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Abstract. In this paper we explain how a Problem Solving Environ-
ment (PSE) can be constructed such that the computationally intensive
sections are run using resources on the Computational Grid, operating
remotely from the machine running the visualisation. The PSE in ques-
tion is one solving demanding elastohydrodynamic lubrication problems
from mechanical engineering. The numerical calculation is done here us-
ing both multilevel techniques and using parallelism. The global nature
of the equation system behind the problem means that, given that this is
a communications intensive calculation, the code scales remarkably well.

1 Introduction

A Problem Solving Environment (PSE) is a tool for allowing scientists and en-
gineers to manipulate a numerical simulation whilst interactively visualising the
results. There are three ways in which even basic PSEs are advantageous. These
are that the input parameters can all be set, or adjusted at run time; the nu-
merical solver is only one part of the PSE and hence it can be possible to change
solution methods, if appropriate; and finally the visualisation is an innate compo-
nent of the package, and results can be visualised and studied as the calculation
proceeds. Computational steering gives the PSE another advantage over tradi-
tional solution methods because this allows the test problem and/or the solution
methods, to be updated during the calculation. The user, thus, “closes the loop”
of the interactive visually-driven solution procedure [1].

For a PSE to be at its most useful there must be sufficient opportunity for the
user to influence the calculation in real time, rather than having to wait minutes
or hours for the next result. One of the most common ways to accomplish this,
without changing the numerical algorithms used, is by using parallelism on faster
machines. These machines are unlikely to be located on the researcher’s desktop,
but rather as a shared resource for many users.

The Computational Grid is a global distributed parallel programming re-
source. With many different large scale resources located across the world, the
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idea is that researchers can submit computational jobs without caring where
the actual clock cycles are spent. By being able to get quick turnaround from
calculations on larger machines than would normally be available it is envisaged
that more demanding and more realistic calculations will be possible.

With a PSE it is necessary to perform the visualisation locally and hence
running the PSE on a grid resource would not be computationally efficient,
either in terms of visualisation speed or for computational time spent using the
grid. Being able to run the calculation on the grid, though, would bring great
benefits.

In this work a PSE for a real world engineering problem is explained. The
Carmehl solver, explained in Section 2, solves elastohydrodynamic lubrication
(EHL) problems. This solver has been included in PSEs as detailed in [2] where
the relative benefits of building the environment in both IRIS Explorer and
SCIRun are examined. Eclipse, the version running in IRIS Explorer, is briefly
explained in Section 3. The methods used to Grid-enable it are described in
detail in Section 4, in which it is assumed that Globus1 is being used as the Grid
management software.

The ability to use Grid resources for parallel computation jobs is very impor-
tant in reducing run times. EHL solvers, to the best of our knowledge, have not
made significant use of parallel computers. The multilevel schemes now employed
in EHL solvers have complex global operations requiring significant communica-
tion between processors. The first significant results, beyond simple work sharing
in less efficient algorithms as shown by Goodyer [3] and Arenaz at al. [4], are
given in Section 5.

The paper is concluded in Section 6 where the applicability of these ap-
proaches are considered and future work directions suggested.

2 Elastohydrodynamic Lubrication

Elastohydrodynamic lubrication occurs in journal bearings and gears, where, in
the presence of a lubricant, at the point of contact there is a very large pressure
exerted on a very small area, often up to 3 G Pa. This causes the shape of the
contacting surfaces to deform and flatten out at the centre of the contact. There
are also significant changes in the behaviour of the lubricant in this area.

A typical solution profile is shown in Figure 1a for the pressure profile across
a point contact, such as will be considered in this paper. This is the equivalent
situation of a ball bearing travelling along a lubricated plane. With oil flow
from left to right it can be seen that in the inlet region there is a very low
pressure, in the centre of the contact there is a very high pressure, with an even
higher pressure ridge around the back of the contact. Finally, in the outflow a
cavitation region is formed where there is a void in the lubricant, and the pressure
is assumed to be ambient there. The corresponding surface geometry profile for
the bearing has the undeformed parabolic shape of the contact flattened in the
high pressure area. The centreline solution is shown in Figure 1b.
1 http://www.globus.org/
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Fig. 1. Typical solutions across an EHL point contact

The history of the field is detailed out in papers such as [5]; much information
about the numerical techniques currently used to obtain fast, stable solutions is
given in both [6] and [3], the latter of which describes in great detail the precise
methods used in the code employed in this work.

