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Abstract

The power of medical imaging modalities to measure and characterize biological tissue is
amplified by visualization and analysis methods that help researchers to see and understand
the structures within their data. Diffusion tensor magnetic resonance imaging can measure
microstructural properties of biological tissue, such as the coherent linear organization of
white matter of the central nervous system, or the fibrous texture of muscle tissue. This
dissertation describes new methods for visualizing and analyzing the salient structure of
diffusion tensor datasets. Glyphs from superquadric surfaces and textures from reaction-
diffusion systems facilitate inspection of data properties and trends. Fiber tractography
based on vector-tensor multiplication allows major white matter pathways to be visualized.
The generalization of direct volume rendering to tensor data allows large-scale structures
to be shaded and rendered. Finally, a mathematical framework for analyzing the deriva-
tives of tensor values, in terms of shape and orientation change, enables analytical shading
in volume renderings, and a method of feature detection important for feature-preserving
filtering of tensor fields. Together, the combination of methods enhances the ability of dif-
fusion tensor imaging to provide insight into the local and global structure of biological
tissue.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
Scientific visualization combines the image synthesis methods of computer graphics

with mathematical models of the physical world to create a visual framework for discov-
ering, understanding, and solving scientific problems [159]. Magnetic resonance imaging
(MRI) has become an important source of medical data due to its ability to noninvasively
image organs and tissue. Techniques for interpreting MRI data have grown in complexity
as MRI itself has become a more sophisticated and versatile indicator of biological struc-
ture and function. Within the last 10 years, diffusion tensor MRI has matured as way to
measure the microstructural organization of living tissue, such as the white matter in the
nervous system [15, 16]. Because each point in a three-dimensional diffusion tensor MRI
scan is a symmetric 3 × 3 matrix, the data can not be interpreted simply by inspecting
grayscale images of scans. This dissertation presents new scientific visualization methods
for understanding and analyzing the salient structure within diffusion tensor datasets.

Diffusion is the transport of one material through another by the random microscopic
motion of molecules due to thermal energy. Diffusion tensor MRI (DT-MRI) characterizes
the manner in which the diffusion of water molecules is directionally constrained by the
fine structure of the medium in which the molecules are moving. DT-MRI is thereby an
indirect indicator of the fine-scale physical organization of tissue. The proper functioning
of organs in the body depends on the integrity of their fine-scale organization. Different
parts of the brain, for example, communicate through organized bundles of axons, termed
white matter for the color of the fatty myelin covering around the axon which aids signal
conduction [73]. The coherent organization of axons in white matter permits water
to diffuse faster along the axon path than across it, which allows DT-MRI to assess
the directional structure of the white matter in the brain [24]. In light of this unique
measurement capability, there has been a recent surge of research in applying DT-MRI to
problems in neuroanatomy [98, 75, 40], surgical planning [179, 81], as well as the detection
and/or characterization of conditions such as stroke [173, 74] and neurodegenerative
disease [87, 161].

To provide an initial feel for at what diffusion tensor data looks like, Figure 1.1 shows
one slice through a DT-MRI scan, visualized with a matrix of images, each of which
displays a single component of the matrix representation of the diffusion tensor. As
noted by Laidlaw, this is a direct way of inspecting the tensor values, but it provides
little insight into the underlying structure [110]. Two of the most popular methods of
visualizing diffusion tensors, shown in Figure 1.2, are improvements over Figure 1.1,
but they are still slice-based. Figure 1.2(a) shows in grayscale the level of anisotropy,
or the extent to which diffusion is constrained in some directions more than others.
The white matter deep within the brain is brighter than the gray matter at the surface.
Figure 1.2(b) shows, with a simple spherical colormap [151, 142], the direction along which
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diffusion is fastest, which is generally the direction of the white matter pathway [24]. The
precise definition for the quantities shown in these images is given in Chapter 2. With
these kinds of visualizations, the basic patterns in the tensor field can be seen, but the
overall three-dimensional structure is not shown, nor are the six degrees of freedom in
the individual tensor values. In both images, the tensor information was visualized by
first reducing it to a simpler form, either a scalar or a vector.

The challenges of using scientific visualization to understand diffusion tensor fields
are to decide which attributes of the tensor value should be displayed, how those tensor
attributes will be visually abstracted into a comprehensible form, and where within the
field the data should be displayed, versus being elided in the interests of clarity. These
general problems are not unique to tensor visualization, but the intricate and complex
structure of the white matter pathways within the central nervous system, and the
multivariate nature of tensor values, demand that the visualization methods be especially
judicious in their use of form, color, and shading to create a legible and informative image.
The same methods can also characterize biological structure in other tissues, including
cardiac muscle, as done in Section 3.1.5.

1.2 Overview
This dissertation presents a combination of methods that approach the task of diffusion

tensor visualization and analysis in different and complementary ways.
Chapter 2 provides three kinds of background information: the mathematics of ten-

sor values and their operations (Section 2.1), the basic physics of diffusion, MRI, and
diffusion imaging (Section 2.2), and most importantly, a thorough description of tensor
shape (Section 2.3). This section is important because it ties together the mathematical
description of tensor shape with the biological and anatomical significance of shape in
DT-MRI scans, and presents a two simple visual abstractions for conveying tensor shape.

Dxx Dxy Dxz

Dyy Dyz

Dzz

Dxy

Dxz Dyz

Figure 1.1. Diffusion tensor components
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(a) Anisotropy (b) Directional col-
ormap

Figure 1.2. Slice-based tensor visualizations

Chapter 3 gives two methods for conveying all tensor attributes in a restricted set
of discrete locations, either by superquadric glyphs (Section 3.1), or by an adaptation
of reaction-diffusion systems to create a texture of glyph-like spots (Section 3.2). The
underlying form of the superquadric glyph smoothly changes between a sphere, a cylinder,
and a cube, conveying the tensor shape and orientation more vividly than is possible with
standard ellipsoidal glyphs. The irregular but dense placement of the reaction-diffusion
tensor spots allows the underlying structure of the field to be seen more clearly than with
regularly spaced glyphs.

Chapter 4 describes a fiber tractography method that models the pathways of axons
through the white matter, by integrating the directional information of the tensor, similar
to a streamline for vector visualization. Propagated from a small number of locations
manually chosen by the user, tensorlines visualize the directional similarity along a
continuous path of tensors that indicate end-to-end connectivity. Tensorlines are more
robust than previous tractography methods because, by the technique of deflection, each
point along the integration is based on more of the tensor information (both shape and
orientation) than simply the single direction of largest diffusivity.

