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Statistical modeling
TI) provides a unique source of information about the underlying tissue structure
of brain white matter in vivo including both the geometry of major fiber bundles as well as quantitative
information about tissue properties represented by derived tensor measures. This paper presents a method
for statistical comparison of fiber bundle diffusion properties between populations of diffusion tensor
images. Unbiased diffeomorphic atlas building is used to compute a normalized coordinate system for
populations of diffusion images. The diffeomorphic transformations between each subject and the atlas
provide spatial normalization for the comparison of tract statistics. Diffusion properties, such as fractional
anisotropy (FA) and tensor norm, along fiber tracts are modeled as multivariate functions of arc length.
Hypothesis testing is performed non-parametrically using permutation testing based on the Hotelling T2

statistic. The linear discriminant embedded in the T2 metric provides an intuitive, localized interpretation of
detected differences. The proposed methodology was tested on two clinical studies of neurodevelopment. In
a study of 1 and 2 year old subjects, a significant increase in FA and a correlated decrease in Frobenius norm
was found in several tracts. Significant differences in neonates were found in the splenium tract between
controls and subjects with isolated mild ventriculomegaly (MVM) demonstrating the potential of this
method for clinical studies.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Clinical neuroimaging studies increasingly rely on diffusion tensor
imaging (DTI) for new insights into the tissue structure of brain white
matter in vivo. Traditional structural magnetic resonance imaging
(MRI) provides little contrast within white matter, which is displayed
as a homogeneous volume without information about the underlying
tissue orientation and microstructure. DTI, on the other hand,
provides information about the axon bundles of brain white matter
such as preferred orientation, myelination, and density as reflected in
measures of the diffusion tensor for each voxel (Basser and Pierpaoli,
1996). The diffusion tensor incorporates information about the
preferred fiber orientation in the principal eigenvector as well as
information about local tissue structure in measures of anisotropy and
norm. This paper addresses the problem of normalizing geometric
models of white matter bundles and making statistical inference
about differences in diffusion properties.

Most approaches to group analysis in the clinical DTI literature
have relied on voxel based analysis or manually drawn regions of
interest (ROI). An overview of the differences between voxel based
and ROI analysis in DTI population studies was described by Snook
et al., (2007). Voxel based analysis methods are characterized by
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alignment of images to a template followed by independent
hypothesis tests per voxel which are smoothed and corrected for
multiple comparisons. Voxelwise analysis has been applied in DTI
studies including autism (Barnea-Goraly et al., 2004) and schizo-
phrenia (Burns et al., 2003). The major challenge in voxel based
analysis is the need for multiple comparison correction and
smoothing which can make localization of changes challenging to
interpret (Jones et al., 2005a). Other studies have used manually
drawn ROIs for group comparison of DTI properties. Within the ROIs,
diffusion properties such as FA or mean diffusivity (MD) are
averaged to create a single statistic. Examples of studies using ROI
methods can be found in normal development (Bonekamp et al.,
2007; Gilmore et al., 2007; Hermoye et al., 2006), schizophrenia
(Kubicki et al., 2005), and Krabbe disease (Guo et al., 2001). The
major drawback of ROI analysis is the time consuming nature of
manual identification of regions, especially the ability to identify the
long curved structures common in DTI fiber tracts. Our method
improves on previous methods in the ability to perform automatic
processing through the use of high dimensional deformable
registration as well as the ability to focus on testing specific
hypotheses regarding tracts of interest using a novel method for
joint analysis of multivariate tensor measures in a tract model.

Segmenting anatomically known fiber bundles remains an
important challenge for DTI analysis. The most common approach,
fiber tractography, integrates the field of tensor principal eigenvector
to create streamlines which sample anatomical fiber bundles (Basser

mailto:gcasey@sci.utah.edu
http://dx.doi.org/10.1016/j.neuroimage.2008.10.060
http://www.sciencedirect.com/science/journal/10538119


S134 C.B. Goodlett et al. / NeuroImage 45 (2009) S133–S142
et al., 2000). Corouge et al., (2006), Jones et al., (2005b), Maddah et al.,
(2008), and Lin et al., (2006) proposed to analyze diffusion properties
as a function sampled along arc length of fiber bundles. More recent
work has focused on volumetric segmentation methods which also
allow data within the tract to be reduced to a function of arc length
(Fletcher et al., 2007; Melonakos et al., 2007). These methods
emphasize the need to understand diffusion properties in the context
of geometric models of fiber bundles.