The EHL system being solved depends on many physical parameters con-
cerning both the physical nature of the contacts, the properties of the lubricant
used, the loading and the rotation speeds of the surfaces. The solution variables
which must be solved for are the pressure profile P , across the domain, the sur-
face geometry H, the viscosity η and the density ρ. The full equation system
is described in [6] and the appropriate references for the derivations are given
therein. The pressure distribution is described by the Reynolds Equation:
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where us is the sum of the surface speeds in the X-direction at non-dimensional
time T , λ is a non-dimensional constant, and X and Y are the non-dimensional
coordinate directions, The standard non-dimensionalisation means that the con-
tact has unit Hertzian radius, and that the maximum Hertzian pressure is rep-
resented by P = 1. The boundary conditions for pressure are such that P = 0.
For the outflow boundary, once the lubricant has passed through the centre of
the contact it will form a free boundary, the cavitation boundary, beyond which
there is no lubricant. The non-dimensional film thickness, H, is given by:
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where H00 is the central offset film thickness, which defines the relative posi-
tions of the surfaces if no deformation was to occur. The two parabolic terms
represent the undeformed shape of the surface, and the integral defines the defor-
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mation of the surface due to the pressure distribution across the entire domain.
A conservation law for the applied force is also applied.

Since an isothermal, generalised Newtonian lubricant model is being used,
only expressions for the density and viscosity will be required. The density model
chosen is that of Dowson and Higginson, whilst the viscosity model used is the
Roelands pressure-viscosity relation, again see [6].

The solution variables are discretised on a regular mesh. Once discretised,
the equations are solved in turn to iteratively produce more accurate solutions.
This process is described in detail in [6] where detailed descriptions of the need
for, and benefits of multigrid and multilevel multi-integration are given.

The Fortran 77 software used here, Carmehl, is described by Goodyer in [3]
and includes both variable timestepping for transient calculations and also has
the option to use adaptive meshing. Conventionally, once execution is complete
then output files of data for the key variables are produced which may then be
post processed for visualisation purposes. The user may request that the output
solution is saved for continuation purposes on a future run.

3 Eclipse in IRIS Explorer

IRIS Explorer [7] is a Modular Visualisation Environment that implements the
data flow concept of Haber and McNabb [8]. This describes the visualisation
process as a sequence of steps that incrementaly change the data from a set of
numbers to a visualised image by applying a series of visualisation algorithms.
IRIS Explorer implements this concept by providing a library of visualisation
techniques represented as a set modules, each module implementing a single vi-
sualisation algorithm. These modules are graphically represented as blocks which
the user can place on the provided workspace (map editor) and visually connect
together by means of wires to describe the flow of the data. This connected set
of modules is referred to as a map. Modules in the map execute (fire) only when
they have all their required input data. Once they have fired, they pass newly
generated data to connected downstream modules which in turn may fire.

IRIS Explorer implements the map as a set of intercommunicating processes
attached to a shared memory arena. The flow of data between modules is man-
aged by simply passing a pointer reference to a data object held in the arena.
When run on a multiprocessor machine, modules are free to execute in parallel
if they have all required input data.

While IRIS Explorer provides many modules for visualisation, it also offers an
Application Programming Interface (API) to allow users to incorporate their own
codes as modules. A tool, Module Builder, is provided to simplify this process.
It allows the user to graphically generate a user interface for their modules by
selecting and placing widgets on a control panel. It also generates code to give
the user’s module access to data in shared memory and to control the execution
of the module.

These features of IRIS Explorer make it an ideal framework in which to
construct a PSE, as has been shown in previous work such as Wright et al. [9].



A Parallel Grid Based PSE for EHL Problems 525

Fig. 2. Eclipse running in IRIS Explorer

For our work in EHL we have implemented the Carmehl code as one module
containing the entirety of the numerical solver. One advantage of this closer
integration with the visualisation is that as the simulation progresses, at regular
intervals output datasets of the pressure and film thickness are produced and
immediately sent down the map for visualisation.

The control panel for Carmehl is used to set the dimensions of the com-
putational domain, the mesh refinement level, along with the total number of
iterations required on each execution of the module. Other problem specific prop-
erties can also be defined on this control panel including information concerning
transient problems, and parameters governing surface features. The actual non-
dimensional parameters governing the case in question may also be set here,
or, through the addition of further modules, as shown in Figure 2, the actual
operating conditions for the case defined upstream in the map, will be displayed.

It is through the addition of these extra input modules that steering may
be abstracted. Shown in Figure 2 are three different input modules which define
the physical conditions of the contact, the parameters defining the lubricant,
and parameters used to set the number of iterations in the multilevel schemes.

To implement computational steering, the simulation must be capable of
stopping before the computation is complete, reading new control parameters,
and then continuing from where it stopped. The cycle is repeated at regular
intervals, the frequency of which can be set by the user. For the Carmehl code,
this requires the internal work arrays to be statically defined so that the state of
the computation is preserved while the module pauses to check its control panel.
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Fig. 3. Grid enabling options for an IRIS Explorer PSE

Once the parameters have been read, the module refires itself and the simulation
continues.

