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Abstract. The development of Problem Solving Environments (PSEs)
makes it possible to gain extra insight into the solution of numerical
problems by integrating the numerical solver and solution visualisation
into one package. In this paper we consider building a PSE using IRIS
Explorer and SCIRun. The differences in these two PSEs are contrasted
and assessed. The problem chosen is the numerically demanding one
of elastohydrodynamic lubrication. The usefulness of these packages for
present and future use is discussed.

1 Introduction

The field of scientific computing is concerned with using numerical methods to
solve real world problems in fields such as engineering, chemistry, fluid flow or
biology, which are typically defined by a series of partial differential equations.
In solving these problems the ability to use high quality visualisation techniques
allows the user to better understand the results generated, to identify any points
of interest, or potential difficulties and to obtain greater insight into the solution
to a problem more quickly.

This paper will investigate the use of Problem Solving Environments (PSEs)
to solve a demanding numerical problem in computational engineering. PSEs
combine several important stages for the generation of numerical results into
one body, thus having synchronous computation and visualisation. There are
three ways in which even basic PSEs are advantageous. These are that the in-
put parameters can all be set, or adjusted at run time; the numerical solver is
only one part of the PSE and hence it can be possible to change solution meth-
ods, if appropriate; and finally the visualisation is an innate component of the
package, and results can be visualised and studied as the calculation proceeds.
Computational steering gives the PSE another advantage over traditional solu-
tion methods because this allows the test problem and/or the solution methods,
to be updated during the calculation. The user, thus, “closes the loop” of the
interactive visually-driven solution procedure [1].

The PSE construction in this paper has been done in order to compare,
contrast and assess the usefulness and the ease of implementation of a challenging
engineering problem, in IRIS Explorer [2] and SCIRun [1], two different software
packages designed for building PSEs.
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The numerical problem selected for integration into a PSE is that of elasto-
hydrodynamic lubrication (EHL) in, for example, journal bearings or gears. This
mechanical engineering problem requires sophisticated numerical techniques to
be applied in order to obtain solutions quickly. An engineer, for example, may
want to establish solution profiles for a particular lubricant under certain oper-
ating conditions. With a PSE these could be quickly tuned to give the desired
results, before tackling, say, a more demanding transient problem. The numer-
ical code for solving EHL problems used in these PSEs is described in detail
in [3], and the required changes to its structure will be set out below. Examples
of where this extra insight occurs will be given.

The EHL problem will be described briefly in Section 2 which includes the
equation system to be solved, and an outline of the numerical techniques used
in the code. Section 3 considers the two PSEs developed. After some general is-
sues have been covered, in Section 3.1 details of the implementation of the EHL
PSE into IRIS Explorer, known as ECLIPSE (ElastohydrodynamiC Lubrication
Interactive Problem Solving Environment) are given. In Section 3.2 SCIRun is
discussed in a similar manner, with the construction of the PSE, known inside
SCIRun as ELLIPSE, detailed. In Section 4 the differences between the two
systems discussed, both conceptually and in terms of their structure and use-
fulness as frameworks for building PSEs. Finally, in Section 5 some conclusions
are drawn about future development of PSEs bearing in mind the likely needs,
in reference to large problem sizes, parallelism and grid-based computations.

2 The Numerical Problem

Elastohydrodynamic lubrication occurs in journal bearings and gears, where, in
the presence of a lubricant, at the point of contact there is a very large pressure
exerted on a very small area, often up to 3 G Pa. This causes the shape of the
contacting surfaces to deform and flatten out at the centre of the contact. There
are also significant changes in the behaviour of the lubricant in this area.

A typical solution profile is shown in Figure la for the pressure profile across
a point contact, such as will be considered in this paper. This is the equivalent
situation of a ball bearing travelling along a lubricated plane. With oil flow from
left to right it can be seen that in the inlet region there is a very low pressure,
in the centre of the contact there is a very high pressure, with an even higher
pressure ridge around the back of the contact. Finally, in the outflow a cavitation
region is formed where bubbles of air have entered the lubricant, and the pressure
is assumed to be ambient there. The corresponding surface geometry profile for
the bearing has the undeformed parabolic shape of the contact flattened in the
high pressure area. The centreline solution is shown in Figure 1b.

