
of 257×257 points. It can be seen how increasing the fine grid for fixed number of
processors leads to good scaling of the broadcasts and the computation, however the
local gather cost is growing fastest. Meanwhile with increasing numbers of processors
it is only the broadcast time which grows as expected with the main performance cost
showing a good scaling.

Looking again at Tables I to VII it is possible to assess how successful the use of the
distributed memory on the system has been. It is seen that in all cases the iso-memory
figure, given by

Isomemory =
memory with one processor
memory with p processors

, (57)
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is significantly better than the computational efficiency. More importantly on the finest
meshes for which the memory model was devised, i.e. those grids which couldn’t have
been stored completely on a single node, then the memory efficiency is good even when
high numbers of processors are being used. These figures lead us to believe that the
code would be extensible to successfully run on much larger systems for much finer
problems.

PERFORMANCE MODEL COMPARISON

In this section we draw together the communications and computations costs of earlier
and compare them against the experimental results achieved. We then use these results
to make further predictions about how scalable the code may be on finer grid with more
processors.

The efficiency of the model we have defined using

E f f =
1

1 + VCcost×np

VCcomm

(58)

for np processors, and VCcost and VCcomm defined using equations (32) and (56) respec-
tively.

The results of the computational experiments on snowdon, shown in Tables I to VII,
are compared against the performance model, in Figure 4 where the appropriate α0, β
and γ chosen. For all the cases we have used the same coarsest grid as was usable in
the minimum processor case for comparison purposes, and it is against these results
that the model has been compared.

It can be clearly seen what a close correlation there is between the two sets of
results. This is especially pleasing since only the main computational elements have
been included into the model, and estimates of the operations counts were made inde-
pendently of the parallel timings.

With such close agreement, even on high number of processors with the finest
meshes being used, gives us good confidence in being able to make predictions of how
the solution algorithm may behave on finer grids with more processors being used.
What we are able to learn from the model and the other results concerning memory and
the breakdown of timings is that the efficiency of the parallel code at larger numbers
of processors will be good for even finer grids than have been tackled thus far. The
isomemory results indicate that we ought to be able to fit the memory requirements into
that available for a single node, assuming that the memory per node is not significantly
less than is currently available.

In Figure 5 we see how the performance model expects the software to behave on
grids finer than those for which we have experimental results, and also on more pro-
cessors. The assumption has been made that these problems will fit into the locally
available memory irregardless of the number of processors used (since we are using
a hypothetical extension to a real computer system supplying the α0, β and γ values)
hence the coarsest grid used has been kept fixed at 257×257 points. The coarsest grids
used have all been increased following the same rules as in our current experimental
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rules. What the results show is that the parallel performace of the code is expected to
peak at 65537×65537 points, beyond which the global operations on these very long
rows will have become too expensive for the best scalability. The model does show,
however, that 50% efficiency may be possible for real surface roughness cases of over
1010 mesh points on 128 large memory nodes. These efficiencies would appear im-
proved if the minimum number of processors necessary was larger, as would currently
be the case.

CONCLUSIONS

In this paper we have shown that a demanding numerical problem, which is both highly
intensive in terms of communication, and requires significant global communications,
has been successfully parallelised. Communication costs have been limited through
use of non-blocking local directives, and the memory requirements per process have
been significantly reduced.

The overall speed-up of the code is excellent, especially on higher grid resolutions,
such as will be required to tackle real surface roughness problems. The scalability has
been shown to be similarly good with comparable results when increasing the problem
size and number of processors whilst utilising the same coarsest MLMI level.

A parallel model has been presented that shows very similar behaviour to the com-
putational results obtained. It has been seen how the change of coarsest grid used due
to the multigrid critical level changing makes an impact on performance while still
giving good scalability when the fine mesh is varied relative to the coarse grid used.

We have now been able to solve the largest EHL point contact cases that the authors
know about. The future holds three main directions for this work. It is clear that
to tackle very fine mesh levels, large amounts of physical memory are required on the
individual computers. To progress further on the distributed architectures available then
the computational model developed here could be analysed in great detail to develop
more efficient communications models for large number of processors.

The second direction is to start using these very fine meshes to solve real surface
roughness problems. To solve these accurately in a transient manner will probably
require spatial adaptivity [27] and variable timestepping [10,28] to be introduced to the
parallel solver. These problems may thus require even larger machines to be employed
to handle such enormous meshes quickly, and hence moving to meta-computing on the
Grid will seem an obvious next stage.

A final idea to be considered will be for improving the current solver by have vary-
ing numbers of processors per grid. This would eradicate the need to use finer coarsest
grids in the calculation if some processors could be ‘switched out’ for grid levels where
too many processors are present.
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