4 Grid Enabling

IRIS Explorer modules run, as explained above, by launching a new process on
the host machine. With the intention of performing the intensive computations
on a Grid resource this conventional approach would require running all of the
PSE on the Grid machine. This method is not practical for efficient use of Grid
resources. A method of running the computation with IRIS Explorer running on
the local machine is therefore required.

The method used here uses Globus tools for Grid job management, including
file input and output. We shall assume that the necessary Globus certification
process has already been undertaken before launching the PSE.

The PSE in IRIS Explorer will still look identical to that shown in Figure 2.
The change comes in the Carmehl module, which will now simply be the user
interface to the simulation running on the Grid. Outwardly it will appear the
same to any user, except there are now extra boxes at the bottom (shown in
Figure 3). These options are the only interaction that the user needs to have with
the Grid, over Globus: once the destination host has been chosen, the relevant
username supplied and the location of the source code to be run specified, then
simply clicking on the ‘Spawn’ button launches the job using globus-job-run.
It is possible to run jobs through other launching mechanisms similarly. For
example by not checking the ‘Use Globus’ button then rsh is used instead.

When the job on the remote machine is started, communication between
the launching IRIS Explorer module and the launched Grid process is done
through sockets. The launched process knows where to connected to, by means
of extra flags passed to it when it is started. Once contact has been established,
the launched process then is the dominant communicator, with the launcher as
the listener. When the launched process needs data from the PSE, e.g. control
parameters for the simulation, it sends a request to the listener who packs the
values up into a data array of predefined size and structure, and sends it to the
Grid process.

Similarly, output data is packaged by the Grid process and sent to the lis-
tener. The received data is then formatted into IRIS Explorer output datatypes
which are flushed to downstream modules for visualisation.
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The addition of extra input modules before the Grid module poses few prob-
lems. The incoming data is packed into arrays which are sent to the Grid module,
as with the control parameters. Since these input modules need not always be
present, then there must be a default set of parameters for cases where they are
not connected so the application can operate accordingly.

Having completed the requested number of iterations, the Grid process does
not terminate but regularly polls the associated PSE module until it is requested
to perform the next cycle. This eliminates the cost of starting up a job on the
Grid, and also means that results from the previous iteration can still be stored
statically in memory.

During computationally intensive simulations it used to be the case that the
simulation module spent considerable amounts of time ‘firing’. Since the work is
being done outside the PSE this is no longer the case and so firings only occur
when new data is received, be it from changes to input parameters or through
the receipt of output data. Whereas input data was only ever available to the
simulation at the start of execution it may now be requested at any time, and
hence the opportunity for steering the calculation is increased. This may not
always be sensible so care must be taken when constructing the communication
over which parameters can be allowed to change during the solution process.

Part of the rationale for use of the Grid is to gain access to remote parallel
machines. Information about the parallel requirements can be incorporated into
the launching mechanism. Two more widgets must be added to the control panel:
one detailing the number of processors and one confirming that a parallel job is
to be started. It is imperative to specify that the spawned job will be parallel
since different launch mechanisms must be used for serial and parallel execution.
These mechanisms are summarised in Table 1. To run a job on the Grid using
Globus, MPICH-G2 is used to allow communication between globally distributed
processors, rather than just those in a fixed machine. MPICH-G2’s version of
mpirun is also required as this does the globus-job-run command. If the com-
mand “globus-job-run mpirun ...” was attempted then most Globus servers
would refuse the action as this could be used to get around security restrictions
since it launches a Grid process (mpirun) which then launches other jobs on the
machine that Globus does not manage. The use of a file containing the machines
on which the processes will be run (the -machinefile <machinelist> flag in
Table 1) can be removed if Globus jobs are wanted to run on single systems
without MPI

5 Parallel Results

In order to solve equation (2) in a discretised form, the double integral is written
as a multisummation over all the points to calculate the deformation at each
point. Therefore, for a domain of N×N points, this calculation would be O(N4).
Using the multilevel multi-integration technique, as described in [6], this reduces
to O(N2ln N2). This is still an expensive calculation to do, but can now be
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Table 1. Launching mechanisms both on and off the Grid for serial and parallel jobs,
executed by IRIS Explorer module

Where run Parallel? Launch command
Locally No <path of executable> -port %d -machine %s
Locally Yes NATIVE-mpirun -np %d <path of executable>

-port %d -machine %s
Network No rsh <target> <path of executable> -port %d -machine %s
Network Yes rsh <target> NATIVE-mpirun -np %d <path of executable>

-port %d -machine %s
Grid No globus-job-run <path of executable> -port %d -machine %s
Grid Yes MPICH-G2-mpirun -machinefile <machinelist> -np %d

<path of executable> -port %d -machine %s

tackled in realistic amounts of time for fine grids. Being able to accelerate this
process still further, through parallelisation is the aim.