Chapter 5 goes deeper into tensor mathematics, describing a framework for character-
izing not tensor shape or orientation, but changes in tensor shape and orientation. This
chapter is not about visualization per se, but the framework provides a mathematical
vocabulary both for enriching visualization of tensor fields, as well as enabling a more
nuanced approach to tensor image processing. The approach of this chapter is based on
evaluating gradients of tensor invariants, and the tangents to tensor rotations, both of
which “live” in the space of tensor values, rather than the spatial domain of a tensor field.

Chapter 6 uses volume rendering to visualize tensor fields, in a manner conceptually
opposite that of Chapter 3. Rather than using glyphs to show all the tensor information
at a discrete and restricted set of locations, volume rendering seeks to show a restricted set
of tensor attributes everywhere in the continuous tensor field. This includes, for example,
the continuous structures and surfaces defined by an isosurface of the anisotropy level.
Section 6.4 presents analytical shading of anisotropy isosurfaces, based on the gradient
methods of Chapter 5, as a way to better communicate feature shape.

Chapter 7 describes preliminary work in applying the mathematics of Chapter 5 to the
task of feature-preserving image processing of tensor fields. Feature boundaries are any
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location at which particular tensor attributes change suddenly. The goal is to use local
measurements of tensors and tensor derivatives to help the extraction of global features
and structures, which can then be visualized by volume rendering, for example.

1.3 Contributions
The major contributions of this dissertation may be summarized as:

• A triangular barycentric space of tensor shape (introduced in Section 2.3.4, and
used throughout the dissertation) [102, 103, 2]. This is the first abstract visual
metaphor for describing and reasoning about the range of diffusion tensor shape,
and the characteristics of different shape measures.

• A tensor glyph formed from superquadric surfaces (Section 3.1) [100, 61, 104]. This
is the first tensor glyph that continuously changes its underlying geometry, and the
first application of superquadrics to tensor visualization.

• Using reaction-diffusion textures as a visualization device (Section 3.2) [103]. Pre-
viously used only for creating organic-appearing texture maps on surface models,
this work demonstrates that with some care, reaction-diffusion textures can emerge
as a closely-packed set of tensor glyphs.

• The use of “deflection” (tensor multiplication) as an ingredient in fiber tractography
(Chapter 4) [190]. Previous tractography methods used the direction of fastest
diffusion as the only source of directional information.

• The generalization of direct volume rendering to diffusion tensor fields, with shading
based on tensor shape and invariant gradients (Chapter 6) [103]. Direct volume
rendering previously was applied only to scalar and vector fields.

• The biologically-informed decomposition of tensor changes into subspaces of shape
changes and orientation changes (Chapter 5), to improve shading in tensor vol-
ume rendering (Section 6.4), and for enabling a novel indicator for proximity of
orthogonally oriented fiber tracts (Chapter 7).

The possible applications of diffusion tensor imaging are growing, and visualization
of tensor data is an active area of recent research (see surveys in [76]). This dissertation
does not describe a general solution or an integrated system for understanding structure
within diffusion tensor fields. The chapters contribute a number of distinct methods which
broaden the possibilities of tensor visualization and analysis. Experience has shown that
the methods do tend to complement each other, such as the local visualization created by
the superquadric glyphs, versus the larger-scale forms shown in volume rendering. The
methods’ visual effectiveness is derived from how the elements of computer graphics are
adapted and transformed, as with the deformation of the reaction-diffusion texture into
a dense field of glyphs, or the use of smoothing shading in volume rendering.

Determining the ultimate success of the contributions may be done in different ways,
as summarized at the end of major sections or chapters: Section 2.3, Section 3.1.6,
Section 3.2.4, Section 4.4, Section 6.5, Section 5.9, and Section 7.3.
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1.4 Data and Methods
The methods presented here were developed and debugged on different real and

synthetic datasets. The real DT-MRI dataset used most often, and which (with the
exception of Section 7.2) is the only scan use for the figures in this dissertation, is a
particularly high resolution scan of the author, acquired in 1999 with about three hours
of scanning. The scanning was done by Dr. Andrew Alexander at the University of
Utah Hospital, on their 1.5 Telsa GE Signa Scanner. The original image resolution was
2.031 mm × 1.016 mm in-plane with a 260 mm × 260 mm field-of-view, up-sampled
by “zero-fill” interpolation (essentially a sinc() filter) to 1.016 mm × 1.016 mm. Slice
thickness was 2.0 mm, but two sets of slices were acquired, 1.0 mm apart, so that
with interleaving the Z resolution is nominally 1.0 mm. The number of DWI averages
was seven, using the six diffusion-sensitizing gradient directions originally published by
Basser [15], with TE = 78.4 ms, TR = 5 s. The diffusion weighting factor b was about
995 s/mm2.



CHAPTER 2

BACKGROUND

The material in this chapter serves as background for the research in the remainder
in the dissertation. Section 2.1 gives the mathematical background for this research,
including tensor analysis and the use of convolution to reconstruct and measure sampled
data. Section 2.2 describes the biological and physical origins of diffusion tensor data.
Section 2.3 summarizes existing knowledge about tensor invariants and shape metrics,
with the aid of two graphical devices for representing tensor shape: the eigenvalue wheel
which depicts the solutions to the cubic characteristic polynomial in terms of moments
of the tensor eigenvalues, and a triangular barycentric space of shape. The eigenvalue
wheel is based on a figure that appears in previous work by Nickalls [136]; the barycentric
shape space is a novel presentation of the anisotropy metrics of Westin [196].

2.1 Mathematical Background
This section reviews the mathematics on which this dissertation depends, concentrat-

ing on tensor algebra. Certain mathematics, mostly linear algebra, are assumed:

• Equivalence relations and equivalence classes
• Vector spaces and inner product spaces, cross products
• Bases for vector spaces
• Representation of linear transforms by matrices
• Representation of rotations by orthogonal matrices

Linear algebra textbooks [177, 84] cover these concepts in depth.
The basics of tensor algebra, tensor operations, and matrix representations are given

in Sections 2.1.1, 2.1.2, and 2.1.3. This dissertation is concerned only with symmetric
tensors, and Section 2.1.4 describes the simplifying consequences of tensor symmetry
in terms of eigenvalues and eigenvectors, which underly the ideas of tensor shape and
orientation. More thorough explanations of these topics can be found in textbooks [36,
72, 49, 86].

