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The total friction through a lubricated contact is a physical quantity which may be measured experimentally in an EHL test
rig. Numerical EHL simulations will wish to accurately reproduce the results from directly comparable simulations, and hence
the friction will be one of the key variables of interest. It is shown that not only are very smooth meshes needed to resolve
some features of EHL calculations but also that the accuracy achieved on standard quantities of interest such as minimum
film thickness varies greatly and may not correlate well to quantities such as friction. The use of adaptive mesh techniques for
steady problems is considered in the same context with results presented for how well the accuracy of the friction is maintained.
This is generalised to transient cases with surface roughness, hence incorporating numerous pressure spikes needing accurate
resolution.

1. INTRODUCTION

Solution times for numerical models of elastohy-
drodynamic lubrication (EHL) problems continue to
decrease as the algorithms used improve and the com-
puters on which they are solved become more power-
ful. Conversely as the lubricant models used by indus-
try become more complex, the demands for robust-
ness, accuracy and speed of the software increase. In
addition as the breadth of cases increases the general-
ity of the software must also increase, so a single code
must be able to tackle a wide range of problems with
the minimum of user input.

The broad requirements of a user of such a code is
to obtain the “correct” solution as quickly as possible.
This leads to the consideration of the question of what
is meant by “correct”. In order to consider a solution
“correct” it must satisfy some objective criteria and it
may well be that the level of accuracy required to meet
this criteria for one solution component is inadequate
for another. Typically a finer resolution of computa-
tional mesh (grid) leads to more accuracy but at the
expense of increased solution times. Therefore if the
user is only concerned with solution components that
already meet the objective “correctness” criteria at a
certain level of grid resolution, it may be unnecessary
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to increase the grid resolution further. However care
must be taken as not only can solution components
which are not accurately resolved affect other compo-
nents, but in transient problems the growth of errors
in these other components can result in completely
inaccurate solutions. In this paper we study how to
take these requirements into account when consider-
ing quantities such as friction.

In order to measure the error in a computational ex-
periment it is necessary to measure how far the com-
putational result is from the true solution. Since EHL
problems only have an analytic solution in very spe-
cial cases we will consider the “true” solution to be
that obtained as the number of points increases, and
hence the mesh spacing decreases. In particular, the
“true” solution will be defined here by that computed
on a very fine mesh, often termed a “truth mesh”
in the computational science community. Providing
the truth mesh is sufficiently fine, then it is possi-
ble to model the discretisation error on much coarser
meshes.

Furthermore when comparing numerical results
against experimental results the accuracy of the ex-
periments themselves must be included for establish-
ing the overall demands from the simulation.

In this paper we shall only concern ourselves with
consideration of key variables, such as friction or cen-
tral and minimum film thicknesses. The reasons be-
hind this motivation are that in many real simulations



being performed, these are likely to be the variables
considered by the user [9]. We discuss the need for
both high level and low level strategies for assess-
ing the quality of the results. Use of techniques pre-
viously presented such as variable timestepping [11]
and grid adaptation [10] are explained in the context
of improved accuracy of solutions without jeopardiz-
ing the fast solution times.

Investigations into friction have been mainly con-
fined to experimental work such as Blencoe et al. [4]
and Workel et al. [22]. As will be shown in Section 4
the friction is related very closely to accurately cap-
turing the profile of the pressure spike. Work by Bis-
set and Glander [2] showed that when more fine mesh
points are used in the region of the spike then it is
no longer seen as a singularity in the solution, but a
smooth profile. This work did only resolve the spike
using up to 1000 points, however it did still high-
light the importance of this area of the solution. Fur-
ther consideration of this area in respect to the elastic
properties is given by Hall [13] and the benefits of
this approach for better accuracy is shown by Lee and
Hsu [15].

The consideration of friction will be seen to have
great dependence on the resolution of the gradients
in the pressure solutions, as will be explained with
reference to the governing equations. The consider-
ation of the resolution of the single pressure spike in
a line contact case will be used as an example which
must be applied to the much more general cases of
surface roughness where sharp pressure spikes will
occur through the length of the contact region. Ac-
curate resolution of these gradients will lead to more
reliable computational results for the key quantities of
interest.