The major challenge in implementing tract oriented statistics in
population studies is finding a consistent spatial parametrization
within and between populations. Defining anatomically equivalent
ROIs to seed tractography for large population studies is time
consuming, error prone, and often requires significant post-proces-
sing such as cleaning and clustering (Gilmore et al., 2007).
Furthermore, even given tractography seeds for each image, the
natural variability of brain size and shape prohibits a naturally
consistent parametrization for arc length models of diffusion. To solve
both the needs for tract segmentation in individual cases as well as
shape normalization for fiber tracts, we apply a population based
registrationmethod. Jones et al., (2002) and Xu et al., (2003) described
the advantages of spatial normalization for DTI population studies.
Recent work has focused on the use of unbiased methods for mapping
tensor images to a common coordinate system (Zhang et al., 2007;
Peyrat et al., 2007). A reference atlas of fiber bundles visible in DTI was
produced by Mori et al., (2005). Xu et al., (2008) highlighted the need
for smooth invertible mappings in a registration framework. Other
work on DTI atlas building has used the geometry information
contained within tractography results rather than image registration
to build a population model (O'Donnell and Westin, 2007). In our
framework, atlas building for DTI creates a global spatial normal-
ization which can be used to parametrize tract oriented measures
across a population.

In work closely related to the proposed methodology, Yushkevich
et al., (2008) propose a method for statistical analysis along the two-
dimensional medial manifolds of fiber tracts for specific tracts of
interest after unbiased group alignment. On the tract medial axis,
permutation tests are applied to detect clusters of pointwise
differences between MD of groups. Another approach proposed by
Smith et al., (2006), tract-based spatial statistics, is a global approach
for analysis of diffusion properties using non-linear registration to a
template combined with a skeletonization of FA voxels. FA values are
Fig. 1. All images in a study are used to compute an atlas. Fiber tractography in the atlas prod
back into the individual subjects to collect along tract measurements of tensor properties. T
functions.
globally projected onto the skeleton followed by pointwise hypothesis
tests on the skeleton. O'Donnell et al., (2007) used tracts obtained
through clustering and performs pointwise statistics along tract-
oriented functions. Our method differs from these primarily in the use
of statistical analysis that incorporate multivariate tensor measure
and tract-oriented statistics for a single hypothesis test per tract.

This paper presents a method for group comparison of DTI that
combines a method for high-dimensional diffeomorphic registration
with a statistical framework for detecting and understanding
differences between the diffusion properties of fiber tracts. The
emphasis of the DTI atlas building procedure is to model and
normalize the geometry of fiber bundles to analyze differences of
diffusion properties between groups. A schematic overview of the
procedure is shown in Fig. 1. Atlas building is performed based on a
feature which is sensitive to the medial location of brain white
matter. The diffusion properties of fiber bundles are modeled as
continuous functions of arc length, where the tract functions are
multivariate functions which map arc length to orthogonal tensor
invariants. Statistics appropriate to populations of continuous
functions is applied for hypothesis testing and discrimination. The
proposed methodology is applicable to general DTI population
comparisons. For this paper, the methodology was evaluated on a
large pediatric study of normal development and comparison of
neonate controls to MVMs who are at higher risk for mental illness.

DTI atlas building

Comparison of diffusion properties in populations of diffusion
tensor images requires a method for identifying corresponding
regions of anatomy. We have extended a high-dimensional, unbiased
registration procedure developed by Joshi et al., (2004) using a
feature image that is sensitive to the geometry of brain white matter
and is similar in spirit to methods proposed in the literature for
modeling white matter by its medial sheet (Smith et al., 2006;
Kindlmann et al., 2007). The goal of the atlas building procedure is to
provide spatial normalization for analysis of diffusion values at
corresponding locations. Further reference on the DTI atlas building
procedure is described by Goodlett et al., (2006).

