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Abstract

Tensor field visualization is a challenging task due in part to the multi-variate nature of individual tensor samples.
Glyphs convey tensor variables by mapping the tensor eigenvectors and eigenvalues to the orientation and shape
of a geometric primitive, such as a cuboid or ellipsoid. Though widespread, cuboids and ellipsoids have problems
of asymmetry and visual ambiguity. Cuboids can display misleading orientation for tensors with underlying rota-
tional symmetry. Ellipsoids differing in shape can be confused, from certain viewpoints, because of similarities in
profile and shading. This paper addresses the problems of asymmetry and ambiguity with a new tunable continuum
of glyphs based on superquadric surfaces. Superquadric tensor glyphs enjoy the necessary symmetry properties of
ellipsoids, while also imitating cuboids and cylinders to better convey shape and orientation, where appropriate.
The new glyphs are demonstrated on fields of diffusion tensors from the human brain.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations I.3.8 [Computer Graphics]: Applications

1. Introduction

Scientific visualization techniques convey structure and in-
formation over a range of scales, from large-scale patterns
spanning an entire dataset, down to the individual samples
comprising the dataset. When working with non-scalar data
from medical imaging, such as diffusion or strain tensors
from MRI [BMB94, AW01], low-level inspection of indi-
vidual tensors is a necessary first step in exploring and
understanding the data. Glyphs, or icons, depict multiple
data values by mapping them onto the shape, size, orien-
tation, and surface appearance of a base geometric primi-
tive [PvWPS95]. Ideally, judicious composition of multiple
glyphs from across the tensor field can hint at larger-scale
features that may be subsequently explored and extracted
with other visualization techniques, such as hyperstream-
lines [DH95], stream-tubes, or stream-surfaces [ZDL03].

Isotropy (Spherical); Linear anisotropy; Planar anisotropy

Figure 1: Three basic diffusion tensor shapes.

Diffusion tensors can be represented as symmetric three-
by-three matrices, which have three real, positive eigenval-
ues and three real-valued orthogonal eigenvectors [Str76]. A
diffusion tensor T can be factored as T = RΛΛΛR−1 where
ΛΛΛ is a diagonal matrix of eigenvalues (by convention sorted
λ1 ≥ λ2 ≥ λ3), and R is a rotation matrix that transforms the
standard basis onto the eigenvector basis. In this paper, “ten-
sor shape” and “tensor orientation” refer to the eigenvalues
and eigenvectors, respectively, of the tensor. The anisotropy
of a tensor expresses the amount of variation in the eigenval-
ues. If tensors do not have any anisotropy (λ1 = λ2 = λ3),
they are considered spherical in shape. Anisotropic diffusion
tensors can have linear shapes (λ1 > λ2 = λ3), planar shapes
(λ1 = λ2 > λ3), or some combination; see Figure 1.

Glyph-based tensor visualization transforms an initial
glyph geometry G into a tensor glyph GT by

GT = RΛΛΛG , (1)

and then translating GT to the field location of tensor
T [SML03]. By not applying rotation R−1, the axis-aligned
features of G (such as the edges of a unit cube) become rep-
resentations in GT of the tensor eigenvalues and eigenvec-
tors. Different visualization effects are created by choosing
different glyph geometries G, such as cubes [SML03], cylin-
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ders [WLW00], or spheres [PB96, BP96, LAd∗98]. Eigen-
vectors are known only up to line orientation (they have no
signed direction), which constrains practical glyph geome-
tries to shapes with 180 degree rotational symmetry. A com-
putational advantage of using spheres (to create ellipsoidal
glyphs) is that tensor diagonalization is not required, only
matrix multiplication: GT = R−1ΛΛΛG = R−1ΛΛΛRG = TG.

The focus of this paper is the simple task of creat-
ing better tensor visualizations, with a new glyph geome-
try based on superquadric surfaces [Bar81]. Superquadric
tensor glyphs build on previous research by Shaw et
al. which applies superquadrics to glyph-based visual-
ization [SEK∗98, SHB∗99, ERS∗00, ES01]. They describe
how parameterizing shape variations to encode data vari-
ables should enable effective and intuitive “perceptualiza-
tions”, given that distinguishing shape from contours and
shading is a pre-attentive process [PCC∗92]. Offering a con-
tinuous two-parameter space of shapes, superquadrics are a
natural choice for a tunable geometric primitive. The ability
to discern differences between rendered superquadrics was
experimentally quantified [SHB∗99], and the superquadric
glyphs were successfully used for document corpus visual-
ization [SEK∗98] and scientific visualization of magnetohy-
drodynamic flow [ERS∗00, ES01].

