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The application of adaptive mesh techniques to the numerical solution of elastohydrodynamic lubrication
calculations is described. Particular emphasis is placed on the use of variable timestep methods for transient
problems. These methods are considered with reference to the differential algebraic formulation of the system to
be solved. This approach is shown to be beneficial in reducing the computational work required. Finite difference
grid adaptation is introduced and applied, with experimental results displaying the effectiveness of the methods.

1. Introduction

The solution of mathematical models of elas-
tohydrodynamic lubrication (EHL) problems in-
variably requires the use of numerical methods.
Industry demands fast and robust solvers for in-
creasingly more complicated problems. The abil-
ity to reduce the work needed for individual prob-
lems is thus paramount. The mathematical and
numerical analytic techniques behind many ex-
isting solvers combine traditional finite differ-
ence meshes with innovative multilevel methods.
Numerical solutions have been computed since
Petrusevich in 1951 [17], and finite difference, and
to a lesser extent finite elements, have been used
since then. The biggest advances have come from
Lubrecht et al. with the application of multigrid
in 1986 [13,14] and multilevel multi-integration in
1990 [4]. Modern techniques, such as wavelet pre-
conditioning, have been tried [8] but it is unclear
how well they will extend beyond the line contact
case. Fixed regular grid, fixed timestep appears
to be the standard way of solving EHL problems
numerically.

Industry is now driving for solutions to more
realistic - and hence more complicated - problems.
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This varies from transient cases, with variable
loading and contact speeds, through complicated
rheological behaviour, to solutions incorporating
surface features and, ultimately, true roughness.
This requires that the solvers being used must
be designed to be extensible to meshes of sev-
eral thousand points in each non-trivial direction,
and, importantly, that the solutions can be ob-
tained sufficiently quickly.

In many other application areas in which the
rate of change of the solution does not remain
constant with time, it has proved beneficial to
vary the timestep to control the error in the so-
lution [6]. The methods, thus, have obvious ap-
plications to EHL calculations. In Section 5 this
will be examined, and speed-up results presented.

Early work was done by Lubrecht and co-
workers [12,15] into the use of adaptive grids
for EHL problems, however adaptive meshing
and multigrid methods are not commonly com-
bined. The ideas behind re-meshing are to be re-
explored. It will be shown in Section 6 that with-
out significantly changing the solution method,
even just a two level adaptive mesh can achieve
significant time savings. Choice of where to adapt
is very important and preliminary results are pre-
sented based on solution based functions.



2. Notation

halfwidth of Hertzian contact
undeformed surface geometry
non-dimensionalised film thickness
oo film thickness central offset

film thickness kernel matrix
order of temporal method
iteration number

maximum Hertzian pressure
non-dimensionalised pressure
stepsize change ratio

reduced radius of curvature
non-dimensionalised time

sum of velocities of contacts
dimensionless coordinate
dimensionless coordinate
viscosity index

pressure viscosity index
coefficient in Reynolds equation
coefficient in Reynolds equation
viscosity at ambient pressure
non-dimensionalised viscosity
convergence test parameter
density at ambient pressure
non-dimensionalised density
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3. Equations and Standard Solution

Method

The equations governing the EHL point con-
tact are given, in non-dimensional form, by the
following set of three equations. Firstly, the pres-
sure distribution is defined by the discrete form
of the Reynolds Equation:
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The film thickness equation,
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defines the contact shape, for given undeformed
geometry G(X,Y).
The force balance equation,

/ / P(X,Y dXdY—%” (6)

is also solved to provide conservation of applied
force.

Unless otherwise stated, the lubricant model
used is that of a generalised Newtonian fluid. The
model used for viscosity is derived from the Roe-
lands equation [19],

ﬁ(P):emp{ fo{ 1+<1+%>]} (7)

and for density the Dowson and Higginson rela-
tion [7] is employed:

(8)
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These equations are discretised on a regular
(2%+1) x (2+1) mesh. Both first and second or-
der finite differences have been used. These have
then been solved using the multigrid techniques
described in [24,16,10] and the multilevel multi-
integration algorithm of Brandt and Lubrecht [4].