Diffusion tensors are estimated for each subject from the diffusion
weighted images using weighted least squares tensor estimation
(Salvador et al., 2005). Skull stripping is performed by applying a
uces a template atlas fiber tract. Inverse transformations used to map the template tract
he parametrization given by the atlas is used to compute statistics on the tract oriented



Fig. 2. The top row shows axial, sagittal, and coronal slices of the FA image from a DTI scan of a 1 year old subject. The bottom row shows the result of the structural operator on the FA
image taken at σ=2.0 mm. Major fiber bundles such as the (a) genu of the corpus callosum, (b) splenium of the corpus callosum, (c) fornix, and (d) internal capsules are highlighted,
while the background noise is muted.
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segmentation tool on the non-diffusion weighted image to create a
mask of non-brain regions. After skull stripping, a feature image is
computed for each subject. Given a tensor image I and the
corresponding FA image FA, the feature image C is defined as the
maximum eigenvalue of the Hessian of the FA image. The Hessian is
computed by convolution of the FA imagewith a set of Gaussian second
derivatives with a fixed aperture. The σ value for the kernel is chosen
empirically to be proportional to the size of white matter structures in
the brain. For example, a smaller value is used for neonates than for
adults. Fig. 2 shows the FA image of a tensor field and the
corresponding structural image C. We apply the atlas building
procedure of Joshi et al., (2004) to the set of feature images. The
transformation for each image is initialized by affine registration of the
non-diffusion weighted images of each subject to a T2 weighted atlas
using normalized mutual information. The result of the atlas building
procedure is a set of invertible transformations whichmap each subject
tensor image from native space to the atlas coordinate system.

We choose the feature image C over alternative image match
metrics for two main reasons. First, we observe that C is a good
detector of major fiber bundles which occur as tubular or sheet-like
structures. Callosal fibers form a thin swept U; the corona radiata is a
thin fan; the cingulum is a tubular bundle, and C serves as a strong
feature detector for all types of these thin structures. Consequently, C
optimizes correspondence of fiber tracts better than the non-diffusion
weighted image, because C has the strongest response at the center of
major fiber bundles, while the non-diffusion weighted image has the
strongest signal in the cerebro-spinal fluid (CSF). Secondly, we use C
instead of a full tensor metric or FA itself to avoid using the same
feature for registration that will be used for statistical comparison.

After nonlinear transformations have been computed for each
feature image, they are applied to the corresponding tensor images.1
1 Software for tensor estimation, and tensor resampling is available from http://
www.sci.utah.edu/~gcasey/software.
Methods appropriate for tensor processing are used to resample the
tensor fields in the atlas space. Tensors are reoriented using the finite
strain approximation proposed by Alexander et al., (2001). We have
chosen to use the finite strain over the preservation of principal
diffusion direction model as we are not modeling mechanical
transformations of the anatomy (Peyrat et al., 2007). During
resampling, tensors are interpolated using Riemannian methods first
proposed by Pennec et al., (2006) and Fletcher and Joshi, (2007). For
efficiency we employ the Log–Euclidean approximation of the
Riemannian metric on the space of diffusion tensors (Arsigny et al.,
2006). After all images are transformed into the atlas space, the
transformed images are averaged using the Log-Euclidean method to
produce a tensor atlas.

The tensor atlas provides an image with improved signal-to-noise
ratio (SNR) that is used to create template fiber tracts. The diffusion
tensors obtained from averaging across the population can be
integrated in streamline tractography approaches with significantly
less outliers than in noisy individual images. For the purpose of this
study we use a simple streamline integration method based on
fourth order Runge-Kutta integration of the principal eigenvector
field. Manual seeding and clustering of resulting tracts is used to
input prior anatomical knowledge into the segmentation of fiber
bundles. After creation of the template fiber tracts, diffusion statistics
from the individual cases are mapped to the atlas tracts. When
mapping the diffusion properties from native space to the template
tracts, scalar invariants are interpolated from the native space using
tri-linear interpolation. As a result a fiber bundle is created for each
subject using the geometry of the template atlas tract but replacing
the diffusion properties with those mapped from the subject. In this
work four tracts were chosen by the authors to illustrate the
methodology, but future clinical studies should rely on clinical
hypotheses and expert neuroanatomical knowledge for tract defini-
tion. The set of individual tracts with corresponding geometry but
varying diffusion properties are then compared in a novel statistical
framework.