Section 2.1.5 is important because it defines formally how tensors can be considered
as elements of a vector space. Although it may seem confusing to say that a tensor is a
vector, the compelling motivation for this is that established geometric intuitions about
vectors, coordinates bases, and the projections of vectors onto each other, can then be
applied to tensors. This intuition guides the mathematical design of the tensor image
processing described in Chapter 5.
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2.1.1 Tensor Algebra Basics
A second-order tensor can be thought of as a linear transformation between vector

spaces. In this work, R
3, the vector space modeling the three-dimensional physical world,

will be both the domain and the range of the linear transformation. Unless otherwise
noted, a tensor in this work will always be second-order, which means that the tensor
maps vectors to vectors (as opposed to, say, a fourth-order tensor that maps second-order
tensors to second-order tensors). A tensor D takes as input a vector v and produces, by
tensor-vector multiplication, an output vector w = Dv. Linearity is defined in terms of
the usual addition and scaling of vectors: D(u + v) = Du + Dv and D(αv) = α(Dv).

The basic elements and operations of tensor algebra are defined in terms of simpler
operations like tensor-vector multiplication and vector dot products, without need for
any coordinate system. Table 2.1 summarizes the basic ingredients of tensor algebra. In
this summary, C and D are tensors, u, v and w are vectors, and α is a scalar.

A tensor D is symmetric if Dt = D and antisymmetric1 if Dt = −D. The set of all
symmetric three-dimensional tensors will be notated Sym3.

Not all tensors are invertible; those that are not invertible are called singular.
The following properties of the tensor product of two vectors are easily derived:

(u + v) ⊗ w = u ⊗ w + v ⊗ w
w ⊗ (u + v) = w ⊗ u + w ⊗ v

α(u ⊗ v) = (αu) ⊗ v = u ⊗ (αv)
(2.1)

The Kronecker delta δ will be useful in transforming tensor expressions, and is defined
as:

δij =
{

1 if i = j
0 if i �= j

Vectors and tensors are independent of any particular coordinate frame, but they
have a unique matrix representation in a given ordered basis. All bases in this work are
orthonormal bases: the basis vectors are all unit length and mutually orthogonal. As
a consequence, the otherwise important distinction between covariant and contravariant
indices of the tensor may be ignored. Tensors that are represented only in orthonormal

1The term skew-symmetric is also common; it is avoided here due to our use of “skewness” in a different
context.

Table 2.1. Summary of elements of tensor algebra.

Tensor Notation Defining Property
identity tensor I Iv = v for all v

zero tensor O Ov = 0 (zero vector) for all v
sum, difference of C, D C ± D (C ± D)v = Cv ± Dv for all v
(dot) product of C, D CD (CD)v = C(Dv) for all v

transpose of D Dt v · Dtu = u · Dv for all v, u
inverse of D D−1 DD−1 = D−1D = I

tensor product (or dyad) of u, v u ⊗ v (u ⊗ v)w = u(v · w) for all w
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bases are called Cartesian tensors. This dissertation is only concerned with Cartesian
tensors.

2.1.2 Matrix Representations
The orthonormality condition of a basis B = {b1,b2,b3} means that bi · bj = δij ,

which simplifies expressions for components of vectors and tensors. The matrix represen-
tation of vector v in basis B is:

[v]B =

 v1

v2

v3

 ; vi = bi · v (2.2)

⇒ v =
3∑

i=1

vibi =
3∑

i=1

(bi · v)bi

This may be written more concisely with index notation (or Einstein summation nota-
tion), in which the repetition of an index within a term implies summation of the term
over the index’s range of values:

v = vibi = (bi · v)bi (2.3)

The effectiveness of index notation to manipulate and simplify otherwise complicated
expressions more than compensates for the initial effort required to understand the
notation. Appendix A provides a more detailed explanation of index notation and its
usage. Index notation will be used in the remainder of the dissertation.

The matrix representation of tensor D in basis B is the matrix [D]B for which

[Dv]B = [D]B[v]B (2.4)

holds for all vectors v. This definition can be expanded with Equation 2.2, and then
column i of [D]B can be found by setting v = bi: b1 · Dv

b2 · Dv
b3 · Dv

 = [D]B

 b1 · v
b2 · v
b3 · v

 ⇒ [D]B =

 D11 D12 D13

D21 D22 D23

D31 D32 D33


Dij = bi · Dbj (2.5)

The identity tensor I has the same matrix representation, notated I, in every basis:

([I]B)ij = bi · Ibj = bi · bj = δij

⇒ [I] = I =

 1 0 0
0 1 0
0 0 1


A tensor which has the same representation in every basis is called isotropic, although
the term also applies to a material property which is modeled with an isotropic tensor
(such as diffusion within water). All isotropic tensors have the form αI for some scalar
α.
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The matrix representation of u ⊗ v coincides with the outer product of the matrix
representations of the vectors:

([u ⊗ v]B)ij = bi · (u ⊗ v)bj

= bi · (u(v · bj))
= (u · bi)(v · bj)
= (ukbk · bi)(vlbl · bj)
= (ukδki)(vlδlj)
= uivj

⇒ [u ⊗ v]B =

 u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3


In particular, the outer product of two basis vectors is represented (in the same basis) as
a matrix which is all zeroes except for a single entry equal to 1:

([bi ⊗ bj ]B)kl = bk · (bi ⊗ bj)bl

= bk · (bi(bj · bl))
= bk · (biδjl)
= δikδjl

The ability to represent a tensor with a matrix permits some tensor operations, like
multiplication, transposition, and inverse, to be understood, although not defined, in
more familiar terms. The following relationships can be derived (for an arbitrary basis)
from the definitions given so far:

[CD] = [C][D]
[Dt] = [D]t

[D−1] = [D]−1

This makes clear, for example, that a symmetric tensor is always represented by a sym-
metric matrix, that an antisymmetric tensor is always represented by an antisymmetric
matrix, and that a tensor is invertible if and only if its matrix representation is invertible.