The rest of the paper is laid out as follows. In Sec-
tion 3 the equations used in the solver are listed in
non-dimensional form, along with a brief discussion
of the solution methods used. The need for monitor-
ing of key variables is outlined in Section 4 where in-
creasing grid resolution is shown to make noticeable
changes to solution profiles, particularly with refer-
ence to capturing the true gradients in the pressure
solution. This work also shows the need for larger in-
let regions in the computational domain. These ideas
naturally feed into the use of grid adaptation for EHL
problems. Techniques for doing this have been pre-
sented previously, e.g. [16,10], and in Section 5 it is
shown how the use of multigrid patches for line con-
tact EHL solutions can maintain very high accuracy

for the friction without requiring fine meshes over
most of the domain. Transient problems involving
surface roughness are considered in Section 6 where
the resolution of the mesh is seen to dramatically af-
fect the accuracy of the calculated friction. The paper
is concluded in Section 7, with some suggestions for
future work being made.

2. NOTATION

a half-width of Hertzian contact
C (A,B) Correlation between A and B
F total friction through the contact
G undeformed surface geometry
H non-dimensionalised film thickness
H00 film thickness central offset
k grid level in multigrid scheme
ph maximum Hertzian pressure
P non-dimensionalised pressure
Rx reduced radius of curvature
T non-dimensionalised time
us sum of velocities of contacts

U1, U2
non-dimensional rolling
speeds of surfaces 1 and 2

X dimensionless coordinate

Xl
dimensionless left boundary of
computational domain

Y dimensionless coordinate
z viscosity index
α pressure viscosity index
ε coefficient in Reynolds equation
η0 viscosity at ambient pressure
η̄ non-dimensionalised viscosity
λ coefficient in Reynolds equation
µ11 Covariance
ρ convergence test parameter
ρ0 density at ambient pressure
ρ̄ non-dimensionalised density
σA Variance of A
τxz;1 non-dimensional shear stress on surface 1

3. EQUATIONS AND STANDARD SOLUTION
METHOD

The equations governing EHL line contacts are
given, in non-dimensional form, by the following set
of three equations. Firstly, the pressure distribution
is defined by the discrete form of the Reynolds Equa-
tion:
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The film thickness equation for line contact cases,
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defines the contact shape, for given undeformed ge-
ometry G(X ,Y ).
The force balance equation,

∫ ∞

−∞
P(X)dX =

π
2

, (5)

is also solved to provide conservation of applied
force.

Unless otherwise stated, the lubricant model used
is that of a generalised Newtonian fluid. The model
used for viscosity is derived from the Roelands equa-
tion [17],

η(P) = exp

{

α p0

z

[

−1+
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Pph
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)z]}

, (6)

and for density an extended version of the Dowson
and Higginson relation [6],

ρ(P) =

(

1+
5.8×10−10 Pph

1+1.7×10−9Pph

)

. (7)

is used, as described in [7].
These equations are discretised on a regular mesh

of (2k+1) points. Both first and second order fi-
nite differences have been used. These have then

been solved using the multigrid techniques described
in [20,21,8,7] and the multilevel multi-integration al-
gorithm of Brandt and Lubrecht [5].

Once solutions for these equations are found it
is possible to derive the shear stress on each sur-
face [18]. These forces are defined to be
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(9)

for surfaces 1 and 2 at z = 0 and z = H respectively
moving at dimensionless speeds U1 and U2 respec-
tively. From these expressions it is possible to work
out the total (dimensional) friction through a line con-
tact, F as:

F =

∫ ∞

−∞
phτxz;1(x)dx. (10)

This is a key quantity of interest as it can give a mea-
sure of the force opposing the shear in the lubricant,
e.g. [3, Chapter 6]. The total friction is made up of the
rolling friction and the kinetic friction, although ex-
perimentally these cannot be measured independently
and hence in this work only the total friction will be
considered.