http://www.sci.utah.edu/~gcasey/software
http://www.sci.utah.edu/~gcasey/software
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Functional analysis of tract properties

After spatial normalization of tensor images, corresponding values
of diffusion properties within a fiber tract can be compared. In
previous work this has been accomplished primarily through voxel
based tests that require sophisticated smoothing and multiple
comparison correction. While this type of analysis is effective for
hypothesis generation, the results are often challenging to interpret,
and strong differences are necessary to overcome multiple compar-
ison correction. We propose to use a semi-parametric b-spline model
of diffusion statistics along fiber bundles as the basis for group
analysis (Goodlett et al., 2008).

Modeling of fiber tract properties

The diffusion properties of fiber tracts are modeled as smooth
functions of arc length. In this model we reduce the diffusion data in a
fiber bundle to a function of arc length for each tensor measure of
interest. As illustrated in Fig. 3, tensor measures in a bundle are
averaged at each cross-section along the bundle to produce a function
of arc length. In our framework template fiber bundles are computed
in the tensor atlas using tractography, and the improved signal-to-
noise ratio of the atlas allows reliable extraction of fiber bundles. The
template fiber is warped back into the individual subject images to
collect the diffusion data as shown in Fig. 1. Fig. 6 shows an example of
the template genu and splenium fiber bundles from the study
presented later in the Normal development in cross-section from 1
to 2 years section and the individual functions produced for this
bundle. Because the geometry of the individual fiber bundles are
identical in atlas space, the data from each subject is parametrized
consistently.

We have chosen to focus our analysis of diffusion properties on
measures of tensor shape for two primary reasons. First, tensor
orientation is an unstable measurement due to approximations of
tensor reorientation during deformation. More importantly, however,
rotationally invariant measures such as anisotropy and MD have been
linked to changes in tissue properties (Bihan, 2003). The most
commonly used measurements of tensor shape are FA and MD.
However, it has been shown by Ennis and Kindlmann, (2006) that FA
and MD are not orthogonal and therefore not appropriate for joint
statistical analysis. The non-orthogonality implies that differences in
FA have different meanings depending on the magnitude of the MD. In
this framework we have chosen to use FA because of its common usage
in the literature. As a measure orthogonal to FA, the Frobenius norm of
the tensor D is used as a measure of tensor size and is defined as

jjDjj =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
3

i = 1
∑
3

j = 1
D2

ij
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=
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The mean diffusivity of the tensor, by comparison, is given by the
sum of the eigenvalues rather than the sum of squared eigenvalues.
Fig. 3. The diffusion properties within a fiber bundle (a) are summarized as a function of a
averaged and become the value of the function at the points A, B, C, D, E along the x-axis o
Statistics of tract models

The population of multivariate functions produced by the fiber
tract model requires a new method for statistical inference. Image
sampling as well as the fiber tract extraction process create a
sampled representation of the fiber bundle diffusion properties.
However, there exists a continuous underlying biology which
generates these samples. Therefore, statistical analysis of the
sampled diffusion functions must account for the underlying
continuity and spatial correlation of the samples. We compute
statistics of the diffusion curves as an infinite dimensional
extension to multivariate statistics known as functional data
analysis (Ramsay and Silverman, 2005). The simplest extensions
of ordinary statistics to the functional setting is the sample mean
function f tð Þ, parametrized by arc-length t for N samples, given
by

f tð Þ = 1
N

∑
N

i = 1
fi tð Þ ð2Þ

and the sample variance-covariance function, which is the bivariate
function parametrized by two arc-length functions s, t,

v s;tð Þ = 1
N−1

∑
N

i−1
fi sð Þ−f i sð Þ

� �
fi tð Þ−f i tð Þ

� �T
: ð3Þ

The diagonal of the function, v(t, t), is the pointwise variance of
the population of functions. Hypothesis testing and discriminant
analysis of the space of functions has an inherent high-dimension,
low-sample-size problem because of the infinite-dimensional
space of continuous functions. Regularization methods are, there-
fore, essential in the computation of functional statistics. To
enforce regularity, B-spline fitting and functional principal
components analysis (PCA) is used for data-driven smoothing,
where the number of retained PCA modes acts as a smoothing
parameter.

