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Abstract. The solution of elastohydrodynamic lubrication problems is both computationally
intensive and industrially relevant. Although the use of fast multilevel techniques makes it
possible to solve standard EHL problems quickly, there is a need to use much finer meshes to
resolve features such as surface roughness. In this paper we investigate the use of adaptive
meshing in order to focus computational work only on those parts of the solution domain where
high resolution of grid points is necessary. The results show that mesh adaptation reduces the
computational cost while maintaining the quality of the solution.
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1 INTRODUCTION

Inside an engine there are many components in continuous relative motion. Lubricants are
introduced to separate the surfaces, and hence reduce the frictional force which would otherwise
cause large amounts of wear. For example, journal bearings and gears experience a very large
applied pressure over a very small contact area. The maximum pressure in these contacts can
reach up to about 3 G Pa (i.e. 3�109 Pascals). At such a great pressure, deformation of the
contacting surfaces occurs. This situation is called Elastohydrodynamic lubrication (EHL).

The range of scales in EHL problems is great; loads in the order of giga-Pascals applied
across contacts with a minimum film thickness in the micrometre range with lubricant molecules
passing through the contact in a hundredth of a second.

Numerical simulations of EHL problems are important for the design of both components
and lubricants. Inside the contact the large pressure range means that a compressible lubricant
model must be used, since there are large changes in both the density and viscosity of the lubri-
cant. Increasingly realistic rheological models are being combined with thermal characteristics
in order to attempt to accurately capture the true physical behaviour. Such models lead to highly
non-linear differential equations which require special numerical techniques.

The key numerical methods used in EHL solvers are the multigrid method [1] and multilevel
multi-integration [2], which have proved robust and highly desirable in terms of reducing the
time spent in solving EHL problems.

There is still, however, a continuing drive to improve the efficiency and applicability of
solvers for EHL problems. This is arising from a number of issues. First, fluid effects are
important in cutting edge industrial applications and there is therefore a need to capture the
correct rheology of the lubricant [3]. Determination of the rheological parameters of a fluid by
fitting experimental measurements of various kinds is an optimisation problem requiring many
thousands of EHL solutions to be computed and hence efficiency is a major issue. Second,
accurate solutions of micro-EHL problems (which are generally also transient) with realistic
surface roughness requires such a high spatial resolution that even a single solution may be a
large computational task [4].

In this paper we investigate ways of decreasing the computational effort to achieve accurate
solutions to point contact EHL problems, particularly by use of spatial adaptivity. The goal is
to find a balance between speed and accuracy. The potential benefits of using grid refinement,
especially for the micro-EHL problem, are enormous. In these cases the effects of low amplitude
surface defects or roughness dramatically alters the solution profile. Adaptive meshing for EHL
problems has only been used in [5, 6] and very little explanation of the methods used was given.
We will give details of various different methods for deciding how to refine the computational
domain, and explain how this fits inside the EHL multigrid framework. Results will be presented
showing how significant speed-ups can be achieved without losing solution accuracy.

The rest of this paper is made up as follows. In Section 2 the equations governing the EHL
system will be presented. The numerical techniques used to solve them will be briefly out-
lined in Section 3, including a description of the multilevel techniques applied. The methods
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chosen for grid adaptation will be presented in Section 4 along with results showing the com-
parative accuracies and potential speed-ups of the methods used. The paper will be concluded
in Section 5.

2 EQUATIONS

The EHL problem is governed by the relationship between the pressure distribution across
the contact, and the deformation of the contacts caused by this pressure distribution. The pres-
sure distribution is also governed by the physical properties of the lubricant under consider-
ation. In this work only generalised Newtonian models will be considered, and the example
cases will be isothermal circular point contact cases. This represents the lubrication of two
three-dimensional spherical surfaces. By reduction of the geometry these are represented by
solving the problem of a rotating ball on a plane, with lubricant flow between them. Since the
separation of the surfaces is very small, for generalised Newtonian lubricant rheologies, the
problem will not require solving in the direction normal to the surface plane [7].

The pressure distribution is described by the Reynolds Equation [8]. By first defining a
non-dimensional quantity, ε by:

ε �
ρH3

ηλ
� (1)

then the Reynolds Equation to be used for the point contact case is given, in non-dimensional
form, by:
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where P is the non-dimensionalised pressure
H is the non-dimensionalised film thickness
ρ is the non-dimensional density of the lubricant
η is the non-dimensional viscosity of the lubricant
us is the sum of the speeds of the two surfaces in X -direction at time T
λ is a non-dimensional constant
X , Y are the non-dimensional coordinate directions

and T is the non-dimensional time.
Non-dimensionalisation of the equations means that the contact has unit Hertzian radius, and
that the maximum Hertzian pressure is represented by P � 1.