The contribution of this paper is to use superquadrics as a
tensor glyph rather than simply a multi-variate glyph. This
requires selecting an intuitive subset of the superquadric pa-
rameter space to encode tensor shape, and ensuring that the
display of tensor orientation faithfully conveys the symme-
tries that can arise in the tensor eigensystem.

2. Motivation

Evaluating existing tensor glyph geometries and their prop-
erties is facilitated with an intuitive domain that spans all
possible tensor shapes. Such a domain is afforded by the
geometric anisotropy metrics of Westin et al. [WPG∗97].
Given the non-negative tensor eigenvalues λ1 ≥ λ2 ≥ λ3, the
metrics quantify the certainty (c) with which a tensor may be
said to have a given shape:

cl =
λ1−λ2

λ1 +λ2 +λ3

cp =
2(λ2−λ3)

λ1 +λ2 +λ3
(2)

cs =
3λ3

λ1 +λ2 +λ3

The three metrics add up to unity, and define a barycen-
tric parameterization of a triangular domain, with the ex-
tremes of linear, planar, and spherical shapes at the three
corners. The barycentric shape space has been used as the

domain of transfer functions for direct volume rendering of
diffusion tensors [KWH00], and as an intuitive basis of com-
parison between various anisotropy metrics [AHK∗00]. The
barycentric shape space is drawn in Figure 2 using cuboid
glyphs to emphasize variations in aspect ratio over the trian-
gular domain. Complete isotropy is at the top corner (cs = 1),
and anisotropy increases toward the lower edge.

PSfrag replacements

cl = 1 cp = 1

cs = 1

Figure 2: Tensor shapes, with cuboids.

Figure 2 illustrates a problem with cuboid glyphs: mis-
leading depiction of under-constrained orientation. Because
cp = 0 ⇒ λ2 = λ3 for the linear shapes at the left edge of
the triangle, computation of the corresponding eigenvectors
v2 and v3 may return any two perpendicular vectors within
the plane normal to the principal eigenvector v1. An analo-
gous problem occurs with the planar shapes along the right
edge of the triangle. The cuboid edges depict orientation
with a visual clarity that is disproportionate to the low nu-
merical accuracy with which the eigenvectors can be calcu-
lated [GL96]. For intermediate shapes, however, the sharp
edges of the cuboids are good at depicting legitimate tensor
orientation.

PSfrag replacements
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Figure 3: Tensor shapes, with cylinders.
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(a) Eight different tensors, shown with ellipsoid glyphs.

(b) Same eight glyphs, but with a different viewpoint.

Figure 5: From some viewpoints, ellipsoids poorly convey tensor shape.

PSfrag replacements
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Figure 4: Tensor shapes, with ellipsoids.

Cylinder glyphs resolve this problem by aligning their
axis of rotation along the eigenvector for which the numer-
ical accuracy is greatest, as done in Figure 3. There is un-
fortunately a discontinuity problem, with a seam down the
middle of the shape space. Arbitrarily small changes in the
tensor shape can result in discontinuous changes in the glyph
direction, even though the precise location of the seam is
somewhat arbitrary. An alternate definition of cl ,cp,cs (nor-
malized by λ1 instead of λ1 +λ2 +λ3 [WMK∗99]) produces
a slightly different distribution of intermediate shapes within
an otherwise similar barycentric shape domain. In addition,
because cylinders have only one axis of symmetry, cylindri-
cal glyphs depict meaningless orientation for spherical ten-
sors, which have no intrinsic orientation.

Ellipsoidal glyphs, shown in Figure 4, avoid all such sym-
metry problems. There is, however, a problem of visual am-
biguity. Glyphs with differing tensor shapes exhibit similar
image-space shapes, with only shading cues for disambigua-
tion. Figure 5 demonstrates a pathological example. A wide
range of tensors rendered with ellipsoid glyphs can appear
similar from one viewpoint (Figure 5(a)), though they are
clearly different when seen from another viewpoint (Fig-
ure 5(b)). This example is important because it demonstrates
that even standard, intuitive glyph geometries can sometimes
dramatically fail to properly convey data attributes.

3. Method

The problems of asymmetry and ambiguity can be addressed
with a glyph geometry that changes according to the under-
lying tensor shape. Ideally, the best of Figures 2, 3, and 4
could be combined: cylinders for the linear and planar cases,
spheres for the spherical case, and cuboids for intermediate
cases, with smooth blending in between. The general strat-
egy is that edges on the glyph surface signify anisotropy:
anisotropy implies a difference in eigenvalues, which im-
plies confidence in computing eigenvectors [GL96], which
implies lack of rotational symmetry, which can be visually
highlighted by a strong edge on the glyph surface. When two
eigenvalues are equal, the indeterminacy of the eigenvectors
is conveyed with a circular glyph cross-section.