4. DAE System

The EHL system defined by equations (1)
to (8), once discretised, can be represented
by a system of Differential-Algebraic Equations
(DAEs) [6].

Defining the vector of film thicknesses across
the whole domain, H, and its multiple by the



function p in a pointwise manner by
[Hlx =H;,; for k=i+(j—1)xN;(9)
ka:piJHLj 1=1,...,N;
j=1,...,N,
and the vector of pressures, P, and densities, p,

likewise, then the Reynolds Equation (1) is given
by

F\(P.pH) - [pH]' =0, (10)
and the film thickness equation, (4), by
E2(£7 ﬂ) =0, (11)

where ' denotes differentiation in time. These
can then be combined to define a DAE system

for UT = (PT, &), by:
E(Q,Q’,t) =0. (12)

The solution method employed, described
in [16] and [10], iteratively solves for pressure be-
fore updating the film thickness.

5. Variable Timesteps

For transient numerical calculations the choice
of correct timestep size is critical. If the timestep
is too large then important physical features may
be missed should they fall between successive
steps. Also, the calculated result may have larger
local errors than are desirable for an accurate
solution some timesteps later. Equally choos-
ing a very small stepsize, may, at best, lead to
a large amount of computational work for very
small changes in the solution; at worse, result in
solutions diverging, for example due to the mag-
nification of temporal gradients. This is due, not
to the stability of the problem, but the conver-
gence properties of the non-linear solver outlined
in Section 3 and described in detail in [9]. For ex-
ample, in our experience should the timestep be-
come very small then any corrections made may
amplify, rather than reducing the errors in the so-
lution unless very small underrelaxation parame-
ters are used.

In EHL solutions AT has always been chosen
to be fixed. Whilst for early transient solutions

it was chosen to be larger than AX, the choice
AT=AX has been pioneered by Venner and col-
laborators. This was introduced to minimise the
total discretisation error for the Standard Up-
stream Second Order discretisation scheme which
they employ. Wijnant [26] additionally proposed
the use of AT=2AX for the Narrow Upstream
Second Order scheme.

The optimal choice of timestep is governed by
successfully relating the spatial error of the solu-
tion, with the time error. It is well established
in the ODE literature, e.g. [1,22], that controlling
the local (temporal) error per step, so that the
spatial error dominates, provides efficient reliable
algorithms. This approach, therefore, requires es-
timates of both components of the error.

Let the continuous equation system, defined
by Equations (1) - (8), have an exact solu-
tion u(t), and the discretised equation system, de-
fined by Equation (12), have exact solution U (t).
If, at time t, the numerical approximation to the
solution of the system is U(t), then the total er-
ror, E(t), is defined by

Et) = ut)-0@)
(

u(t) = U(t) + (U(t) - ()
= e(t)+g(t), (13)

where e(t) = u—U represents the spatial discreti-
sation error, and g(t) = U — U is the global error
in the time integration. Given that a solution
has been discretised in space to a particular de-
gree of accuracy, e(t), it is not worthwhile solving
the transient part to a much higher degree of ac-
curacy, but equally this transient error g(t) must
not degrade the spatial accuracy. B

The strategy we have employed is similar to
that described in [6] for what is used in DASSL,
which is designed to solve both index zero and
index one DAE systems.

As outlined in Section 4, there is a free choice
as to whether it is the errors in P or in H which
are controlled. Intuitively, because the system
given by (10) is solved for P, and (11) is solved
for H using this P, it seems sensible to control
the errors in P. This was the approach suggested
in [16]. However, it is the area inside the contact



region where the most change is taking place, and
this is dominated by the wedge and squeeze terms
n (1). This depends upon the film thickness, H,
which is also the algebraic variable of the sys-
tem. Experiments have confirmed that control-
ling these errors requires significantly less work
per timestep and less timesteps are required. The
error tests will therefore be formulated for vari-
able H. However, note that if P is chosen instead,
the only points to be considered for the error tests
are non-cavitation ones.