The boundary conditions for pressure are such that all exterior boundaries are considered to
be sufficiently distant to represent infinite conditions of having P� 0. For the outflow boundary,
once the lubricant has passed through the centre of the contact it will form a free boundary, the
cavitation boundary beyond which there is no lubricant.

The film thickness, H, represents the geometry of the ball, and is given, in non-dimensional
form, by:
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where H00 is the central offset film thickness, which defines the relative positions of the surfaces
if no deformation was to occur. The two parabolic terms represent the undeformed shape of the
surface, and the double integral defines the deformation on the surface due to the pressure
distribution across the entire domain.

The conservation law for the applied force is called the Force Balance Equation and is given
by: � ∞

�∞

� ∞

�∞
P�X �Y �dXdY �

2π
3
� (4)

Since an isothermal, generalised Newtonian lubricant model is being used, only expressions
for the density and viscosity will be required. The density model chosen is that of Dowson and
Higginson [7], which takes into account the compressibility of the lubricant:

ρ�P� �
0�59�109�1�34phP

0�59�109� phP
� (5)

where ph is the maximum Hertzian pressure.
The viscosity used is governed by the Roelands pressure-viscosity relation [9], a modification

of the exponential Barus equation [10], to give more accurate results up to 1 G Pa:

η�P� � e

�
α p0

z

�
�1�

�
1�

phP
p0

�z
��
� (6)

where η0 is the viscosity at ambient pressure
p0 is a constant (typically 1�98�108)
z is the pressure viscosity index, taken as z � 0�68

and α is the pressure viscosity coefficient.

3 NUMERICAL TECHNIQUES

3.1 Solution scheme

The point contact EHL solver described here uses a regular mesh of size N�N elements,
where N � 2k � 1. The level of refinement of the mesh can then be referred to as being grid
level k. Due to symmetry about the line Y � 0 it is only be necessary to solve on half of the
computational domain.

Equations (2) to (6) are discretised upon this mesh using standard finite difference tech-
niques, see [11]. The nature of the EHL problem means that there are three very different areas
of the domain when calculating pressure. The cavitation region is the area of the solution be-
yond the free boundary where the Reynolds Equation is not valid, and where pressures are set
to be identically zero. In the centre of the domain is the contact area, where the pressure rises
sharply to reach its maximum peak in a near Hertzian shape. EHL pressure profiles do differ
from purely hydrodynamic ones in that there is also the presence of a large ridge on the pressure
peak, towards the outflow boundary, as can be seen in Figure 1 where the 3D non-dimensional
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Figure 1: Typical solution for pressure across an EHL point contact

pressure profile is shown. Finally, in the non-contact region the pressure is very small compared
to the contact region.

The film thickness calculation, once discretised, has the form:

Hi� j � H00�
X2

i

2
�

Y 2
j

2
�

NX

∑
k�1

NY

∑
l�1

Ki� j�k� lPk� l� (7)

where K is the film thickness kernel matrix, approximating the double integral of Equation (3).
Hence for every mesh point, (i, j), the deformation term is a multi-summation of the pressures
at all the other points in the computational domain.

The deformation of the surface can be seen in Figure 2 which shows the shape of the con-
tact along the centreline. The deformation away from the original surface geometry is clearly
visible, and it can be seen that there is a constriction in the contact towards the outflow, which
coincides with a position between the pressure spike and the cavitation boundary.

To calculate the new pressure solution two different relaxation schemes are required in the
different pressure positive regions. In the non-contact region a Gauss-Seidel line relaxation
scheme is used, whereas in the contact region the Jacobi line relaxation scheme of Nurgat et
al. [12] is used. The calculation of H00 is accomplished by relaxation of the Force Balance
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Figure 2: Typical solution for film thickness along the centreline of an EHL point contact

Equation (4), according to:

H00 � H00� c

�
2π
3
�∆X∆Y

N

∑
i�1

N

∑
j�1

Pi� j

�
� (8)

for all mesh points (i, j), where c is a small relaxation parameter.
One smoothing cycle is said to be the sequence of updating all the pressures, Pi� j, and film

thickness values Hi� j.