4. PRESSURE SPIKE RESOLUTION AND
FRICTION

The speed of modern EHL codes and the computers
they are run on makes it possible to obtain solutions
to line contact problems with up to 106 mesh points,
as will be shown below. The quality of the results
obtained varies between grid levels. This variation
may give a larger error in key quantities of interest
such as the total friction defined by Equation (10) than
just discretisation error in quantities such as pressure
or film thickness. For example the error in the total
friction as defined by Equation (10) depends on er-
rors in the reciprocal of film thickness and also on the
pressure derivative ∂ P

∂ X . As film thickness depends on
all the pressures the error in the film thickness at any
point depends on all the errors in the pressure values.

An example of this is shown in Figure 1 where
the pressure distribution across the whole domain is
shown. The non-dimensional parameters represent-
ing the input conditions of this simulation are shown
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Figure 1. Non-dimensional pressure plot of a line
contact problem with increasing mesh resolution

Non-dimensional parameter Value
Moes M 10.7
Moes L 15.3
Material G 1.07 ×10−10

Speed U 4.00 ×103

Loading W 1.57 ×10−4

Table 1
Non-dimensional parameters for test case considered

in Table 1. It can be seen that the curves are almost co-
incidental apart from around the pressure spike. This
area is shown in detail in Figure 2 where the addi-
tion of several orders of magnitude more points has
now captured the pressure spike completely and ap-
pears to have achieved a converged continuous solu-
tion. Whilst on a nano-scale this profile could be con-
sidered as not representing the true behaviour of the
contact it does, however, represent the true solution to
the equations being solved numerically.

The effect of extra grids can be seen to only affect
a small portion of the pressure plot, namely the spike
area, and only to a very small degree once the grids
greater than 4097 points have been reached. However
as Figure 3 illustrates, the effect of the finer meshes
on the spike has a more global effect on the film
thickness. Similarly if we consider the total friction
through the contact, as shown in Figure 4, the res-
olution of the spike is important if the total friction
through the contact is to be calculated accurately.

In developing optimisation solvers for fitting model
parameters to experimental results, see [9], the accu-
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Figure 2. Non-dimensional pressure plot around spike
with increasing mesh resolution
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Figure 3. Non-dimensional film thickness plot of a
line contact problem with increasing mesh resolution
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Parameters movable by optimiser:
Variable Description

β Temperature coefficient
of viscosity (K−1)

z0 Viscosity parameter
z1 Viscosity parameter
K0 Inverse critical shear rate (s)

α Pressure coefficient of inverse
critical shear rate

β Temperature coefficient of inverse
critical shear rate

z0 Inverse critical shear rate parameter
z1 Inverse critical shear rate parameter
m Cross exponent
a Carreau-Yusada parameter

Supplied physical conditions
Cases Condition
Cases 1-18 Ambient temperature 373K
Cases 19-36 Ambient temperature 313K
Cases 1- 6, 19-24 Load 4.30 ×108

Cases 7-12, 25-30 Load 5.66 ×108

Cases 13-18, 31-36 Load 6.73 ×108

Cases 1, 7, 13, 19, 25, 31 Slide to roll ratio 0.1
Cases 2, 8, 14, 20, 26, 32 Slide to roll ratio 0.2
Cases 3, 9, 15, 21, 27, 33 Slide to roll ratio 0.4
Cases 4, 10, 16, 22, 28, 34 Slide to roll ratio 0.7
Cases 5, 11, 17, 23, 29, 35 Slide to roll ratio 1.0
Cases 6, 12, 18, 24, 30, 36 Slide to roll ratio 1.4

Table 2
Variables and fixed quantities in the EHL optimiser

racy of the calculated values of the total friction is
very important. In this work many thousands of EHL
solutions are performed in order to optimise lubricant
parameters for numerical friction calculations being
compared against measured total friction through an
experimental test rig. These experiments have been
performed at a variety of different loadings, ambient
temperatures and slide to roll ratios. These different
sets of parameters are outlined in Table 2, along with
the ranges of the supplied known conditions. By suc-
cessive calls to a EHL solver cycling through these
known physical conditions it is possible to vary the
lubricant parameters to find the best set for matching
the friction.