Given that two different kinds of error need
to be controlled, two different strategies need to
be employed. First on an individual timestep, the
code must to able to decide if the solution has con-
verged far enough. To accomplish this, a strat-
egy, such as the Shampine convergence test [21],
must be used. In this test, the iteration cycle per
timestep, m, is continued until

_ E(m) (tn)

o [ ) < 0-38t0l, (1)

where tol is an error tolerance for the iteration,
|| - || is a suitable norm (usually the root mean
square), and p is defined by
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This cycle therefore relates the newly calculated
solution, H™*Y(¢,) to that of the initially pre-
dicted solution H'® (t,,). To ensure that H® (t,,)
is a good prediction, linear interpolation of the
pressure, film thickness and Hpg are made from
the previous two steps. This prediction typically
brings the root mean square residual at the start
of the timestep down by an order of magnitude.
Once this error test has been satisfied, a local
error calculation is undertaken to establish a new
timestep size. Since the EHL problem is a non-
linear DAE system, the LU decomposition of the
system is not available, and hence the approaches
described in [18] are not used. Instead, the local
truncation error will be used to estimate the local
error over the step. Defining the local truncation

error for P, le P, as in [22, page 355], by:

1
leP = = (P, — prred 1
and le H similarly, then the equations for these
errors, in the same form as Equation (5.4.9) in [6],
are

—ATS —AT3 | [ leH
—AT AT K leP
[ -1 0]1[ H,—Hrred
_[ 0 o}i[Pn—Pgred}' (17)

This gives us a relationship between the local
truncation errors in H and P:

leH = K le P, (18)

where K is the film thickness integration kernel
matrix. It is possible to rewrite the first equa-
tion of (17) as the standard estimate for the local
truncation error:

leH OF OoF
—AT Lie H P
( 8le + = P —Lle )

(H _ Hpred)
S S 19
- (19)
Since these Jacobians are never calculated, con-
sider Taylor’s Theorem for two variables:

F, (pH +leH,P + e P)
o
8pH

~ F, (pH, P)

6E1
leH + 2o leP+hot.  (20)

Assuming that the residual on the timestep,
F, (pH +leH,P +leP) is zero, substitution
into Equation (19) gives the following equation
for the local errors le H and le P:

pl +leH —pH,

F, (P, +1eP,pH +leH) - ~

1

= 5x7 (Hn — HErey (21)

Defining P = P, +leP and H similarly, then
the equation for the local error (21) may then be



rewritten in the same form as Equation (10) with
a different right hand side:

(Hn _ nged)

2AT (22)

F, (B:ﬁn) - [ﬁn]l =
This equation may then be solved for H using
the standard EHL multigrid algorithm with right
hand side 31+ (Hn, — HE™*?). Therefore, in sum-
mary, to estimate the local error on a timestep,
after a sufficiently converged solution has been
obtained, two or three more V-cycles are carried
out to obtain solutions, P and H, to the local
error problem.

Once these new solutions are calculated, an
estimate of the total local error in H, may be
defined as

et = |y = Hoga| - (23)

where || - || is a weighted root mean square Lo-
norm, as used in DASSL [6] defined by

wers (). e
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with weights, w; ; defined by
wij = ATOL + H\") RTOL (25)

which are themselves given in terms of the pre-
dicted solution at that mesh point, that timestep,
Hl(g), and the absolute and relative error toler-
ances, ATOL and RTOL respectively. These tol-
erances have been chosen to be dynamically de-

fined by

NC NE )
ATOL = 1—0 NONT Ng Sy (55— H1,4] (26)
I=1J=1
and
RTOL = ATOL, (27)

for fine mesh points (i,j) with coincident coarse
points (I,J).