Superquadrics accomplish this goal. They can be parame-
terized explicitly (for polygonal glyph representation):

qz(θ,φ) =







cosα θsinβ φ
sinα θsinβ φ

cosβ φ






,

0≤ φ≤ π
0≤ θ≤ 2π , (3)

where xα = sgn(x)|x|α, or superquadrics may be represented
implicitly (such as for raytracing):

qz(x,y,z) =
(

x2/α + y2/α
)α/β

+ z2/β−1 = 0. (4)

Figure 6 shows how α and β control superquadric shape.
Superquadric tensor glyphs draw from a subset of these pos-
sibilities, defined by β ≤ α ≤ 1. Note that the formulations
of qz and qz are not symmetric with respect to axis permu-
tation. Aside from the spherical case, the superquadrics may
have continuous rotational symmetry around only the z axis
(when α = 1). Thus, as a counter-part, it is useful to define
superquadrics around the x axis:

qx(θ,φ) =







cosβ φ
−sinα θsinβ φ
cosα θsinβ φ






,

0≤ φ≤ π
0≤ θ≤ 2π , (5)

qx(x,y,z) =
(

y2/α + z2/α
)α/β

+ x2/β−1 = 0. (6)

With these ingredients, superquadric tensor glyphs are
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Figure 6: Superquadrics defined by Equation 3. The gray
triangle indicates the subset of the shape space employed by
superquadric tensor glyphs. Edges indicate the tessellation
resulting from uniform steps in φ and θ.

now defined in terms of the geometric anisotropy metrics
cl , cp, and a user-controlled edge sharpness parameter γ:

cl ≥ cp =⇒















α = (1− cp)
γ

β = (1− cl)
γ

q(θ,φ) = qx(θ,φ)
q(x,y,z) = qx(x,y,z)

(7)

cl < cp =⇒















α = (1− cl)
γ

β = (1− cp)
γ

q(θ,φ) = qz(θ,φ)
q(x,y,z) = qx(x,y,z)

These equations define a base glyph geometry that is
made into a tensor visualization via Equation 1. Figure 7 il-
lustrates superquadric glyphs with the same tensors, lighting,
and viewpoint as used in Figures 2, 3, and 4. The glyphs have
the necessary symmetry properties of ellipsoids, but convey
orientation and shape more clearly by imitating cylinders
and cuboids where appropriate. The edge sharpness param-
eter γ controls how rapidly edges form as cl and cp increase,
allowing the user to control the visual prominence of ori-
entation information at low anisotropy levels. Ideally, appli-
cation characteristics would enable an informed choice of
γ: perhaps visualizations of noisy measurements would use
a lower (more conservative) γ than visualizations of high-
precision simulation data. Note that pure ellipsoids can be
recovered as a special case, with γ = 0.

The rationale for how α and β are defined in Equation 7

(a) γ = 1.5

(b) γ = 3.0

(c) γ = 6.0

Figure 7: Tensor shapes, with superquadric glyphs, and
three different values of edge sharpness parameter γ.

can be understood with reference to Figure 6. For tensors
that are more linear than planar (cl ≥ cp), the glyph shape
becomes more distinctly cylindrical as cl increases and β
decreases. True rotational symmetry is only present when
cp = 0 ⇒ α = 1. As the planar component increases with
cp, the shape gradually tends away from rotational symmetry

c© The Eurographics Association 2004.



Kindlmann / Superquadric Tensor Glyphs

(a) Same tensors, viewpoint, and lighting as Figure 5(a), but with superquadric glyphs.

(b) Same as Figure 5(b), but with superquadric glyphs.

Figure 9: Superquadrics convey shape differences more reliably than ellipsoids (γ = 3).

cl = 0.33 cl = 0.31 cl = 0.29 cl = 0.27
cp = 0.27 cp = 0.29 cp = 0.31 cp = 0.33

Figure 8: Parameterization change across the linear/planar
seam, from cl > cp to cl < cp (γ = 3).

due to lower α, increasing the prominence of edges around
the glyph circumference. Analogous reasoning holds for
cl < cp. When cl = cp, α = β, and qx(x,y,z) = qz(x,y,z),
in which case the x axis (Equations 5, 6) and the z axis (Equa-
tions 3, 4) superquadrics are identical. Thus, like cylinders
(Figure 3), superquadric tensor glyphs do have a seam be-
tween the linear and planar sides of the shape space, but
the seam is mathematically continuous. Figure 8 illustrates
how the parameterization change may have an effect on a
tessellation-based surface representation.

Figure 9 shows how superquadric glyphs are better at con-
veying shape than the ellipsoid glyphs in Figure 5, using the
same tensors, viewpoint, and lighting. For example, the third
and sixth glyphs from the left have precisely linear (cp = 0)
and planar (cl = 0) shapes, respectively. The existence and
the orientation of the resulting rotational symmetry is easier
to see with superquadrics than with ellipsoids.