In a solver such as this it is important to understand
the error in the numerical solution. In Figure 5 we
show the percentage error in the key variables for each
of 36 cases (two ambient temperatures, three loadings
and six slide to roll ratios) with one input set of lu-
bricant parameters for various different levels of grid,
when compared against a very fine grid case. What
the results show us is that for the standard quantities
normally considered to be important (minimum and
central film thicknesses and H00) the behaviour of the
error between grids seems independent of case, espe-
cially for the more realistic thermal cases. In the case
of friction however this relationship does not seem to
hold. There is a strong correlation between errors in
central and minimum film thickness, as shown in the
correlation diagram of Figure 6. The overall measures
of correlation of the four key variables are given in Ta-

Variables compared Correlation, C

Friction - H00 0.45
Friction - Hmin 0.75
Friction - Hcen 0.78

H00 - Hmin 0.54
H00 - Hcen 0.60
Hmin - Hcen 0.96

Table 3
Correlation coefficients between errors in key vari-
ables for the thermal cases

ble 3 where the correlation, C , between quantities A
and B is defined to be

C (A,B) =
µ11

2

σAσB
(11)

for variances σA and σB with covariance µ11, as in
standard mathematical statistics, e.g. [14]. Given that
we are expecting all the accuracies to improve with
increased mesh resolution then any correlations below
0.9 show little dependence.

The left half of Figure 5, cases 1 to 18, has the
lower ambient temperature, and these results are sig-
nificantly better than those at the higher temperature.
The results also seem to have better accuracy at higher
slide to roll ratios and increasing loads.

It is the derivatives of pressure in Equation (10) that
are especially important in friction calculations. If the
pressure spike is not captured well enough then these
derivatives will not represent the true friction through
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Figure 6. Correlation between percentage errors
in (a) central and minimum film thicknesses, and
(b) friction and minimum film thickness on increas-
ingly fine grids for thermal cases
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the contact. These derivatives are also present through
the calculation of the shear stress, as given in Equa-
tions (8,9). These shear stresses have an even more
extreme profile on finer meshes as shown in Figure 7.
It can be seen how the results on grid levels where the
calculated key quantities have converged are still not
capturing the maximum shear stress very accurately
at all. The correlation between the error in maximum
pressure derivative and friction shows that very fine
grids are needed. This can be seen in Figure 8 where
the increasing accuracy with which the pressure gra-
dients are captured has a very strong correlation with
the total friction errors through the contact. The fig-
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domain for increasing grid resolution in a line contact
case

ure also shows that when the percentage error in the
pressure derivative is large the error in friction is un-
certain.

The size of the domain used for the calculation of
friction is also very important. In Figure 9 we show
the calculated friction against the length of the nega-
tive X domain, i.e. -Xl for fixed grid levels. It is seen
that with very large negative domains, i.e. large inlet
regions, the friction converges to a particular value.
Obviously for each grid level the mesh spacing will
increase as the value of Xl gets larger, however it can
be seen that this is not enough to account for the con-
vergence behaviour of the friction. The conclusion to
be drawn is that the inlet region has a very important
effect on the friction results calculated, in many cases
over 10% of the calculated friction.

5. GRID ADAPTATION

The previous sections have shown that whilst the
pressure spike requires a very fine mesh in order to
fully resolve it, there appears very little change in the
rest of the pressure solution after 4097 points have
been used. Consequently a solution to the problem
of correctly resolving the spike without resorting to
meshing the domain with a fine mesh is to use grid
adaptation. EHL work on adaptation within the multi-
grid scheme was initially considered by Lubrecht [16]
and later by Goodyer et al. [8,11,10]. In the latter
works, which are mainly for point contact cases, re-

sults show substantial computational time savings are
possible by restricting the fine mesh to the contact re-
gion and even smaller regions therein. The adapta-
tion criteria could be based on measurable quantities
from the solution, such as the gradients of the cal-
culated pressure profile. A more automatic method
used in both [8] and [16] is that of Bai and Brandt [1].
This uses the relative truncation error between grids
as a measure of the extent to which the local intro-
duction of the finer grid has influenced the global so-
lution [19]. In this work we have not employed the
λ -FMG algorithm described in [1], which is optimal
with regards to the amount of work per multigrid cy-
cle, but a regular FMG algorithm with a predefined
finest grid, such as described in [19].