Once the local error has been established, it is
then necessary to use this information to calculate

the most desirable stepsize for the next timestep.
The method chosen here is that of Shampine and
Gordon [23], where any change to the step size is
governed by the value of r in

r = (2|l Hll.,) 7, (28)

with & being the order of the method (k = 1 for
the Backward Euler Method). The method of [23]
suggests that the new stepsize should be given by

ATnJrl = TATn, (29)

subject to some limitations.

These tests now mean that the code itself re-
lates future timestep sizes to the magnitude of the
local error. If the error is small, e.g. > 1.5 in
Equation (28), then the stepsize may be increased
for the next timestep. If the error is ‘too large’,
r < 0.9, then the stepsize is reduced, either for
the following step, or, if the current step is con-
sidered to have failed, the current timestep may
be retaken with a new stepsize. There is also a
‘comfort region’ in between these extremes where
the stepsize is left unchanged.

Limits are also imposed on when, and by how
much the timestep size may change. In some
codes, as is used here, it is never allowed to change
up or down by more than a factor of 2. This
helps, both in terms of keeping temporal deriva-
tives of similar scales, and in keeping a check on
what changes are allowed. A safety factor - usu-
ally of just one timestep - prevents the stepsize
increasing too rapidly. The size is, however, al-
lowed to reduce as often as necessary to capture
features in the solution. Maximum and mini-
mum timesteps may be specified by the user be-
fore runtime. These allow controls to be placed
on the code to stop the stepsize diminishing to-
wards nothing, for example, if it is failing at some
point, and to impose physical constraints to the
individual problem being solved: e.g. if we were
on T'=[0.0s, 1.0s] then there would be no point in
a AT 4. of 0.5s, but 0.05s could be acceptable.

5.1. Examples

A clear example of the benefits of using vari-
able timesteps can be seen in the case of rever-
sal of entrainment. This test case is that used



Parameter Value
Viscosity index 2.1x1078 Pa~!
Maximum Hertzian pressure 0.45GPa

Material parameter, G 2961

Load parameter, W 6.58x 103
Speed parameter, U 1.47x10°
Moes parameter, M 592.2
Moes parameter, L 6.9

Table 1
Non-dimensionalised parameters for reversal ex-
ample
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Figure 1. Central and minimum film thicknesses
for reversal of entrainment

in [20] and shows oil entrainment being linearly
decreased from 0.05ms™! to -0.05ms~! in 0.2s.
The most interesting - and nonlinear - part of this
example is the saucer of viscous fluid that forms
at the point of reversal (0.1s) and proceeds across
the domain (towards the new outflow) before the
deformation pattern re-adopts its characteristic
horseshoe shape. All physical parameters are as
given in [20], with the non-dimensionalised quan-
tities as given in Table 1.

Figure 1 shows the central and minimum film
thicknesses during this example. The points on
the line indicate where timesteps have been taken.
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0 0.05 0.1 0.15 0.2
Time (s)

Figure 2. Timestep sizes for reversal of entrain-
ment

It can be seen that these are clustered around
reversal and just after, as was desired. The actual
timestep sizes can be seen in Figure 2 and the
values of r, the stepsize change ratio, can be seen
in Figure 3.

It was explained above that there can be ad-
vantages in not changing the stepsize too often.
Choosing the new stepsize based on an a priori
error test cannot guarantee that the new stepsize
will be valid for more than one timestep. Thus
having the range of values for r in Equation (28)
where the stepsize remains unchanged is impor-
tant. The size of this region also governs how
often the step size can change because if it is too
small then the stepsize may be successively in-
creased and decreased. This ‘chattering’ effect,
well known in the ODE community, may cause
instabilities in the solution. This region is consid-
ered, for example, by Shampine [23] and Hairer
et al. [11]. Tt is the range of values calculated for
r in the error test, for which r should be set to 1
in Equation (29).