The history of the field is detailed out in papers such as [4]; much information
about the numerical techniques currently used to obtain fast, stable solutions is
given in both [5] and [3], the latter of which describes in great detail the precise
methods used in the code employed in this work.
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Fig. 1. Typical solutions across an EHL point contact

The EHL system solved depends on many physical parameters concerning
both the physical nature of the contacts, the properties of the lubricant used,
the loading and the rotation speeds of the surfaces. The solution variables which
must be solved for are the pressure profile P, across the domain, the surface
geometry H, the viscosity 77 and the density p. The full equation system is
described in [5] and the appropriate references for the derivations are given
therein. The pressure distribution is described by the Reynolds Equation:
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where u, is the sum of the surface speeds in the X-direction at non-dimensional
time T', A is a non-dimensional constant, and X and Y are the non-dimensional
coordinate directions, The standard non-dimensionalisation means that the con-
tact has unit Hertzian radius, and that the maximum Hertzian pressure is rep-
resented by P = 1. The boundary conditions for pressure are such that P = 0.
For the outflow boundary, once the lubricant has passed through the centre of
the contact it will form a free boundary, the cavitation boundary, beyond which
there is no lubricant. The non-dimensional film thickness, H, is given by:
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where Hyg is the central offset film thickness, which defines the relative positions
of the surfaces if no deformation was to occur. The two parabolic terms represent
the undeformed shape of the surface, and the integral defines the deformation
of the surface due to the pressure distribution across the entire domain. The
conservation law for the applied force (the Force Balance Equation) is given by:

/O;/O:OP(X,Y)dXdY:%". (3)
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Since an isothermal, generalised Newtonian lubricant model is being used, only
expressions for the density and viscosity will be required. The density model
chosen is that of Dowson and Higginson, whilst the viscosity model used is the
Roelands pressure-viscosity relation, again see [5].

The solution variables are discretised on a regular mesh. Once discretised,
the equations are solved in turn to iteratively produce more accurate solutions.
This process is described in detail in [5] where detailed descriptions of the need
for, and benefits of multigrid and multilevel multi-integration are given.

The Fortran 77 software used here, Carmehl, is described by Goodyer in [3]
and includes both variable timestepping for transient calculations [6] and also
has the option to use adaptive meshing [7]. Conventionally, once execution is
complete then output files of data for the key variables are produced which may
then be post processed for visualisation purposes. The user may request that the
output solution is saved for continuation purposes on a future run.

3 Problem Solving Environments

This section describes the implementation of the Carmehl code into a PSE form
suitable for both IRIS Explorer and SCIRun. The differences between the two
products, and their implications are described later in Section 4.

IRIS Explorer and SCIRun have several common ideas: both use a visual pro-
gramming system where individual modules are attached together by a pipeline
structure, representing the dataflow paths. Each module may have several in-
puts, either from other modules or from widgets on the control panel of the
module, and each represents a separate task which must be performed on the
input data. Each module usually produces a new output dataset, which is then
passed to the next module, or modules, downstream until the results are visu-
alised. Since the datatypes required for visualisation are not the same as those
used for numerical calculations conversion modules must be used.

3.1 ECLIPSE in IRIS Explorer

In implementating the EHL code as a module in IRIS Explorer [2] it is possible
to build on earlier work employing IRIS Explorer for the development of PSEs,
such as Wright et al. [8]. IRIS Explorer is marketed by NAG as a “advanced
visual programming environment” for “developing customised visualisation ap-
plications”!. In IRIS Explorer a shared memory arena is used and the pipeline of
modules is called a map. Although the data can be imagined travelling through
the map by the wires, in reality it is only passing pointers to structures of known
types in the shared memory arena at the end of each module’s execution cycle.

A map in TIRIS Explorer executes, normally, by a data set either being read
in or generated and then control passes to the next module (or modules) down-
stream in the map. These in turn execute, provided they have all their required

! http://www.nag.co.uk/
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inputs and control passes again. If a required input is missing then the module
will wait until it is received before executing. If a parallel computer is used,
then simultaneous module firings will be done on separate processors. This is
because IRIS Explorer starts each module as an entirely separate process in the
computer. It will be seen how this has both positive and negative consequences.

The Carmehl code has been implemented as one module containing the en-
tirety of the numerical solver. The module’s control panel is used to set the
dimensions of the computational domain, the mesh refinement level, along with
the total number of iterations required on each execution of the module. Other
problem specific properties can also be defined on this control panel including
information concerning transient problems, along with parameters governing sur-
face features. The actual non-dimensional parameters governing the case in ques-
tion may also be set here, or, through the addition of further modules, as shown
in Figure 2, the actual operating conditions for the case defined upstream in the
map, will be displayed. Once the module has completed execution, the datasets
of the pressure and film thickness are sent down the map for visualisation.