4. Results

Diffusion tensor magnetic resonance imaging (DT-MRI) of
nerve tissue indirectly measures the fibrous structure of
white matter by detecting the directionally constrained dif-
fusion of water molecules within it [BMB94], resulting in a
3-D field of tensor values. Some DT-MRI voxels within the
largest white matter structures (such as the corpus callosum)
exhibit purely linear anisotropy, because the whole voxel re-
gion is homogeneously uni-directional. However, the com-
plex branching and crossing of the white matter tracts, com-
bined with the limited resolution of the DT-MRI modal-
ity, produces many measurements with significant planar
anisotropy. Visualizing the locations and orientation of pla-

nar anisotropy is a step towards understanding the complex
nature of white matter connectivity [WLW00].

For this task, Figure 10 compares the effectiveness of su-
perquadric tensor glyphs and ellipsoids for visualizing a por-
tion of an axial slice through a diffusion tensor dataset, cen-
tered on the right half of the splenium of the corpus callosum
(the black region is the lateral ventricle). The background
squares represent isotropy levels for each sample (“interest-
ing” anisotropic tensors have a darker background and hence
greater contrast with the glyph). Planarly anisotropic sam-
ples are located near the center of the image. With ellipsoids,
it is difficult to discern which of the glyphs represent pla-
nar anisotropy, and it harder to appreciate the differences in
shape that may occur between neighboring samples. Also,
the straight edges of the linearly anisotropic superquadric
glyphs provide a stronger orientation indication than possi-
ble with the rounded contours of ellipsoids.

In three-dimensional glyph-based visualizations of tensor
volumes, it is important to restrict the number of glyphs, to
avoid creating an illegible mass. In diffusion tensors, glyphs
may be culled according to an anisotropy threshold (such
as cl + cp > 0.5) so that isotropic tensors (belonging to
gray matter or cerebral spinal fluid) are hidden, resulting
in a coarse depiction of the major white matter pathways.
Figure 11 uses this method to compare ellipsoid and su-
perquadric glyphs for visualizing half of a diffusion tensor
volume, centered again at the right half of the splenium of
the corpus callosum. The superquadrics depict the amount
and orientation of the planar component in the white matter
more clearly than the ellipsoids. Comparing the planar ori-
entation with the direction of adjacent linear anisotropy is an
example of a visualization query which is better answered by
the new glyph method.

5. Discussion

In comparing Figures 5(a) and 9(a), one could argue that
various rendering effects would help clarify the shape dif-
ferences among the ellipsoids: different lighting, specular
highlights, or surface textures, for example. Interactive ma-
nipulation and stereo rendering would also help. On the
other hand, these modifications would also benefit the de-
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(a) Ellipsoids

(b) Superquadrics (γ = 3)

Figure 10: Slice of DT-MRI dataset of brain visualized with
ellipsoids (top) and superquadrics (bottom).

piction of superquadrics. The same diffuse lighting and
fixed viewpoint, which failed to distinguish the ellipsoid
shapes, were sufficient to differentiate the superquadrics. Us-
ing data-driven variable geometry (Equation 7), in addition
to the eigenvalue-based scaling, helps superquadric glyphs
convey shape more explicitly than previous tensor glyphs.
Fore-shortening of superquadric glyphs can still create vi-

(a) Ellipsoids

(b) Superquadrics (γ = 3)

Figure 11: 3-D region of DT-MRI dataset of brain visualized
with ellipsoids (top) and superquadrics (bottom).

sual ambiguity, although the range of affected viewpoints is
smaller than with ellipsoids.

Starting with a more expressive glyph geometry allows
further effects (color, textures, etc.) to be saved for encod-
ing additional degrees of freedom that may be required in
a more complex visualization application. The best way
to enrich three-dimensionsional glyph-based visualizations
with extra information is an important direction of future
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work, since there are usually a number of related field val-
ues which should be visualized along with tensors. Inspi-
ration may be drawn from artistic methods of painting and
illustration [LAd∗98, LKF∗98, KML99, RLH∗01]. Specifi-
cally, the composition of multiple glyphs into a depiction of
larger-scale structure may benefit from context-sensitive and
multi-scale variation of rendering style [HIK∗01].

The incentive to create sharp edges in the superquadric
glyphs was based on the observation that edges generate a
strong visual cue for orientation. However, it is the mathe-
matical property of rotational symmetry that constrains the
glyph to be cylindrical and spherical according to the ten-
sor eigensystem, and the idea of continuity that informed the
design of an invisible seam through the middle of barycen-
tric shape space. The combination of aesthetic judgment and
mathematical constraint may be useful in the design of other
visual abstractions for multi-variate and tensor visualization.
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