The mesh adaptation strategies we have employed
add extra grid levels into the multigrid scheme only
when suggested by the mesh refinement algorithm,
based on local mesh refinement. The solution values
at points on the boundaries of these regions are treated
as Dirichlet values and taken as fixed from the coarser
level. However, the work effort of the entire multigrid
cycle is now no longer optimal [1]. The linear alge-
bra systems used in what had been a line scheme are
now reduced from length NX to just the length of each
adapted region. In practice this will lead to significant
reductions in computation time.

Since the cavitation boundary must be allowed
to move in the positive as well as the negative X-
directions there needs to be two points from the cavi-
tation region included in the linear algebra line solve.
This also implies the true free boundary condition of
∂ P
∂ X = 0 at the edge of the cavitation region.

Using the test case defined in Table 1 it is possible
to draw some conclusions about the use of adaptation.
The first issue concerns the most appropriate way in
which to drive the areas of the mesh receiving extra
adaptation. If very large domains are needed to ac-
curately capture the total friction, as suggested from
Figure 9, then clearly a fine mesh in this inlet region
is highly undesirable.

Examples of the line meshes we use are shown
in Figure 10 with adaptation criteria being based on
(a) pressure, and (b) the τk

k−1 test, [1]. The use of the
safety layers around adapted regions is noticeable in
both of these pictures along with how little of the grid
needs the finest levels of resolution. Also shown in
Figure 10(b) are the values of the truncation error on
which the adaptation is based.

We have chosen to compare the accuracy of the
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Figure 10. Example meshes used for adaptation: left
hand axis shows finest grid level used
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adaptation schemes in this work based on the friction
since we have shown in the previous section how im-
portant this is. In Figure 11 we are using a truth mesh
solution of 524289 points (grid 18) to compare the
percentage errors for the calculated friction against
the number of points used. The curves plotted are the
errors without using any grid refinement at each level
of coarser mesh and the curves for the meshes in Fig-
ure 10a. It is seen how the actual friction results are
of the same order of accuracy, even with much lower
numbers of fine grid points being used.

6. TRANSIENT CASES

All EHL cases are inherently transient. The nu-
merical errors incurred at each timestep will grow
and this local error must be maintained at no more
than the discretisation error of the solution. Vari-
able timestepping for EHL solutions was shown by
Goodyer et al. [11,8] to be successful at accomplish-
ing this, and gave significant savings in computational
solution time.

In the previous section we have shown how im-
proved resolution of the pressure derivative has en-
abled more accurate numerical solutions to steady
state cases to be achieved. The same techniques ex-
tend into transient cases. Here we consider two differ-
ent cases of applying surface roughness patterns to the
contact. The first is a single asperity passing through
the contact in a cyclic manner. The second is a full
measured surface roughness profile.

The results for all transient cases are considered
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starting from the steady state case. The adaptive
multigrid algorithm described previously is applied
on each timestep using V-cycles. Timestepping is
fixed with ∆X = ∆T since it has previously been
shown in [8] that variable timestepping is most ef-
fective when other aspects of the transient process
are more important to the non-linear effects, such as
changing surface speeds and loadings; overrolling of
surface features tends to require a standard timestep
when the asperity is in the contact region. The er-
ror based convergence tests applied on each timestep,
presented for EHL cases in [11], are used to maximise
the accuracy to work ratio.

In this section we are again considering the differ-
ences with increasing resolution of grids. The surface
roughness profiles used have 256 data points spread
along the domain. For finer grids the profile is lin-
early interpolated from this resolution.