3.2 Multilevel techniques

In order to obtain solutions to EHL problems quickly it has proved necessary [1, 13] to use
multigrid methods. Multigrid is effective because it uses coarser grid levels to remove errors of
different frequencies to those which could be quickly smoothed away on simply the fine grid
alone.

The EHL problem is highly non-linear and hence the Full Approximation Scheme (FAS)
must be used, see [14, 15]. In-depth descriptions of how multigrid is applied to EHL problems
can be found in [11] and [1]. The effectiveness of these techniques in maintaining the assymp-
totic convergence rates are shown in both of these works. These methods are briefly summarised
here.

In the case of a regular mesh with 2k � 1 points in each direction then all the mesh points
on grid level k-1 are coincident with points on level k. Simple operators can then be defined
to transfer solutions between adjacent grids, either by injection or weighted interpolation of
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neighbouring points. Consider the system

�
kuk � f k

� (9)

where � k is a discrete approximation to the differential operator � , and uk approximates a
vector of exact solution values u, separated by distance δxk.

At any particular stage, a solution vector ũk will have been calculated, with an error, ek, such
that

uk � ũk� ek
� (10)

The solution is relaxed iteratively to obtain new solutions with the aim of reducing this error to
below some pre-specified tolerance level.

The single grid relaxation schemes, or smoothers, used to solve EHL problems are very
effective at reducing high frequency errors [13, 14] but very slow at reducing low frequency
errors. Given that the smoother is able to reduce errors of the frequency of the grid size, then
lower frequency errors can be reduced in a multigrid method by use of a (coarser) grid with
similar order to that of the error.

From Equation (9) the residual, rk, of the system can be calculated from

rk � f k
��

kũk
� (11)

for an approximation ũk to uk. Substituting for f k from Equation (9) and using Equation (10)
enables us to define the residual as

rk �� k�ũk� ek��� kũk
� (12)

which can be reordered to give

�
k�ũk � ek� �� kũk � rk

� (13)

Consider now a coarser grid, grid j. To represent Equation (13) in the same form as (9), i.e.

�
jû j � f̂ j

� (14)

it is necessary to define û j by
û j � I j

k
ũk� e j

� (15)

The term f̂ j in Equation (14) is called the FAS right hand side, and is given by

f̂ j �� j�I j
k
ũk�� I j

k
rk
� (16)

and I j
k

is an inter-grid transfer operator from grid k to grid j.

The solution û j to Equation (14) can be approximated by u j which can then be used to
calculate the coarse grid approximation to the error by

ẽ j � u j
� I j

k
ũk
� (17)
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Figure 3: Full multigrid, with one V-cycle per level

This is then used to update the fine grid solution in the following manner:

ũk
� ũk� Ik

j �u
k
� I j

k
ũk�� (18)

Assuming that the same iterative process can be used to solve the coarse grid system as the
fine grid system, then the finest grid will be used to smooth the highest frequency errors, and
progressively coarser grids used to smooth errors of progressively lower frequencies (coarsen-
ing), before returning to get an updated solution on the finest mesh (prolongation). The relax-
ation cycles done before coarsening are called pre-smooths and those done after prolongation
and correction of the solution are referred to as post-smooths.

The simplest multigrid cycle is the V-cycle. An initial approximation on the finest grid has
ν1 pre-smooths before being coarsened. This is then repeated until the coarsest mesh is reached
where ν0 smoothing cycles are done. The solution on the next finer mesh is then corrected
according to Equation (18) before having ν2 post-smooths. Again this process is repeated until a
corrected, smoothed solution is reached on the finest mesh. This V-cycle is known as a V(ν1,ν2)-
cycle. Typical values for ν1 and ν2 are three or less, although ν0 may be much larger in order
to obtain a much better coarse grid solution.

The process of Full Multigrid (FMG) is designed to eliminate the large errors which would
exist on the fine grid, before it is first used, by starting on a less computationally expensive
coarse grid. FMG uses the same multigrid techniques and V-cycles as described above, but
applied as shown in Figure 3. This example demonstrates just one V-cycle per level, but there
will usually be several to obtain a reasonably converged solution. At the end of each set of
V-cycles this solution is then prolonged up to a new finest grid.

For EHL problems the multigrid method has to be modified to deal with the free boundary
at the edge of the cavitation region. It has been seen that if information is allowed to propogate
from the cavitation region into the pressure positive region in the coarsening or prolonging
stages, or if the solution on a coarser grid moves the cavitation boundary one coarse mesh
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point into the cavitation region, then stalling may occur [16]. This is because the multigrid
process could move the fine grid cavitation boundary and hence the solver will reach a point
where the fine grid smooths are only able to remove the errors added by the multigrid process.
This problem is eliminated by not applying multigrid near the boundary, however the final
convergence of the solution on this boundary will be slower since only fine grid relaxations will
be used there.