Fig. 2. ECLIPSE running in IRIS Explorer

It is through the addition of extra input modules that steering levels may
be abstracted. Shown in Figure 2 are three different input modules which define
the physical conditions of the contact, the parameters defining the lubricant,
and parameters used to set the number of iterations in the multilevel schemes
used. Another input module, not shown here, is that for grid adaptation.
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ECLIPSE has been developed from the original Carmehl Fortran code by
adding an interface routine written in C. The generation of all the IRIS Explorer
data structures and communication is done through the Application Program-
ming Interface (API) which is well documented for both C and Fortran. The
design of the module control panel is usually done through the Module Builder
which allows the widgets to be positioned through a visual interface, rather than
by writing code. The Module Builder will also generate the necessary wrapper
codes for complete control of the module’s firing pattern and communication of
data, and these require no alteration by a developer.

Computational steering is implemented in IRIS Explorer using the looping
mechanisms provided. Rather than saving results to disk at the end of a run,
the work arrays inside Carmehl can be declared as static and hence the previous
results are automatically available for use on the next run. A solution used in
this manner may provide a good initial estimate for a differently loaded case, or
be interpolated for a change of domain size.

The use of the Hyperscribe module [9] would allow another layer of steering
to be included. This module stores datasets or variables on disk for future us-
age, at the user’s discretion. If the entire work arrays, previously saved as static,
were stored based on the problem’s input characteristics then a suite of previ-
ously calculated solutions could be created for future invocations of ECLIPSE
on separate occasions, or even by other users.

3.2 ELLIPSE in SCIRun

SCIRun has been developed by the SCI group at the University of Utah as a
computational workbench for visual programming. Although a longstanding re-
search environment, it has only recently been released as open source software.
The discussion below is based on the Version 1.2.0 release?. SCIRun was de-
veloped originally for calculations in computational medicine [10] but has since
been extended to many other applications.

The overall appearance of SCIRun is similar to that of IRIS Explorer, as can
be seen in Figure 3 where the implementation of the EHL problem, ELLIPSE,
can be seen working. In SCIRun when modules are connected together, they are
known as a network. The module firing algorithm in SCIRun probes the network
from the desired point of firing so that all modules have all the information they
need to run, before then sending the information downstream and firing those
modules. This means that upstream modules will be fired if they need to supply
information to an input port. Similarly all the downstream modules directly
affected by the firing will be made aware that new data will be coming.

SCIRun is a multi-threaded program, and hence a single process, with (at
least) one thread for each launched module. Therefore every module can have
access to all same data without the use of shared memory. This has the advan-
tage that there is more memory available for the generation of datasets to pass
between modules, and the disadvantage that any operating system limits on the

2 SCTRun is available from http://www.sci.utah.edu/



Eclipse and Ellipse 7

= | EHLdriver GenStandard ColorMaps

- ul
24,14 | 0. 10 [

U‘-l R-BscaleCulurMap

001 JEEY

_U‘ Show Field
T —

EHL Driver

erations

3
Xmin Xmax
e —
Grid lovel -2.490 1.95
i level I =)

Fig. 3. ELLIPSE running in SCIRun

memory available to a single process apply to the entirety of SCIRun, meaning
that calculation and visualisation are all included in the same maximum space
allocation defined by the system. It also means that any variables declared as
static in one invocation of a module will be the same as used in other invocations,
since the operating system cannot differentiate between the two.

SCIRun is written in C++ and requires that at least the driver routine of
any contributed module is too. This also means that any of the calls to other
SCIRun objects, such as datatypes, needs to be done a SCIRun class. By passing
the relevant class pointers to the Fortran, it is possible to return to the class
function in order to interact with the SCIRun interface and features.

In Version 1.2.0 all the module control panels, called Uls in SCIRun, are
written in Tcl and must be programmed by hand. This clearly limits the ease
of redesigning the panels, and requires more code to be written to handle the
interface between widgets and program variables.

The datatype in SCIRun used to construct meshes for ELLIPSE is Trisurf.
This is a structure for a surface made up of tesselating triangles. First the list of
coordinates of the nodes in the mesh are specified, followed by the connectivities
of the points to form the triangles. As yet, SCIRun has no standard modules for
manipulating the generated surfaces and so the three dimensional perspective,
such as shown in Figure 3, must be included in the creation of the mesh. In order
to get the colourmap distributed across the surface then solution values must be
stored at each node, again as the mesh is generated.