In order to make computations tractable, smooth basis functions
are fit to the sampled diffusion curves. B-splines were selected as
basis functions due to the nonperiodic nature of the data, the
compact support of the B-spline basis, and the ability to enforce
derivative continuity. A large number of B-spline bases are first fit to
the sampled functions using a least squares approach. The number
of basis functions is chosen empirically to maintain local features
while providing some smoothing. Computation of the mean
function is computed by the sample mean of the B-spline
coefficients. Computation of the variance-covariance function is
more complex and requires accounting for the mapping between
basis coefficients and function values. Let fi (t) be the B-spline
function fit to the samples from subject i. Following the notation of
Ramsay and Silverman, (2005), in matrix notation, we express all
rc length (b). For example, the FA value along the cross-section at points A,B,C,D,E are
f the arc length function.



Fig. 4. Visualization of the PCA modes for the joint analysis of FA and Frobenius of FA and Frobenius norm in the genu of the corpus callosum for the 1 and 2 year old populations. The
(a) mean functions for the combined population are shown with (b) the first and (c) second PCA modes. The first PCA mode accounts for a large percentage of the variability and
shows constant changes of FA with a corresponding anti-correlated change in Frobenius norm.
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functions fi (t) as a matrix of coefficients C times the basis functions
ϕ, so that

f tð Þ = C/ tð Þ: ð4Þ
Assuming the functions are centered about the sample mean, the
variance-covariance function of f(t) is

v s;tð Þ = 1
N−1

/ sð ÞTCTC/ tð Þ: ð5Þ

Note that the vector valued function f(t) gives a column vector for each
value t, therefore taking the variance-covariance with respect to the
Fig. 5. The genu tract (a) mapped from atlas is comparedwith (b) the tract produced by tractog
reveals a maximum difference of 4.5 mm between the two tracts. The average distance in t
arc length parameters s, t is transposed from the usual notation. PCA
of the functions fi(t) decomposes v(s, t) into the orthogonal unit
eigenfunctions ξ(t) which satisfy
Z

v s;tð Þn tð Þdt = λn sð Þ: ð6Þ

Eq. (6) can be solved numerically by rewriting in terms of the basis
functions ϕ with coefficients b,

/ sð ÞTCTC/ tð Þ/ tð ÞTb = λ/ sð ÞTb: ð7Þ
raphy in the individual. Comparison of pointwise distances between the two fiber tracts
he main body of the tract is less than 1.5 mm.
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Let W be a matrix of basis function inner products with entries

Wij =
Z

/i tð Þ/j tð Þ; ð8Þ

Eq. (7) can be simplified in the matrix form,

1
N−1

CTCWb = λb: ð9Þ

The B-Spline basis is not orthonormal resulting in a non-symmetric
eigenvalue problem to solve (9). This minimization can be solved by
the symmetric eigenvalue problem for the basis coefficients b, with
the change of variable W−1/2u=b:

1
N−1

W1=2CTCW1=2u = λu: ð10Þ

In our analysis we consider a joint analysis of FA and Frobenius norm
functions with basis coefficients C1 and C2 respectively. We therefore
compute PCA from the eigenanalysis of Σ, where

Σij =W
1=2CT

i CjW
1=2; and

Σ = Σ11 Σ12
Σ21 Σ22

� �
:

ð11Þ

Hypothesis testing and discriminant analysis is performed on the
projection of the data onto the first K PCA modes, where K serves as a
Fig. 6. (a) Genu and (d) splenium tracts extracted from the tensor atlas with color indicatingm
each individual in the study for FA and Frobenius norm values. The sampled FA and Frobeniu
are the dashed red lines and the 2 year old subjects are the solid blue lines. The spikes in the c
in the longitudinal fissure.
smoothing parameter. The PCA projection accounts for the different
scaled of the FA and Frobenius norm value enabling a joint analysis
despite the differences in scale of the two values. An example of the
PCAmodes for the genu tracts from 1 and 2 year old subjects is shown
in Fig. 4. In this work, K is chosen to maintain 90% of the variability of
the variance-covariance matrix. Let xi and yi be the projection of the
curves from two populations of functions onto the PCA space. In this
space the basis mapping has already been incorporated and standard
multivariate analysis can be applied. The normal parametric hypoth-
esis test for mean differences is the Hotelling T2 statistic,

T2 =
nxny

nx + ny
x−yÞS−1 x−yÞT

��
ð12Þ

where S is the pooled covariance matrix. In order to relax the
normality assumptions associatedwith the parametric test, we apply a
permutation test based on the T2 statistic to compute p-values
(Nichols and Holmes, 2002). The permutation test is run on the global
multivariate T2 and does not require multiple comparison correction.