The other major difference in the multigrid EHL solver is concerned with the iteration for
H00, and hence updating the Force Balance Equation (4). This value of H00 is only ever cor-
rected once per multigrid cycle, and this is done on the coarsest grid. Appropriate corrections
from finer levels are necessary to ensure that it is the applied force on the finest grid which is
being conserved, rather than that on coarser grids.

The most computationally expensive part of the solve is that of the calculating the deforma-
tion of the surface, due to it being the double sum in Equation (7). Brandt and Lubrecht [2]
developed a technique called multilevel multi-integration in order to reduce such a calculation
from �(N4) to �(N2 lnN2). This method assumes that outside the neighbourhood of the point
being considered, the kernel matrix is smooth enough for a coarse grid representation to be
used instead. Inside the neighbourhood of the point, a correction is made to the solution using
a summation of all the points in the region.

4 ADAPTIVE MESHING

4.1 Theory

The addition of more fine grid points means that the resolution of the solution can be in-
creased at a cost of solving a larger system of equations. This cost can then dominate the cal-
culation time. However, it may not be necessary to use a fine grid in regions where the solution
does not change greatly. The intention of adaptive meshing is to focus the computational work
by placing mesh points in the areas of the domain where they are most required for solution
accuracy.

The method being applied here is to only use fine grids in selected regions of the domain,
see [15] and for EHL problems [11]. In this method only the calculation of the pressure solution
is performed on a refined mesh. The film thickness is still evaluated on an unadapted mesh in
order to make use of the benefits of multilevel multi-integration.

Considering a three level multigrid formulation then an extra level of refinement may be
added over only part of the domain if so desired. This can be seen in Figure 4a where the
bottom right hand of the four coarsest squares has been refined. It is possible to just solve for a
new finest grid solution using just the points inside the shaded area. The points on the boundary
with the unadapted region, namely those marked � and Æ will be treated as Dirichlet. Those
outside the shaded region will not be included in the solve. The difference between the two
types of boundary points is the accuracy with which they have been obtained. Those marked �
are a direct prolongation of the coincident coarser grid point, whilst the hanging nodes, marked
by Æ, are only obtained by some interpolation of surrounding coarse grid points.
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Figure 4: Example of an adapted multigrid mesh

This method fits inside the multigrid framework as follows. Solutions from the finest grid are
only generated inside the shaded region, say Ωad. It is only valid to calculate coarse grid cor-
rections inside this region. Similarly, the calculation of the right hand side functions, previously
given in Equation (16), now becomes

f̂ j �

�
� j�I j

k
ũk�� I j

k
rk (i, j) � Ωad

0 elsewhere
(19)

with all symbols as defined in Section 3.2. Hence it is also the case that on the coarser mesh
only those points coincident with points in the adapted mesh should have any knowledge of the
presence of finer meshes.

This procedure may be applied iteratively to produce a hierarchy of increasingly refined
multigrid meshes. An example of this is shown in Figure 4b which shows five different grid
levels with different adaptation domains on each.

It was explained in Section 3.1 that solutions of the EHL system are characterised by three
regions of the domain: the contact region, where the pressure is high; the non-contact region,
where the pressure is low; and the cavitation region, where the pressure is assumed to be iden-
tically zero. In deciding where to adapt the differences between these regions are of great
importance.

In the cavitation region there is no reason to use a fine mesh to calculate a non-physical
pressure solution which will be set to zero. There must, however, be at least one, and preferably
two points, in the cavitation region included to allow the free boundary to adjust its position.
An example of adaptation over the free boundary is shown in Figure 5 where the cross-hatched
region indicates the area of positive pressure, and the dotted region includes the extra points
included into each line solve.

In the rest of the domain there is a lot more freedom about how to choose where to adapt.
Deciding the correct refinement criteria is very important to obtaining optimal performance
from the use of grid adaptation, however even some crude assumptions will be shown to be very
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Figure 5: Example showing adaptation around cavitated free boundary

beneficial. There are three possible types of scheme available for deciding on refinement levels;
namely arbitrary geometrical decisions, adaptation based on a monitor function, or refinement
based on an error test. In the examples below, all three methods will be shown, and their relative
effectiveness and applicability judged.