In the DT-MRI literature, it is fairly common to represent (or even identify) the
diffusion tensor with the matrix representation in the coordinate frame determined by
the MRI scanner. This is called the laboratory frame, which we notate L, and in which
the subscripts are x, y, and z:

[D]L =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


2.1.3 Trace, Determinant, Contraction, Norm

Some functions of tensors, like trace tr() and determinant det(), are actually defined
in terms of their standard matrix counterparts:

tr(D) = tr([D]) = D11 + D22 + D33 (2.6)

det(D) = det([D]) =

∣∣∣∣∣∣
D11 D12 D13

D21 D22 D23

D31 D32 D33

∣∣∣∣∣∣ (2.7)
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As functions of tensors, tr() and det() are well-defined, because the trace and determinant,
as functions of matrices, are invariant under similarity (change-of-basis) transforms, which
is a standard result of linear algebra [84]. Also, a proof of the invariance of trace is given
in Appendix A.

With the trace of a tensor, we can define the double contraction, notated with “:”,
which maps a pair of tensors to a scalar:

C : D = tr(CDt) = CijDij (2.8)

The index notation expression assumes an orthonormal basis, but any basis leads to the
same value, by the invariance of trace. Note that a vector dot product can be expressed as
u ·v = uivi: one index is being “contracted” out by summation. The double contraction,
in contrast, sums over two matrix indices.

With double contraction, we can define the tensor norm, which provides a (scalar)
measure of the overall “size” of a tensor:

‖D‖ =
√

D : D =
√

DijDij (2.9)

The tensor norm equals the Frobenius norm of the matrix representation:

‖D‖ = ‖[D]‖F =
√

D2
xx + 2D2

xy + 2D2
xz + D2

yy + 2D2
yz + D2

zz (2.10)

2.1.4 Eigenvalues and Eigenvectors
An eigenvalue of a tensor D is a scalar λ for which there is a nonzero vector v satisfying

Dv = λv ⇔ (λI − D)v = 0

This means the tensor λI − D is singular, as is the matrix [λI − D]:

det([λI − D]) = det(λI − [D]) = 0 (2.11)

Equation 2.11 defines a cubic polynomial equation, called the characteristic equation, of
matrix [D]. Section 2.3.1 will examine the characteristic polynomial in more detail. As
can be easily shown from the change of basis formula for matrices, the characteristic
equation is in fact intrinsic to tensor D, rather than a function of any particular matrix
representation [84].

Associated with eigenvalue λ is a set of eigenvectors v for which Dv = λv. Actually,
the set of eigenvectors is a vector space, sometimes called an eigenspace, because it is
closed under addition and scalar multiplication. As a vector space, we can chose an
orthonormal basis for it, although the space will often only be one-dimensional. Without
loss of generality, then, we can assume that the eigenvectors used in this work are unit
length.

The fact that the only tensors considered in this work are symmetric significantly
simplifies their description in terms of eigenvectors and eigenvalues. From linear algebra
we know a number of important properties of an arbitrary n×n symmetric matrix M [177]:

• M has n real eigenvalues and n orthogonal eigenvectors.
• M can be diagonalized as M = RΛRt. R is an orthogonal matrix in which each

column is an eigenvector. Λ is a diagonal matrix of eigenvalues.
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• The dimension of the eigenspace associated with eigenvalue λ is equal to the mul-
tiplicity of λ as a root in the characteristic equation.

We know from these properties that for a given tensor D there is some orthonormal
basis comprised solely of eigenvectors, E = {e1, e2, e3}, called the principal basis (or prin-
cipal frame), specific to D, in which D is represented as a diagonal matrix of eigenvalues.
From Equation 2.5,

([D]E)ij = ei · Dej

= ei · λjej

= λjδij

⇒ [D]E = Λ =

 λ1 0 0
0 λ2 0
0 0 λ3


To constrain the choices of E , we sometimes require that the eigenvalues be sorted λ1 ≥
λ2 ≥ λ3. It is also helpful to set the directions of ei so that E is right-handed frame:
e3 = e1×e2. Even with these constraints, the fact that eigenvectors are known only up to
line orientation (ei and −ei are both eigenvectors) means that there are eight possibilities
for a right-handed basis E associated with sorted distinct eigenvalues. The set of eight
possibilities is generated by 180 degree rotations around the eigenvectors.

We also know from the properties above that the matrix representation of a symmetric
tensor D in the laboratory frame [D]L can be diagonalized, and the column vectors of
the rotation matrix are the matrix representation of the eigenvectors in the laboratory
frame:

[D]L = RΛRt (2.12)
R = [[e1]L [e2]L [e3]L]

Section 2.3.1 will describe in detail how to compute the eigenvalues of a tensor from
its invariants, and Section 3.1.1 will describe how the corresponding eigenvectors are
computed.

The spectral decomposition of a tensor D is a useful way to express the tensor directly
in terms of eigenvalues λi and and eigenvectors e:

D = DI = D(
∑

iei ⊗ ei) =
∑

i(Dei) ⊗ ei =
∑

iλi(ei ⊗ ei) (2.13)

Appendix A includes a proof that I =
∑

iei ⊗ ei.

2.1.5 Tensors as Vectors
Equation 2.5 showed how to recover the individual components Dij of a matrix

representation of D given some orthonormal basis B = {b1,b2,b3}, by Dij = bi · Dbj .
Related to this is an expression for D as a linear combination of tensor products of pairs
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of basis vectors. For any vector v, we express Dv by twice applying Equation 2.3 (first
to v and then to Dbj) and rearranging:

Dv = Dbj(bj · v)
= bi(bi · Dbj)(bj · v)
= (bi · Dbj)bi(bj · v)
= (bi · Dbj)(bi ⊗ bj)v
= Dij(bi ⊗ bj)v

⇒ D = Dij(bi ⊗ bj) (2.14)

Such a linear combination of tensor products is sometimes called a dyadic. It is important
to recognize that Equations 2.14 and 2.13 define a tensor value, while Equation 2.5
(Dij = bi · Dbj) describes a matrix. A portion of this work will rely on the idea of
tensors as being elements of a nine-dimensional vector space. This is hinted at by the
expression of D in Equations 2.14 as a linear combination of the nine different tensor
products bi ⊗ bj , which seem to serve as basis “vectors.” We expand on this idea here.