The use of variable timestepping may require
more iterations to reach the same level of approx-
imation for the solution at individual timesteps.
However, the important factor is not that more
cycles may be needed per timestep, but that these
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Figure 3. Stepsize change ratio, r, values for re-
versal of entrainment example

are being done considerably less often. It is also
possible to limit the number of iterations per
timestep if the convergence of individual steps is
failing to satisfy the convergence test (14) quickly
enough.

The local error test is an additional overhead
per timestep and this does involve several multi-
grid cycles, hence in cases where a stepsize is
unlikely to change, less frequent checking is re-
quired. A good example of this is the over-
rolling of a transverse ridge, (after Venner and
Lubrecht [25]) where the ridge entered the do-
main outside the area of influence on the solution,
before progressing through. The stepsizes taken
for this case are shown in Figure 4 where a large
timestep is suitable before and after the period
when the ridge is in the contact area, but a small
stepsize is desirable in between.

One of the stated aims for the use of vari-
able time stepping, was a reduction in the re-
quired computational time. Returning to the re-
versal example of earlier, Table 2 shows the com-
putational time comparison between run times
for fixed step (AT = AX) and variable timestep
sizes. To confirm the validity of the results ob-
tained, central and minimum film thicknesses
are compared in Table 3 at two reference times:
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0 L L L L L
0 1 2 3 4 5 6

Figure 4. Timestep size during overrolling of a
transverse ridge

Grid Fixed / Time Iterations
Dimension Variable taken (s) required
65x65 Fixed 7909 9558
65x65 Variable 3192 3387
129x129 Fixed 79151 11367
129x129  Variable 35142 5145
Table 2

Computational performance comparison between
fixed and variable timestepping codes



Film thickness t=0.1s

t=tmin~0.108 s

x10~8 m Minimum FT Central FT Minimum FT Central FT
65x65 Fixed 1.592 7.871 1.061 8.153
65x65 Variable 1.659 8.069 1.200 8.356
129x129 Fixed 2.146 7.975 1.664 8.339
129%x129 Variable 2.216 8.136 1.744 8.509

Table 3

Film thickness (FT) comparisons at two reference times between fixed and variable timestepping codes

the point of reversal (¢=0.1 s) and the time
that the minimum film thickness is achieved
(t=t;min~0.108 s). At these times the minimum
film thickness is an order of magnitude less than
the initial steady state. It is clear that the sig-
nificant saving in computational work described,
produces results of similar accuracy.

6. Grid Adaptation

The addition of more fine grid points means
that the resolution of the solution can be in-
creased. However, it may not be necessary to use
a fine grid in regions where the solution does not
change greatly. The intention of adaptive mesh-
ing is to focus the computational work by placing
mesh points in the areas of the domain where they
are required.

Solutions of the EHL system are characterised
by three regions of the domain: the contact re-
gion, where the pressure is high; the non-contact
region, where the pressure is low; and the cavita-
tion region, where the pressure is assumed to be
identically zero. In the contact region, a fine mesh
is used for both film thickness and deformation
calculations, whereas inside the cavitation region
an adapted mesh is used for film thickness, but
the Reynolds Equation is not solved. An adpted
mesh may be applied in the remainder of the do-
main.

In cases where solution discontinuities or very
steep gradients exist, the solution at these points
must be updated differently from smooth parts
of the solution, otherwise smearing of the numer-
ical discontinuity will not allow accurate resolu-
tion of physical features. These ideas were used
by Harten to produce a multilevel approxima-

tion strategy, called multiresolution (see [2] for
2D work). In this work, the single fine grid is
stored only at nodes which are needed to interpo-
late the calculated solution in order to obtain the
solution at the rest of the mesh, using smoothness
properties. This reduces both the computational
work required in evaluating the new solution, and
the storage of said solution.