Effective use of the arbitrary geometrical decision scheme relies on a priori knowledge of
how the solution behaves. In the EHL case this is well defined, since it is known that the high
pressure contact region is found inside the unit disc centred at (0,0), that the cavitation region
is almost entirely the X -positive region not in the contact region, and the non-contact region is
the rest of the X -negative domain. It is therefore sensible to surmise that refinement in the area
of high pressure and great deformation is advisable.

The adaptation can be made more automatic through use of a monitor function which will
take account of the properties of the solution before deciding which regions need adapting. This
idea is similar to the one already commonly used in EHL problems to decide which numerical
scheme should be used at individual points, as described in [13]. The monitor function may use
solution variables or their derivatives to identify regions of greatest change. In this study the
pressure values were used.

Fully automatic refinement can only come through use of an accurate error control function.
Much work has been done into grid refinement in many different applications. It is, however, the
case that at present no analysis has been done into the error control issues of the EHL problem.
In the work of Lubrecht [6] the method of Bai and Brandt [17] was used to decide where to
adapt. This uses the quantity τ k�1

k known as the (k,k-1) relative truncation error which is the
quantity that is to be added to the right hand side of the coarse grid problem, and is thus a
measure of the extent to which the local introduction of the finer grid has influenced the global
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solution [15]. The test given in [15] is to refine whenever

�∆X�kτk�1
k � ξ (20)

for a chosen tolerance ξ .

4.2 Examples

To test the effectiveness of the grid adaptation, a test case with a maximum Hertzian pressure
of 0.45 G Pa was chosen. This was solved on the half-domain X�[-4.5,1.5], Y�[0,3] using finest
meshes between level 5 and level 8, dimensions 65�33 and 513�257 points respectively.

Measuring the accuracy of the results can be done in several different ways. Comparisons
can be made between the values of central and minimum film thickness and the height of the
pressure spike [11]. For the grid adaptation strategies shown, all of these notable variables are
close to those obtained using the corresponding fully fine case. In order to measure differences
over all the grid, the L2-norm of the differences between solutions on adapted and unadapted
grids, for both pressure and film thickness, is used as given by

���ure f �uad

���
2
�
� Ymax

Ymin

� Xmax

Xmin

�
ure f �uad

	2
dXdY (21)

where ure f is the reference solution against which the adapted solution, uad , is compared. The
accuracy desired is that the solution of an adapted grid on level k should be significantly closer
to the results obtained on an unadapted level k than those obtained on an unadapted level k-1
mesh, or coarser.

Comparison between grid levels does, however, rely upon the numerical solution to the equa-
tions being similar. Around the pressure spike this need not be the case. The effect of grid
spacing for line contact cases has been investigated for many years, and results up to level 10
were shown using adaptivity in the work of Lubrecht [6] and Breukink [18]. Recent work done
by the authors into the line contact case has shown that the numerical solution does converge to
a well defined pressure spike, however this requires the number of points to increase by several
order of magnitude. Unfortunately it was found that small differences in the spike height causes
a much greater variation in the film thickness profile.

The different adaptation schemes tested are shown in Table 1, where the major of the test
case identifier refers to the finest grid used in the multigrid cycle. Cases 5.0, 6.0, 7.0 and 8.0
use a fixed unadapted mesh. All grid adaptation schemes also include the refinement of the
cavitation region as described above. For both the spatial and the pressure based grid adaptation
schemes, the refinement on a grid also includes the corresponding refinement described for the
next coarser grid. Case 8.1 is the exception to this, with it having been refined on grid 7 for
X�-3, Y�1.5, and on grid 6 for X�-3.5, Y�2.

The L2-norm results for comparison between the non-dimensional solutions of pressure be-
tween the adaptive, and fully fine, fully converged, comparison cases are shown in Table 2.
Since these tables show the difference between adapted solutions and unadapted cases, the
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Finest Spatially Pressure τk�1
k test

grid level adapted refinement refinement

6
Case 6.1

X�-3.5, Y�2.25
Case 6.2

P�2�10�3
Case 6.3
ξ=1�10�6

7
Case 7.1

X�-1.5, Y�1
Case 7.2

P�5�10�2
Case 7.3
ξ=1�10�6

8
Case 8.1

X�-2.25, Y�0.95
Case 8.2

P�1�10�1
Case 8.3
ξ=1�10�7

Table 1: Adaptivity schemes used for the grid adaptivity tests

smaller the L2-norm, the closer the solutions. It can clearly be seen that the results are closest
to results on the same finest fixed grid level. As expected, the results for pressure do seem more
accurate than those for film thickness, against either finer or coarser meshes. This difference is
due to the difference in the pressure solutions only lying in the resolution of the pressure ridge,
while the global nature of the deformation calculation, equation (3), means that any pressure
differences here are propagated throughout the entire film thickness solution.