Since SCIRun is written as a single threaded process it has added flexibility
with regard to the rewiring of modules during execution. For the EHL problem,
when a transient case is run, the output datasets are prepared and released
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down the pipeline for visualisation at the end of each timestep. With more than
one solution variable being solved for, there is obviously a choice as to what is
visualised at anytime. In SCIRun these changes can be made ‘on the fly’. For
example if the pressure solution was being visualised, then it is possible to change
to a surface geometry plot between timesteps. This is an important feature since
it allows the user to learn and experiment interactively.

Parallelism can be easily achieved on SCIRun thanks to its threaded struc-
ture. SCIRun has its own implementation of threads that can be easily incor-
porated into a user’s code. The use of threads means a shared memory machine
must be used, but within these constraints the parallel performance for numer-
ical calculations is very good. Next generation packages, such as Uintah [11],
use a combination of MPI and threads to achieve massively parallel scientific
computations on terascale computing platforms.

4 Evaluation

When comparing these packages it is important to remember that IRIS Explorer
is a longstanding commercial package supported by NAG whilst the first publi-
cally available version of SCIRun was only released last year. The development
histories of the two packages are obviously different. IRIS Explorer has a large
number of standard modules for reading in various formats of data files, ma-
nipulation of datasets, and for the visualisation of this data, with the source
of (practically) every module now being part of the distribution. SCIRun was
developed in a problem driven way, is completely open source and the number
and variety of modules will grow in the coming years.

These different backgrounds are most tellingly reflected in the ease of use of
the environments. For a novice use wanting to visualise output data using IRIS
Explorer it is a relatively simple process. By addition of a further few modules
it is possible to create very intricate output pictures. In SCIRun there is a steep
learning curve at present to be able to visualise data, especially with the smaller
number of visualisation manipulation modules provided. This manipulation must
be done in the initial generation of each mesh and is therefore an additional
computational expense for the main module.

In the previous section it was seen how IRIS Explorer and SCIRun have
very different paradigms for operation: IRIS Explorer launches each module as
a separate process whilst SCIRun is a single, multithreaded process. This has
both positive and negative aspects. The advantage of threading is that it is very
simple to get data transfer from one module to another. It was seen how SCIRun
is more flexible in the rewiring of modules during execution. In IRIS Explorer
new connections can only be made after the module has finished executing rather
than after each timestep. This is different to the work of Walkley et al. [12] where
the numerical calculation is less demanding, hence when the control panel is re-
read every few timesteps, new connections are registered.

In SCIRun all the modules are loaded as shared libraries. This means that for
module developers, coding changes require recompilation of the relevant library,
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and currently (though not in future releases) the reloading of SCIRun. In IRIS
Explorer only the module which has changed needs to be reloaded using a trivial
‘Replace’ operation which remembers the data connections of the module.

The design features for constructing a new module in IRIS Explorer benefit
from the visual design tools of the Module Builder which allows easy placement of
widgets on the control panel and makes the interaction between input variables
and those in the driver code very simple. In SCIRun each variable must be
captured by the user from the panel, since the module wrapper is generated
when the module is first created rather than at compilation, as in IRIS Explorer.
This also means that the module wrapper is usually hidden from the developer.

In terms of solving the EHL problem it has been seen that both software
packages efficiently handle the PSE structure, achieving similar visualisations
by slightly different methods. Using the PSE has been tremendously beneficial
in quickly being able to understand complex datasets and see the influence of
single parameters. By increasing the regularity of dataset output it is possible
to watch the numerical solver converge on the solution. Added insight into the
problem was gained using IRIS Explorer’s visualisation modules to overlay the
surface geometry colour map on the 3D pressure mesh, showing the relationship
between pressure and film thickness in a distinctive and hitherto unseen way.

SCIRun benefits from having parallelism at its heart, meaning that incorpo-
rating it into an individual module can be accomplished in a relatively straight-
forward manner. Parallelism in IRIS Explorer has mainly only been done by
using the module as a front end to lauching parallel calculations outside of the
environment, often on a different machine. Remote processing combined with
collaborative visualisation is another area where IRIS Explorer currently takes
the lead. In the companion paper [12] Walkley et al. show how a similar compu-
tational steering IRIS Explorer PSE is first developed for interaction in transient
calculations, and then run collaboratively over a network using COVISA [13].