It is straightforward to extend Harten’s work
to multigrid. Multigrid grid adaptation has been
undertaken for many years, e.g. [3], including
some work with EHL solvers [12,15]. Here the
problem is being re-examined to use adaptive
techniques to generate a full fine grid represen-
tation of the solutions. Hence, the adaptive mesh
multilevel multi-integration techniques described
in [5] will not be required, although this will be
an obvious extension to this work.

In the EHL multilevel solver, even with multi-
integration, the largest proportion of the time is
spent in calculating the deformation on the finest
grid. Away from the contact region, pressures are
locally small and hence the deformations are too.
At such a point, assuming the deformation in the
region around it to be smooth, it may be interpo-
lated from suitable nearby points. Provided that
any oscillations in the deformation (for example,
due to surface roughness) are adequately resolved
on this coarser mesh, then this approximation is
valid.

The film thickness deformation solve may be
the largest computational expense of the calcu-
lation, but as the mesh size increases, so does
the linear algebra system that requires solving
for the pressure. Reducing the number of points
used in these calculations can make even further



Grid Regular grid Adapted grid
Dimensions run time (s) run time (s)

65%65 5 3
129x129 61 50
257x257 878 669
513x513 13568 9732

Table 4

Computational performance comparison between
fixed and adaptive mesh codes for 5 V(3,1) cycles

improvements to code performance. Again, espe-
cially away from the contact region, and always in
the interior of the cavitation region, there is little
point in the unnecessary calculation of a smooth
solution.

The hierarchical structure for multigrid is de-
fined with successive refinements of the mesh.
Adaptation require careful consideration of the
re-discretisation of the equations from Section 3
to ensure that only ‘valid’ information is being
used. This is especially important on the bound-
ary between regions of different levels of refine-
ment. There are also issues which need to be care-
fully considered with respect to the coarsening
and prolonging in the refined regions: for exam-
ple, if the whole fine grid was de-refined one level,
then the coarse grid correction process should re-
flect that this adapted grid and the next coarsest
are the same computational domain.

The experiments we have performed so far
have been restricted to one level of de-refinement,
on the finest mesh, plus the cavitation region.
Experimental results of timings, as shown in Ta-
ble 4, are very encouraging. They show the speed-
up between unadapted and adapted grids over 5
multigrid V(3,1) cycles. The domain has been re-
fined similar to Figure 5 where the adaptation has
been guided by the solution. On the finest mesh
regions with P < 0.001 have all been refined for
both pressure and film thickness calculations. In
the cavitation region, where Equation (1) is not
valid, the pressure has not been solved, and the
film thickness has been calculated on the adapted
grid.

50 100

Figure 5. Example of an adapted mesh

The extension of this approach to a fully auto-
matic apdaptation algorithm will require suitably
accurate error estimates. It will also include the
possibility for mesh de-refinement where appro-
priate.

7. Conclusions and Future Work

Two methods for improving the computa-
tional efficiency of multigrid finite difference EHL
codes have been presented. Variable timestepping
has been shown, by experiments, to substantially
reduce the required work whilst maintaining the
same level of solution accuracy. The overhead
in calculating new stepsizes is small, relative to
the increase in performance. Changing the step-
size away from AT, within predefined limits, has
been seen to pose no problems for the solver.

Adaptive meshing has been introduced and
early results have shown it to be successful in re-
ducing the computation time of the calculation on
the finest mesh. Although it has been restricted
here to just the finest grid level, it is clear that ex-
tending the same ideas up through the multigrid
structure will produce even greater benefits. Fur-
ther work on a fully adaptive mesh, with more
than two levels of refinement on the same grid,
is the next progression. These adaptive mesh-
ing techniques must then be further extended to
become more automatic, focussing the computa-



tional effort where it is needed most.

Further

computational speed up may be achieved through
the use of parallelisation of the code [9].
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