Let L(R3, R3) be the set of all linear transforms from R
3 to R

3. We know from linear
algebra that this is a vector space, and that it is 3 ∗ 3 = 9 dimensional [84]. There is a
zero transform O which is the additive identity:

Ov = 0

and addition and scalar multiplication of transforms is defined in terms of the addition
and scalar multiplication in R

3:

(C + D)v = Cv + Dv
(αD)v = α(Dv)

For any two vectors u and v in R
3, u ⊗ v is an element of L(R3, R3), since by definition

u ⊗ v maps from R
3 to R

3, and linearity can be verified with

(u ⊗ v)(αw + x) = u(v · (αw + x))
= u(αv · w + v · x)
= αu(v · w) + u(v · x)
= α(u ⊗ v)(w) + (u ⊗ v)(x)

Given an orthonormal basis B = {b1,b2,b3} for R
3, we define a set of nine vectors B

in L(R3, R3) by:

B = {B11,B12,B13,B21,B22,B23,B31,B32,B33}
Bij = bi ⊗ bj

With Equation 2.14, any tensor D can be expressed as a linear combination of elements
of B:

D = (bi · Dbj)(bi ⊗ bj) = DijBij

This establishes that B is a basis for L(R3, R3). Furthermore, one can verify that the
double contraction “:” satisfies the properties of being an inner product in L(R3, R3) (it is
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scalar-valued, bilinear, symmetric, and positive definite), just like the usual dot product
“·” in R

3. With respect to this inner product, B is an orthonormal basis:

Bij : Bkl = tr(BijBt
kl)

= tr((bi ⊗ bj)(bk ⊗ bl)t)
= tr([bi ⊗ bj ]B[bk ⊗ bl]tB)
= ([bi ⊗ bj ]B)mn([bk ⊗ bl]B)mn

= δimδjnδkmδln

= δikδjl (2.15)

Having an orthonormal basis and an inner product in the space of tensors will greatly
facilitate the analysis methods described in Chapter 5 and Chapter 7. Chapter 5 in
particular develops the idea of defining, for each symmetric tensor, a basis for the three-
dimensional vector space of shape changes around the tensor, and a separate basis for
the three-dimensional vector space of orientation changes.

2.1.6 Third-order tensors
Chapters 5 and 6 will have occasion to use a third-order tensor. Just like a second-

order tensor can be expressed as a linear combination of tensor products of pairs of basis
vectors (Equation 2.14):

D = Djk(bj ⊗ bk) ,

a third order tensor D is expressed as a linear combination of tensor products of triples
of basis vectors [86]:

A = Aijk(bi ⊗ bj ⊗ bk)

The third-order tensor u ⊗ v ⊗ w is defined by the properties:

(u ⊗ v) ⊗ w = u ⊗ v ⊗ w
u ⊗ (v ⊗ w) = u ⊗ v ⊗ w

(u ⊗ v ⊗ w)x = (w · x)u ⊗ v

Double contraction between a third-order tensor and a second-order tensor produces a
first-order tensor, otherwise known as a vector. In the third-order tensor, the two indices
closest to “:” are contracted out (summed over), while the other index remains to identify
the basis vector:

A : D = AijkDjkbi

2.1.7 Group Action ψ, Tensor Shape, and Invariants
A rotation R is a tensor that preserves angles between vectors and lengths of vectors,

and that has det(R) = 1. The matrix representation of a rotation in any orthonormal
basis is an orthogonal matrix. The set of all possible rotations is notated SO3, which is a
group because it has an identity, because rotations are invertible, and because composition
of rotations is associative [57]. SO3 is not a vector space, however, because the zero tensor
O is not a rotation, and because the sum of two rotations is not a rotation.
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Fundamental to Chapter 5 is the function ψ that takes a rotation and a symmetric
tensor to produce a rotated version of the tensor:

ψ : SO3 × Sym3 �→ Sym3

ψ(R,D) = RDRt (2.16)

Note that if R �= I, then strictly speaking D and ψ(R,D) are distinct tensors. However,
since [ψ(R,D)] = [R][D][R]t = R[D]Rt, the matrices [ψ(R,D)] and [D] (for any fixed
coordinate frame) are the same as matrix representations of D in two different coordinate
frames. One can therefore consider ψ as either rotating tensors, or rotating the laboratory
frame in which tensors are acquired. ψ is a group action: each element of the group SO3

defines a mapping from Sym3 to Sym3. ψ preserves the double contraction between any
two tensors C and D:

ψ(R,C) : ψ(R,D) = tr(RCRt(RDRt)t)
= tr(RCDtRt)
= tr(CDt)
= C : D

Thus, ψ also preserves the tensor norm. ψ(R,D) may be written simply as ψ(D) when
R is fixed and assumed from context. The group action ψ(D) is invertible and linear in
D.

The orbit SO3(D) of a tensor D is the set of all images of D under ψ:

SO3(D) = {RDRt|R ∈ SO3}

The orbits of ψ partition Sym3 into equivalence classes by similarity:

D1 ∼ D0 ⇔ ∃ R : D1 = ψ(R,D0)

“∼” is an equivalence relation (it is reflexive, symmetric, and transitive) exactly because
SO3 is a group. We use this equivalence to formally define what we mean by a tensor’s
shape: D1 and D0 have the same shape if and only if D1 ∼ D0. Because the characteristic
polynomial of D and ψ(R,D) are the same, and because the characteristic polynomial is
entirely determined by the eigenvalues, one may also identify the shape of a tensor with
the set of its three eigenvalues.

A tensor invariant J : Sym3 �→ R is a scalar function for which D1 ∼ D0 ⇒ J(D1) =
J(D0). Invariants are constant on orbits of ψ: J(ψ(D)) = J(D). Invariants are basic to
this work because they can quantify various aspects of tensor shape, and do not change
with changes in orientation. Two tensor invariants have already been mentioned so far–
the trace and determinant.

2.1.8 Measurement by Convolution
Medical images produced by commercial magnetic resonance imaging (MRI) are gen-

erally a stack of two-dimensional images. The goal of the visualization and analysis,
however, is to understand the underlying biological structures in the object that has
been scanned and sampled. To recreate a continuous signal from the discretely sampled
data, and to measure derivatives of the continuous signal, this work relies heavily on
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* =

sampled values kernel reconstructed values

Figure 2.1. Convolving discretely sampled values with a continuous kernel generates a
continuous signal. Note that the mathematical definition of convolution involves replacing
the discrete sample values with scaled Dirac delta functions in the continuous domain.

separable convolution with continuous kernels. Evaluation of kernel choices for a given
measurement task is not the focus of this research, so the description below is at a general
and descriptive level.