The T2 statistic is proportional to the difference between group
means projected onto the subspace given by the Fisher linear
discriminant (FLD),

ω = S−1 x−yÞT :
�

ð13Þ

The linear discriminant, therefore, provides a direction for
interpreting the detected group differences of the hypothesis test.
The coefficients of the discriminant can be expanded into the original
function basis so that FLDT(t)=ϕ(t)ω is a functionwhose inner product
with the original data provides maximal separation between the
ean FAvalue. The diffusion values are sampled along the atlas-normalized arc length for
s norm functions for the two groups are shown in (b), (c), (e), (f). The 1 year old subjects
enter of the Frobenius norm functions for the genu are due to partial voluming with fuid



Fig. 7. (a) Left and (d) right cortico-spinal tracts, cropped in the internal capsule, in the 1 and 2 year old population. The tracts are sampled from inferior to superior along the tract to
produce the sampled functions in (b), (c), (e), and (f).
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groups. This function, FLDT(t), describes changes of tensor parameters
between the two groups as a function of arc length.

Experiments

The registration framework of the DTI atlas building section along
with the analysis method of the Functional analysis of tract properties
section was applied to two clinical studies of neurodevelopment. We
haveevaluated theeffect of normal developmentonfiber tract properties
from age one to two in cross-sectional populations. We have also
performed hypothesis tests for differences between neonate control
subjects and neonates with isolated mild ventriculomegaly (MVM).

Normal development in cross-section from 1 to 2 years

The proposed methodology was evaluated on a cross-sectional
study of normal development including subjects at 1 and 2 years of
age. Institutional review board (IRB) approval was obtained for the
study, and informed consent was obtained for all subjects. This study
was chosen as a test case because of the expected large differences in
Table 1
Tract differences from 1 to 2 years

Tract p-value FA Frobenius norm

Max Avg Max Avg

Genu b .0001 .060 .020 −2.9×10−4 −1.8×10−4

Splenium .0024 .053 .022 −2.6×10−4 −1.4×10−4

Left cortico-spinal .0004 .036 .014 −1.9×10−4 −0.9×10−4

Right cortico-spinal .0002 .049 .023 −1.3×10−4 −0.7×10−4

The table provides p-values for the hypothesis test of differences between 1 and 2 year
old subjects. Columns 3–4 and 5–6 show the maximum and average pointwise
differences between the mean functions of the two groups.
diffusion properties due to development. In this case the p-value of
the hypothesis testing framework of the Functional analysis of tract
properties section is less relevant as large changes are expected, but
the discriminant direction provides localized information about major
changes in diffusion properties across age.

Subjects were imaged on a Siemens 3T Allegra scanner using a DTI
protocol with 10 repetitions of a non-diffusion weighted image plus 6
diffusion weighted gradient directions using a b-value of 1000 s/mm2

and a voxel size of 2×2×2 mm2. After image acquisition each
repetition of the sequence was corrected for head motion by
registration to the non-diffusion weighted images using the DTI-
checker software.2 The atlas building procedure of the DTI atlas
building section was applied to a database of 49 healthy controls
including 22 one year old subjects and 27 two year old subjects. The
transformations were initialized to a template T2 atlas appropriate for
pediatric images. The feature image for atlas building was computed
with a Gaussian kernel width of σ=2.0 mm, and atlas building was
performed in a multi-resolution framework.