Intuitively, the overrolling of a single asperity
should be very similar to the steady state case, as
presented in the previous sections, with the differ-
ent initial frictions arising from the choice of mesh
resolution being important. In Figure 12 at a typi-
cal moment of the asperity passing through the con-
tact area the pressure and film thickness profiles are
shown. It can be seen that in this case the asperity,
and hence the change to the pressure solution, is not
very large. However in Figure 13 we see the fric-
tion at grid resolutions increasing from the level of the
fixed roughness profile. It is clear that the similar be-
haviour shown on the coarser grids is less marked on
the finest grid where the transient effects from previ-
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Figure 13. Friction against time for a single asperity
passing through an EHL contact for increasing grid
resolution. The time axis indicates the number of
times the asperity has passed through

Figure 14. Measured surface roughness profile ap-
plied along the contact, average non-dimensional
roughness 1.6 ×10−2

ous timesteps are seen to be very influential in damp-
ing the friction changes.

Finally we consider the case of applying the real
surface roughness profile shown in Figure 14 to the
contact. Here the contact is always having to resolve
steep pressure gradients from the pressure, with the
roughness amplitude limited to be of the same order
as that in Figure 12. In this case only the first few
timesteps are shown since the results continue in a
similar manner, as would be expected.

The results for friction are shown in Figure 15. It
can be see that with extra grid resolution many more
features are being picked out in the transient solution.
The use of smaller timesteps obviously aids better ac-
curacy, but the position of some of the features also
appears to be resolved more accurately. This is prob-
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Figure 15. Transient results for friction in a real sur-
face roughness contact with increasing grid resolution

ably due to the non-linear effects coming from the
squeeze term being captured and resolved.

Results for friction for all the transient cases we
have considered again highlight the importance of in-
creased grid resolution. For the surface roughness
cases shown, the more points that are used enables
better resolution of all the micro-EHL problems and
associated pressure gradients.

The benefit of the extra resolution provided by the
finer meshes and smaller timestep is clearly seen in
the convergence of the friction solutions shown in
Figure 15. It is worth bearing in mind the extra effort
required to get the solutions on the finer grids. The
matching of spatial and temporal timesteps means that
for the five extra grid resolutions, i.e. 32 times as
many points being used, then we require 32 times as
many timesteps. When combined with the expense
of each single calculation, even using MLMI, this is a
serious extra cost. Once again this highlights the need
to use adaptive techniques in the solver. The rough-
ness profile used here could have been applied over
a shorter length and hence even more points would
have been necessary to resolve the solution at each
timestep.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have considered how to get the
most computationally efficient solutions for the prob-
lems considered. It has been seen how the extra res-
olution of very fine grids has enabled features associ-
ated with the pressure spike to be accurately resolved.
The consideration of global quantities, such as the to-

tal friction through the contact, has been seen to be
very much influenced by how accurately this pressure
spike is captured.

Grid adaptation for EHL cases, which has been
shown in previous work, has been seen to be efficient
in achieving line contact solutions with very high ac-
curacy. The use of both predetermined adapted re-
gions and a truncation error test has been seen to be
very efficient in selecting the regions to be adapted
for accuracy of the total friction. It has been seen how
an accurate calculated total friction has been achieved
with far fewer points, and hence computational ex-
pense, than by using the fine mesh everywhere.

When used in transient cases, grid adaptation gives
equally good improvements in solution quality as for
steady state cases. Inclusion of the transient deriva-
tives in areas where the total solution is changing little
between timesteps suggests there will be less need for
fine resolution in these parts of the computational do-
main. Extra grid resolution has been shown to refine
and resolve features not noticeable on coarser grids.
The growth of global errors has also been seen to be
minimised.

Extending these methods to point contact cases is
theoretically not a probem. The issues are now more
concerned with how well the solution can be rep-
resented. The pressure spike from the line contact
case becomes a pressure ridge, and for the equiva-
lent number of points to capture the gradients then
much larger meshes than have been considered for
EHL problems will be necessary. Parallel computing
techniques, such as shown in [12] have enabled point
contact solutions of up to 67 million points, for real
roughness cases but it has been shown here how this
resolution will not always be good enough. Point con-
tact cases with real surface roughness c will obviously
have many more pressure gradients requiring refine-
ment and hence calculations for the total friction will
be very demanding.
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