Figure 2.1 demonstrates the basic operation of convolving discretely sampled data
with some continuous kernel to produce a continuous output signal. Mathematically,
the sequence of sampled data values v[i] (defined for some range of integral values i) is
represented in the continuous domain as v(x) =

∑
i v[i]δ(x − i), where δ(x) is the Dirac

delta function. The convolution of v(x) with continuous kernel h(x) is defined as:

(v ∗ h)(x) =
∫ +∞

−∞
v(ξ)h(x − ξ)dξ

=
∫ +∞

−∞

∑
i

v[i]δ(ξ − i)h(x − ξ)dξ

=
∑

i

v[i]h(x − i)

In practice, the bounds of the summation will be limited by the support of h(x): the
range of positions for which h(x) is nonzero. The result is the same as adding together
copies of h(−x) located at the integers i, and scaled by v[i].

A large body of image processing research focuses on the task of optimizing the choice
of kernel for a given filtering or measurement task [71]. Some of the factors that often
have to be evaluated include the computational expense of kernel evaluation, frequency
space characteristics, noise sensitivity, and ringing (or overshoot). Research in kernel
design has also been a theme within the visualization literature [123, 27, 129, 130, 180],
although trilinear interpolation is still the de facto norm. Especially important in pro-
cessing volume data is the size of kernel support, since sampling values within a large
(say, 10 × 10 × 10) neighborhood can incur a serious performance penalty, due to the
latency associated with accessing values at widely disparate memory addresses [146].
Figure 2.2 shows a variety of kernels reconstructing the same underlying sampled data.
The simplicity of linear interpolation (Figure 2.2(a)) is offset by its poor aliasing, while
windowed sinc kernels (such has by Hann windowing, Figure 2.2(d)) can be arbitrarily
close to ideal in the frequency domain, at the expense of having a large support and
expensive computation. Cubic kernels offer an effective and flexible compromise; the
“BC” family of splines introduced by Mitchell and Netravali [128] are a two-parameter
family of cubic kernels including Catmull-Rom (at (B,C) = (0,0.5); Figure 2.2(b)) and
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(a) Linear (b) Catmull-Rom

(c) Uniform Cubic B-spline (d) Hann windowed sinc

Figure 2.2. Effect of kernel choice (left) on reconstruction result (right), for four different
kernels. Hann windowed sinc (d) has a support ten samples wide.

the uniform cubic B-spline (at (B,C) = (1,0); Figure 2.2(c)). The B-spline is an example
of a noninterpolating kernel which incorporates some smoothing in order to attenuate the
response to high-frequency noise.

Ideally, the choice of kernel for reconstructing MRI would be informed by the underly-
ing mathematics of image acquisition. The echo-planar imaging used in many MRI studies
collects information for a slice of the dataset in frequency space, directly implying that the
sinc() function is the appropriate choice for reconstruction kernel within-plane (X and Y
coordinates), though the appropriate kernel choice for between-plane (Z coordinate) has
a more complex relationship to the method of slice selection in the pulse sequence [118].
Windowing (as in Figure 2.2(d)) reduces the infinite spatial extent of sinc() to practical
bound. However, simple trilinear interpolation is still the de facto norm for volume
visualization of MRI data. Reconstruction is also an important issue for fiber tractography
(Chapter 4), since the path integration relies on tensor values at locations between image
grid points. Here too trilinear interpolation is the norm [41, 114, 203], and is the approach
used in our work (Chapter 4).

Often the quantity to be measured within an image is not simply the reconstructed
value, but a spatial derivative. Fortunately, convolution and differentiation are both
linear operators which commute:

d(v ∗ h)(x)
dx

∣∣∣∣
x=x0

=
d
∑

i v[i]h(x − i)
dx

∣∣∣∣
x=x0

=
∑

i

v[i]h′(x0 − i)

= (v ∗ h′)(x0) .

Because (v∗h′)(x) is the analytical derivative of (v∗h)(x), convolving with the derivative of
reconstruction filter provides a means of measuring the first derivative. This is illustrated
in Figure 2.3. Second derivatives may be measured by convolving with second derivatives
of reconstruction filters. This is illustrated in Figure 2.4.

Although it is true in general that the most accurate way to measure a derivative is by
convolving with the derivative of an accurate reconstruction kernel, the findings of Möller
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et al. [129, 130] demonstrate that is not a necessary rule. By evaluating polynomial kernels
in terms of smoothness (the existence and continuity of derivatives) and accuracy (in
terms of frequency spectrum properties), this work demonstrated that a first derivative
kernel with a given level of smoothness and accuracy was generally not the derivative
of a reconstruction kernel with the same smoothness and accuracy. Thus, determining
reconstruction and derivative kernels are largely independent choices, though both are
made in terms of practical constraints of computational expense and kernel support.

Noise sensitivity is another consideration when computing derivatives by convolution.
Analytic differentiation has a linear frequency response, so noise (typically at higher
frequencies) influences differentiation proportionally more than it does in value recon-
struction [71]. For this reason, the derivative of a smoothing (noninterpolating) kernel
such as the cubic B-spline can be preferable for reconstructing derivatives. Fortuitously,
when evaluated at integral sample locations, the first and second derivatives of the
B-spline are exactly equivalent to the standard central difference masks for discrete
differentiation: [−0.5 0 0.5] and [1 −2 1], respectively. Also, the cubic B-spline is the
unique cubic filter which is second-order accurate (reconstructing quadratic polynomials
exactly) [129].

The combination of value reconstruction and differentiation becomes more important
on the context of two and three-dimensional images. We follow the approach adopted by
others in visualization in the use of separable convolution. Separable convolution simply
treats each dimension of the image in isolation. A one-dimensional reconstruction kernel
h(x) generates a three-dimensional reconstruction kernel h(x, y, z) = h(x)h(y)h(z). The
three-dimensional separable convolution sum runs over three image indices of the sampled
data v[i, j, k]:

(v ∗ h)(x, y, z) =
∑
i,j,k

v[i, j, k]h(x − i)h(y − j)h(z − k) .