In order to maintain the strong convergence properties of the numerical
solver, the domain has been partitioned into strips in the X direction. Com-
munication within solves is restricted to the Jacobi and Gauss-Seidel iterations
required to solve Equation (1) for the pressure, P , and to the deformation part of
the film thickness solve. For this multilevel scheme there needs to be many com-
munications between processors because the algorithm’s global nature, which
requires sixth order coarsening operators to be used.

The parallelisation of the code has been done using MPI. Currently a fully
distributed memory model is not used. This is because of the complex nature of
the calculations undertaken and the complete restructuring that will be required.
For this work the memory is still such that all processors have arrays large enough
to hold all the data. Communication is only done, however, for required data.

For the deformation calculation, the domain has been partitioned such that
the points requiring calculation on each processor are aligned to reduce commu-
nication whilst maximising computation. This is only an issue in the deformation
calculation where the domain sizes ‘changes’ as the coarsening operators intro-
duce ghost cells for some of the calculations. The memory model used for the
parallel EHL calculation is the same as that used for the serial version. That is
with each processor allocating storage space for all the points of all the arrays,
and with global synchronisation of data only when necessary.

The test cases shown below are for a grid resolution of 1025×1025 points.
Solution times are given for 10 multigrid V-cycles after a full multigrid start, see
e.g. [10] for details. The case chosen is a standard test case with non-dimensional
Moes parameters of M=35, L=10. The test case was run on three very differ-
ent hardware architectures. Each process takes 1Gb of memory and five coarser
levels are used in the multi-integration algorithm for cases (a) to (c) in Table 2.
The results clearly show how much better the code scales on the shared mem-
ory machines of the Onyx and the SUN. This is due to the large amounts of
communication involved in the deformation calculation. For the Intel Pentium 4
machine, the processors are physically paired with shared memory only inside
the node. This means that beyond two processors communication is a lot slower.
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Table 2. Parallel timings for the EHL code

Np Time (s) Speed-up
1 385.21 1.00
2 256.55 1.50
4 128.85 2.99
8 - -

Np Time (s) Speed-up
1 481.58 1.00
2 254.64 1.88
4 140.65 3.42
8 91.81 5.24

(a) SGI Onyx R12000 (b) SUN V880 750MHz

Np Time (s) Speed-up
1 394.92 1.00
2 216.94 1.82
4 148.88 2.65
8 119.93 3.29

Np Time (s) Speed-up
1 581.18 1.00
2 370.40 1.57
4 214.07 2.71
8 144.74 4.01

(c) Intel Pentium 4 2.0GHz (d) Intel Pentium 4 2.0GHz,
only 3 levels of coarser grids

If less coarse grid levels are used in the multi-integration then there is more
computation per communication and hence the code scales better, as shown in
Table 2d.

6 Conclusion and Future Work

In this paper we have shown that it is possible to construct a PSE which is
capable of both launching and interacting with computational jobs on the Grid.
Using Globus tools computational jobs have been started on Grid machines away
from the visualisation machine running the PSE. By having a ‘listener’ module
in the PSE connected to the grid machine it is possible to handle requests from
the Grid job both for input data from the module’s control panel and from
other input modules, and also to process output data from the simulation for
visualisation.

The jobs started on the Grid include the possibility for launching parallel
MPI processes, something which is not possible using the standard job control
methods in IRIS Explorer. It was seen that different launch methods were re-
quired for the combination of both serial and parallel codes, and for the different
types of MPI used.

The parallel EHL code has shown remarkably good scaling, especially on
shared memory machines for which the huge communication overhead of the
deformation calculation is less significant.

The intention for future work is to build on the parallelism started here.
The industrial challenge facing EHL is now limited by the problem size that
can be tackled. The resolutions of grids required in the next decade will grow
significantly as realistic surface roughness patterns are attempted. The global
nature of the film thickness calculation means that completely distributed mem-
ory storage has not previously been attempted, as explained in Section 5, but it
will become a necessity.
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One issue that did become clear during this work was the lack of an API for
communication of data to and from the Grid module. Every data block received
must be strictly programmed into the code. With a more flexible and generic
communication style predefined datatypes could be passed between processes
more easily.

Further development of the PSE is also proposed with the inclusion of collab-
orative techniques. This will use the COVISA toolkit [11] and build on previous
collaborative work in IRIS Explorer, such as [12]. The advantage of such an
approach, especially when combined with the Grid, are that two scientists in,
perhaps, globally separated locations can both visualise and influence a sim-
ulation taking place elsewhere. This kind of technique is especially useful for
multi-disciplinary collaborations between scientists at different sites.
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