After registration and averaging, the atlas tensor imagewas used to
identify four tracts of interest: genu, splenium, left cortico-spinal tract,
and right cortico-spinal tract. A streamlime tractography algorithm
using Runge-Kutta integration of the principal eigenvector field was
used to extract the fiber tracts.3 Fibers were tracked from manually
drawn seed regions in the atlas image and constrained to pass through
a manually drawn target region. As mentioned in the DTI atlas
building section, the atlas image provides improved SNRwhich allows
lower FA thresholds than typically used for processing of single
images. Fig. 5 shows a comparison of the genu tract for one subject
mapped from the atlas and the corresponding tract generated by
2 http://www.ia.unc.edu/dev/download/dtichecker/index.htm.
3 http://www.sci.utah.edu/~gcasey/software.

http://www.ia.unc.edu/dev/download/dtichecker/index.htm
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Fig. 8. (a) The mean functions for the genu tract 1 and 2 year old groups along with (b) the linear discriminant which describes the function that maximizes separation between the
groups. Here, the FAvalues increase from 1 to 2 years, and the Frobenius normvalues decrease in a correlatedmanner. The FA changes are localized towards the center of the tract and
are less informative at both the left and right ends of the tract.
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tractography in the native space. In the entire population, the mapped
tracts and individually computed tracts for the genu were mapped to
binary voxel images. Dice coefficients were computed for each
individual. The median dice coefficient for the cohort was 69 which
is a reasonable overlap given the instability of streamline tractography
methods. Previous work on comparing histology to fiber tractography
has shown the difficulty in using dice coefficients and their
dependence on the various parameters for tractography (Dauguet
et al., 2008).

After generation of the atlas template tracts, data from the
individual subject images was mapped to these tracts using the
transformations created during atlas building. Tract oriented functions
were computed for each subject using an origin defined in the atlas.
Thirty b-spline control points evenly spaced in the arc-length
parameter twere used to fit each function, and the resulting functions
for the genu, splenium, and the left and right cortico-spinal tracts are
shown in Figs. 6 and 7. After evaluation of the variance-covariance
matrix for each tract, the number of PCA modes for the tract was
selected to maintain 90% of the variance resulting in between 6–10
PCA modes per tract. Permutation testing over the Hotelling T2

statistics was run for each tract with 100,000 permutations, and the
FLD associated with the null permutation was computed for
visualization. The resulting p-values as well as the maximum and
average pointwise differences of diffusion measures between groups
Fig. 9. (a) The mean functions of the left cortico-spinal tract for the 1 and 2 year old groups
separation between the groups. Here FA increases in regions inferior of the callosal fibers an
interaction and crossing between fibers in this region.
along the tract are summarized in Table 1. All the tracts indicate a
general trend of increase in FA and a correlated decrease in Frobenius
norm from 1 to 2 year old groups. Fig. 8 shows a visualization of the
discriminant function for the genu tract that indicates an increase in
FA and a correlated decrease in Frobenius norm from the 1 year to
2 year old groups with the effect focused in the center of the tract and
trailing off as the tract enters the grey matter regions of the cortex. In
the cortico-spinal tracts there is some evidence of localized changes.
Fig. 9 shows the mean functions for the two groups and the
discriminant direction. The discriminant indicates that FA increases
from 1 to 2 years in regions of the tract inferior of the callosal fibers,
while the FA decreases in regions at the callosal fibers and above. This
localized change could indicate a possible increase in orientation
complexity or crossing fibers during development.

Hypothesis testing between controls and MVMs in neonate imaging

Prenatal MVM is a condition characterized by enlargement of the
lateral ventricles diagnosed by ultrasound and has been associated
with increased risk of neuropsychatric disorders (Gilmore et al., 1998).
Previous investigation of DTI quantities in MVM have found a
significant decrease in FA from controls in manually identified regions
of splenium as well as significant increase in MD in regions of the
genu, splenium, and cortico-spinal tracts (Gilmore et al., 2008).
along with (b) the linear discriminant which describes the function which maximizes
d decreases as the tract passes near the corpus callosum. This could indicate increased



Fig. 10. Template fiber tracts in atlas of neonate subjects overlaid on the FA image of the
neonate atlas.