Support for computational steering is central to both packages. Looping of
modules is relatively simple to implement in IRIS Explorer through simply wiring
relevant modules together, whereas in SCIRun the dataflow mechanism means
that care must be taken to ensure that no module is waiting for itself to fire.

5 Conclusions and Future Work

The overall conclusion is that both IRIS Explorer and SCIRun provide good ways
to generate PSE environments for problems, such as the EHL problem considered
here. An example of how the use of the PSE has enabled extra insight into the
problem has been explained.

SCIRun is clearly still in the early stages of its life at Version 1.2.0 whereas
IRIS Explorer, now at Version 5.0 is not necessarily too far ahead. Experience
suggests that IRIS Explorer’s functionality can be recreated in SCIRun, although
may involve more programming and a deeper understanding of the software.

It is clear that for the construction of PSEs in the coming years both codes
still have work to be done. Parallelism will be very important for increasing
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problem sizes. This issue has been successfully addressed in the Uintah PSE
already developed in Utah [11]. The issues behind visualisation of significantly
larger datasets remain to be fully resolved in IRIS Explorer which can create
intermediary copies of the datasets for each module manipulating them.

Acknowledgements

This work was funded by an EPSRC ROPA grant. The Carmehl code has been
developed over many years of collaboration with Laurence Scales at Shell Global
Solutions. Many thanks are due to Jason Wood for technical assistance with
IRIS Explorer and to Chris Moulding for help with SCIRun.

References

1.

ot

10.

11.

12.

13.

Parker, S.G., Johnson, C.R.: SCIRun: A scientific programming environment for
computational steering. In Meuer, H-W., ed.: Proceedings of Supercomputer ’95,
New York, Springer-Verlag (1995)

Walton, J.P.R.B.: Now you see it — interactive visualisation of large datasets. In
Brebbia, C.A., Power, H., eds.: Applications of Supercomputers in Engineering ITI.
Computatational Mechanics Publications / Elsevier Applied Science (1993) 139
Goodyer, C.E.: Adaptive Numerical Methods for Elastohydrodynamic Lubrication.
PhD thesis, University of Leeds, Leeds, England (2001)

Dowson, D.; Ehret, P.: Past, present and future studies in elastohydrodynamics.
Proceedings of the Institution of Mechanical Engineers Part J, Journal of Engi-
neering Tribology 213 (1999) 317-333

Venner, C.H., Lubrecht, A.A.: Multilevel Methods in Lubrication. Elsevier (2000)
Goodyer, C.E., Fairlie, R., Berzins, M., Scales, L.E.: Adaptive techniques for elas-
tohydrodynamic lubrication solvers. In Dalmaz et al., G., ed.: Tribology Research:
From Model Experiment to Industrial Problem, Proceedings of the 27" Leeds-
Lyon Symposium on Tribology, Elsevier (2001)

Goodyer, C.E., Fairlie, R., Berzins, M., Scales, L.E.: Adaptive mesh methods for
elastohydrodynamic lubrication. In: ECCOMAS CFD, Institute of Mathematics
and its Applications (2001) ISBN 0-905-091-12-4.

Wright, H., Brodlie, K.W., David, T.: Navigating high-dimensional spaces to sup-
port design steering. In: VIS 2000, IEEE (2000) 291-296

Wright, H., Walton, J.P.R.B.: HyperScribe: A data management facility for the
dataflow visualisation pipeline. Technical Report IETR/4, NAG (1996)

Johnson, C.R., Parker, S.G.: Applications in computational medicine using
SCIRun: A computational steering programming environment. In Meuer, HW.,
ed.: Proceedings of Supercomputer '95, New York, Springer-Verlag (1995) 2-19
de St. Germain, D., McCorquodale, J., Parker, S., Johnson, C.R.: Uintah: A mas-
sively parallel problem solving environment. In: Ninth IEEE International Sym-
posium on High Performance and Distributed Computing. (2000)

Walkley, M.A., Wood, J., Brodlie, K.W.: A collaborative problem solving environ-
ment in IRIS Explorer. Submitted to: Proceedings of the International Conference
on Computational Science 2002. (2002)

Wood, J., Wright, H., Brodlie, K.W.: Collaborative visualization. In: Proceedings
of IEEE Visualization 97. (1997) 253-259