Finally, in Table 3, computational timings are shown for each case. These show that solutions
on adapted grids can be computed significantly faster than in the unadapted case, often up to
around half the time. This means that results of significantly greater accuracy than those on
grid k, say, can be computed on grid k+1 in roughly only twice the time, rather than the factor
of four for unadapted cases.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have examined some of the benefits of applying adaptive methods to elasto-
hydrodynamic lubrication problems.

Grid adaptivity has been successfully applied. Selection of areas of the mesh where solutions
are relatively smooth allows a reduced domain to be considered for the solution of the equations
on the finest mesh. By applying increasingly large regions of refinement on decreasing levels
in the multigrid hierarchy the computational effort on the finest meshes can be directed only to
the areas of the solution domain where it would be most beneficial. Three different schemes
for deciding where to refine were evaluated for a steady state example. The computational time
was typically reduced by a half, without a significant drop in accuracy, and solutions were still
the same order of accuracy better than those on any coarser mesh, and of the same quality when
compared against unadapted solutions on finer grid levels.
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Pressure
Compared against case

8.0 7.0 6.0 5.0
6.1 9.66�10�3 4.40�10�3 1.07�10�5 8.88�10�3

6.2 1.02�10�2 4.80�10�3 3.89�10�5 8.41�10�3

6.3 2.98�10�2 1.89�10�2 1.53�10�7 8.57�10�3

7.1 3.13�10�3 1.75�10�4 4.32�10�3 1.78�10�2

7.2 3.43�10�3 2.44�10�4 4.12�10�3 1.75�10�2

7.3 8.17�10�3 2.12�10�4 4.19�10�3 1.76�10�2

8.1 1.44�10�5 2.27�10�3 9.76�10�3 2.41�10�2

8.2 7.35�10�5 1.99�10�3 9.33�10�3 2.36�10�2

8.3 2.19�10�5 2.54�10�3 1.02�10�2 2.46�10�2

Film thickness
Compared against case

8.0 7.0 6.0 5.0
6.1 2.28�10�1 2.42�10�1 5.04�10�6 4.88�10�1

6.2 2.29�10�1 2.43�10�1 1.38�10�5 4.87�10�1

6.3 2.31�10�1 2.49�10�1 5.11�10�9 4.87�10�1

7.1 1.21�10�1 7.27�10�5 2.42�10�1 4.58�10�1

7.2 1.21�10�1 1.45�10�4 2.42�10�1 4.58�10�1

7.3 1.21�10�1 1.07�10�4 2.42�10�1 4.58�10�1

8.1 3.15�10�5 1.21�10�1 2.28�10�1 4.20�10�1

8.2 1.97�10�4 1.21�10�1 2.27�10�1 4.19�10�1

8.3 6.63�10�6 1.21�10�1 2.28�10�1 4.21�10�1

Table 2: L2-norms of differences in non-dimensionalised pressure and film thickness between adapted and un-
adapted cases on grids 6 to 8
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Case
Time for 10
iterations (s)

Saving on
unadapted case (s)

Percentage
time saved

6.1 19.5 11.8 37.7
6.2 20.5 10.8 34.6
6.3 30.4 1.0 3.1
7.1 56.0 61.2 52.2
7.2 58.7 58.4 49.9
7.3 80.9 36.3 31.0
8.1 237 245 51.3
8.2 218 264 55.6
8.3 276 206 44.3

Table 3: Computational timings for 10 multigrid V-cycles for adaptation test cases

In addition to using these techniques to tackle harder, and more realistic problems. The grid
adaptation strategy presented above is only based on reducing the order of calculation of the
pressure solution. For a fully adaptive strategy, the film thickness calculation will also need
refinement. A strategy for multilevel multi-integration on adaptive grids has been proposed by
Brandt and Venner [19], and using this, or similar, is an obvious progression.

Adaptation need not be restricted to only being applied spatially. The method of variable
timestepping for EHL problems, introduced by the authors in [20] has been further developed
in [11]. Results have been presented showing significant savings in computational work to
achieve results of the same accuracy as traditional fixed timestep methods.
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