Table 2
Tract differences from neonate controls to MVMs

Tract p-value FA Frobenius norm

Max Avg Max Avg

Genu .99 .0086 .0020 1.1×10−4 0.32×10−4

Splenium .0001 .039 − .019 5.7×10−4 2.1×10−4

Left cortico-spinal .24 .016 .00015 1.5×10−4 −0.6×10−4

Right cortico-spinal .80 .022 .0034 8.8×10−5 −2.6×10−5

The table provides p-values for the hypothesis test of differences between controls and
MVMs. Columns 3–4 and 5–6 show the maximum and average pointwise differences
between the mean functions of the two groups.
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The atlas building method described in the DTI atlas building
section was applied to a database of 114 images including 85 controls,
13 MVMs, 12 offsprings of schizophrenics, and 4 offsprings of bi-polar.
IRB approval was provided by the University of North Carolina School
of Medicine, and informed consent was obtained from all subjects.
Future work will study the different groups within this database, but
for this study we focus on the comparison of MVMs to controls.
Transformations were initialized to a neonate specific template with
T2 weighting. The feature image was computed at σ=1.5 mm for each
subject, and the atlas building procedure was applied in a multi-
resolution framework. After diffeomorphic registration of each tensor
image, an atlas tensor image was created by averaging the deformed
images. In the atlas tensor image, tracts were computed for the genu,
splenium, and left and right cortico-spinal tract as shown in Fig. 10.

Analysis of tracts was performed on the left and right cortico-
spinal tracts, genu, and splenium. Statistically significant differences
were found in the splenium tract but not the genu or cortico-spinal
tracts. Fig. 11 shows the discriminant direction for the splenium tract
and indicates a decrease in FA and a correlated increase in Frobenius
norm from control subjects to those with MVM. Results for all
analyzed tracts are summarized in Table 2.

Conclusion and discussion

We have presented a method for making inferences about group
differences in fiber tract diffusion properties. Our framework
combines a method for spatial normalization of tensor images with
Fig. 11. (a) The mean functions for the splenium tract in control and MVM neonates are sh
significant differences in tract properties are attributed to an decrease in FA and a increase
a method for quantitative tract analysis. Within this framework we
apply a novel method for joint analysis of tensor shape parameters
using statistical inference of populations of multivariate continuous
functions. The statistical framework provides a method for both
hypothesis testing and localizing the differences determined by the
hypothesis test.

There are several limitations to the proposed methodology. First,
the atlas building methodology of the DTI atlas building section
assumes that the overall appearance of DTI images is sufficiently
similar between the two groups that registration to a single
coordinate system is feasible, as is common in brain mapping
approaches. In studies where subjects with severe geometric distor-
tions such as tumors are present, this approach is likely not feasible.
Secondly, tracts which are small or inconsistent even among the same
group will be challenging to identify in the atlas. For this reason, we
have focused on large major fiber bundles where consistency is
expected. Finally, the statistical analysis relies on tensor shape
measures to make inference about potential changes in tissue
structure. However, there are several other effects which could have
an impact on the tensor shape besides tissue change. For example,
varying degrees of partial voluming effects can cause differences in
total diffusivity that do not necessarily reflect changes in axon density
ormyelination. Thismay be part of the underlying change found in the
splenium of the MVM population due to partial voluming with the
lateral ventricles. Further studies are necessary to investigate the
underlying biological cause of detected differences in DTI measures.

In this work, we have focused on analysis of the diffusion tensor
model rather than high angular resolution diffusion imaging (HARDI)
models. This is done primarily because of the constraints of currently
available clinical data. In the future we anticipate that some level of
higher order modeling will be required to fully capture the geometry of
anatomical fiber bundles and resolve fiber crossings. The statistical
analysis presented in this paper can be readily extended to more
complex information given appropriate measures of diffusion shape for
more complexmodels. For example thegeneralizedmeasures presented
own along with the (b) Fisher linear discriminant. The discriminant indicates that the
in Frobenius norm in MVMs.
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by Özarslan et al., (2005) could be used within the same framework.
More advanced tractography methods incorporating HARDI data could
also improve the generation of the template fiber tract.

In summary, we have presented a novel method for detecting and
understanding differences between diffusion properties of DTI fiber
bundles. The methodology is demonstrated on a clinical study of
neurodevelopment. In this study changes between 1 and 2 year
populations were assessed and localized in several key tracts and
significant differences were found between neonate controls and
MVMs.
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