Using a separable kernel vastly simplifies the task of evaluating a partial derivative of the
convolution:

(a) Linear (b) Catmull-Rom

(c) Uniform Cubic B-spline (d) Hann windowed sinc

Figure 2.3. Effect of derivative kernel choice (left) on derivative measurement result
(right), for the same four kernels used in Figure 2.2. The original data values and value
reconstruction results (convolving with the un-differentiated kernel) are shown in gray.
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(a) Uniform Cubic B-spline (b) Hann windowed sinc

Figure 2.4. Effect of second derivative kernel choice (left) on second derivative measure-
ment result (right), for two of the kernels used in Figure 2.2.

∂(v ∗ h)(x, y, z)
∂x

=
∑
i,j,k

v[i, j, k]h′(x − i)h(y − j)h(z − k)

∂(v ∗ h)(x, y, z)
∂y

=
∑
i,j,k

v[i, j, k]h(x − i)h′(y − j)h(z − k)

∂(v ∗ h)(x, y, z)
∂z

=
∑
i,j,k

v[i, j, k]h(x − i)h(y − j)h′(z − k) .

In this way, any given first or second partial derivative may be measured by combining
the appropriate reconstruction and derivative kernels along the different axes. This is the
approach used throughout the dissertation to measure gradients. Chapter 6 on volume
rendering in particular relies heavily on convolution with continuous kernels in order to
make renderings of continuous field structures and their attributes.

2.2 Diffusion Tensors and their Acquisition
This section describes what diffusion tensors physically represent, and how magnetic

resonance imaging can measure diffusion tensors in living tissue. Because this dissertation
is focused on the visualization and analysis of diffusion tensor fields, not the physics and
mechanics of tensor acquisition, the very simplified description below seeks only to give
a flavor of the physics involved. See references [163, 38, 118, 150] for a more detailed
explanation.

2.2.1 MRI basics
Diffusion tensor imaging is based on the random Brownian motion of water molecules

within biological tissue. Most clinical magnetic resonance imaging (MRI) measures the
hydrogen atoms in water molecules, specifically the single proton that is the nucleus of
the hydrogen atom. Protons have an intrinsic angular momentum which generates a
magnetic dipole moment. The dipole moments are normally randomly oriented. Placed
within an external magnetic field, however, the moments become aligned, forming a net
longitudinal magnetization. Rather than being in a completely fixed orientation relative
to the external field, the individual proton dipole moment rapidly rotates, a motion called
precession, analogous to the wobbling rotation of a spinning top in the presence of gravity.
The frequency of the proton precession, called the Larmor frequency, is proportional both
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to the external magnetic field strength, and a physical constant called the gyromagnetic
ratio.

At the most general level, MRI is based on the principle that an oscillating magnetic
field can interact with the precessing protons, causing their net magnetization to tilt
away from the external field direction. The oscillating magnetic field comes in the
form of a radio-frequency (RF) electromagnetic wave, or RF pulse, tuned to the Larmor
frequency, so that energy transfers to the proton. The resonance between the RF signal
and the proton precession has two effects. First, adding energy to a proton decreases the
longitudinal magnetization. Second, from the rotating standpoint of a precessing proton,
RF pulses at the Larmor frequency exert a constant transverse force, which gradually
rotates the orientation of the proton. This increases phase coherence, creating a rotating
transverse magnetization orthogonal to the longitudinal magnetization. It is the rotating
transverse magnetization which generates a new electromagnetic signal, received by coils
in the scanner, which allows MRI to measure material properties.

MRI measurements are primarily based on three intrinsic material characteristics.
After the RF pulse is turned off, the exponential relaxation of longitudinal and transverse
magnetization back to their original states is governed by two independent time constants,
called T1 and T2, respectively. The T1 value measures coupling between the proton
and its molecular environment, through which a proton can dissipate energy. The T2
value measures coupling between protons, which tends to disperse the relative phases of
precession, thereby decreasing the phase coherence. Underlying both of these quantities
is the physical density of protons undergoing precession (and creating a measurable
signal), known as proton density or PD. T1 and T2 are in fact both aggregations of
more fundamental material properties that may be measured in isolation with magnetic
resonance spectroscopy. Differences in T1, T2, and PD values generate image contrast
between different tissues, which enables their identification and visualization from MRI
scans.

Creating a two-dimensional image from the magnetic resonance signal is possible only
with precise control over the frequency and phase of the precession. Magnetic field
gradients alter the external field strength in a controlled manner, so that the Larmor
frequency varies linearly as a function of position. Combined with RF pulses of carefully
controlled frequencies and durations, specific slices or regions of the object can be imaged.
A specific combination of RF pulses and magnetic gradients is called a pulse sequence.
A common pulse sequence called “spin echo” can be tuned to generate images which
are predominantly weighted by one or another material attribute, such as T1, T2, or
PD. Clinical MRI uses a combination of pulse sequences and chemical contrast agents to
measure other tissue attributes indirectly through changes in T1 or T2 values.

2.2.2 Modeling Diffusion
Diffusion is the transport of one material through another by the action of random

molecular motion due to thermal energy (Brownian motion). The movement of a material
by diffusion (called flux) is proportional to the gradient in the concentration of the
material. This is Fick’s first law [44], which in one dimension is stated as

F = −D
∂C

∂x
, (2.17)

where F is flux and C is concentration. The coefficient D is the diffusion coefficient,
or diffusivity. The negative sign appears because movement is opposite the direction of
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increasing concentration. Differentiating Equation 2.17 with respect to position:

∂F

∂x
= − ∂

∂x

(
D

∂C

∂x

)
.

By conservation of mass, the spatial change in flux (flux in minus flux out) determines
the temporal change in concentration. This is Fick’s second law:

∂C

∂t
=

∂

∂x

(
D

∂C

∂x

)
. (2.18)

If diffusivity D is constant with respect to position, then the diffusion equation may be
expressed and solved with:

∂C

∂t
= D

∂2C

∂x2
⇒ C(x, t) =

M

2
√

πDt
exp(− x2

4Dt
) . (2.19)

Without loss of generality, the normalization 2
√

πD was chosen so that for any time t,
the integral of C(x, t) over all positions x is M , which can be taken as the total amount
of material undergoing diffusion. C(x, t) is a Gaussian with standard deviation

√
2Dt.

With M = 1, C(x, t) may be viewed as a probability density function. This is closely
tied to a fundamental statement of the displacement of a particle undergoing Brownian
motion in one dimension, derived from first principles by Einstein [60]:

RMS(x) =
√

2Dt , (2.20)

where RMS(x) is the root-mean-square of the displacement x of a particle from its initial
position after time t. The distance

√
2Dt is sometimes called the diffusion length, and

it characterizes the scale over which diffusion occurs, given the diffusivity D and the
diffusion time t.

In three dimensions, Fick’s first law can take the form

j = −D∇c .

In this case, vector j is the direction of the overall motion, or net flux, of the material
with concentration gradient ∇c. When this equation locally models diffusion (that is,
the direction of net flux is parallel to the concentration gradient) the material is said
to be isotropic (the material has the property of isotropy). Some materials, however,
have directional microstructure which permits diffusive motion faster in some directions
that others. These materials are anisotropic (they have the property of anisotropy). To
describe these materials, Fick’s first law is generalized to a first-order model in which the
direction of net flux is a linear transform of the concentration gradient:

j = −D∇c .

Rather than a scalar diffusion coefficient, D is a second-order diffusion tensor. Then,
Fick’s second law in three-dimensional anisotropy may be stated as:

∂C

∂t
= ∇ · (D∇c) (2.21)

Note that the diffusion tensor D is also differentiated, to capture the possibility of material
inhomogeneities.
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Though it not obvious from the above equations, diffusion tensors are symmetric:
D = Dt. The symmetry of diffusion tensors is a nontrivial result of statistical physics.
Onsager’s principle of “microscopic reversibility” is often invoked to explain the reci-
procity relation associated with tensor symmetry: at the smallest scale, every type of
molecular motion occurs just as often as its reverse [137, 138]. Casimir shows how
Onsager’s principle can be applied to derive the symmetry of conductivity tensors of
heat and electricity [39].

2.2.3 Diffusion Tensor MRI
The principle of diffusion imaging is to modify the spin echo imaging sequence in a

way that decreases the received signal amplitude according the amount of water diffusion.
There are different ways of accomplishing this. The original method is the pulsed
gradient spin echo (PGSE) sequence developed by Stejskal and Tanner [176], which
uses a momentary magnetic field gradient (the diffusion-sensitizing gradient) to create
a spatial variation in the phase of proton spin. The result is a linear relationship
between phase and position along the gradient direction. To the extent that diffusion
causes intermixing of water molecules tagged with different spin phases, the transverse
magnetization is decreased, which in turn decreases the brightness of the T2-weighted
image. The apparent diffusion coefficient (ADC) along the diffusion-sensitizing gradient
is calculated from the change in the T2-weighted image value [28]. Basser demonstrated
how ADC measurements over a carefully chosen distribution of gradient directions enable
estimation of the effective diffusion tensor [15, 16].

Different diffusion-weighted image (DWI) sequences have different characteristics in
terms of speed, sensitivity to motion, and distortion characteristics. For example, the
twice-refocused spin echo of Reese et al. sequence reduces global distortions due to
eddy currents with a more complex sequence of pulsed magnetic gradients [156]. For
the purposes of this simple overview, it suffices to describe the equation governing the
original pulsed gradient spin echo sequence of Stejskal and Tanner [176]. The DWI value
A associated with diffusion-sensitizing gradient g, in the presence of tensor D, is given
by:

A(g) = A0 exp(−b b : D)
b = γ2δ2(∆ − δ/3)
b = g ⊗ g .

(2.22)

The T2-weighted image value without any diffusion sensitization is A0. The proton
gyromagnetic ratio γ is known from physics. The PGSE sequence parameters include
the delay ∆ and duration δ of the diffusion-sensitizing gradient pulses. These variables
determine b, the scalar diffusion weighting factor. In the simplest case, the b matrix is
calculated solely from the gradient direction (as above). However, greater accuracy may
be attained by taking into account the “cross-terms” induced by interactions between
the diffusion sensitization and imaging gradients [16, 14]. In this case, the nominally
non-diffusion-weighted image value A(0) is distinct from A0, so both A0 and D must be
estimated. In addition to measuring A(0), at least six diffusion-weighted images must be
acquired. To ensure that the tensor measurement is unbiased, the direction of gradient
directions should be evenly distributed over the sphere [42, 79, 94]. The set of gradient
directions {gi} should satisfy: ∑

i

gi ⊗ gi = I



22

The diffusion tensor D may then be estimated by a linear least-squares fit of the logarithm
of Equation 2.22, or by a nonlinear least-squares fit of Equation 2.22 itself.

2.2.4 Diffusion in Nervous Tissue
This dissertation focuses on diffusion tensor images acquired by MRI as part of

studying the structure in the brain and the central nervous system. Broadly, the brain
is composed of two types of nervous tissue: gray matter and white matter [73]. The
cell bodies are in the gray matter, which is concentrated on the cortical surface and in
nuclei deep with the brain. Within the white matter are the axons connecting the cortex,
nuclei, and the rest of the central nervous system. Most axons are covered in a layer of
myelin, a fatty substance which increases the efficiency of signal conduction. The internal
cytoskeleton of the axon comprises microtubules and neurofilaments, involved in chemical
transport and structural support, respectively [24]. Many regions of white matter are
characterized by concentrated coherent pathways of axon bundles, called fiber tracts.
The directional structure within and between axons gives rise to diffusion anisotropy.

It should be noted that the diffusion tensor is a model for diffusion only in those
configurations well-characterized by Fick’s first law. Specifically, the model assumes
free diffusion, in which there are no discrete barriers to prevent molecular movement.
Anisotropic diffusion can be free diffusion– the net flux is just faster in some directions
than others. The heterogeneous microstructure of white matter, however, suggests that
there are multiple diffusion barriers, which would lead to restricted diffusion. The failure
of Fick’s laws to completely model restricted diffusion has important consequences: the
profiles of diffusive propagation are no longer Gaussian, and the diffusion coefficient will
appear to vary as a function of diffusion length (Equation 2.20). A diffusion coefficient
measured in the presence of restricted diffusion is called an apparent diffusion coefficient
(ADC), and its physical significance depends on the time and distance parameters as-
sociated with the measurement [28]. In vivo studies of white matter of the brain have
not shown variations in ADC consistent with restricted diffusion [29], but this may be
explained by the inability to probe at an appropriately wide range of diffusion lengths, due
to insufficient magnetic gradient strengths in clinical scanners. Studies of excised nervous
tissue in laboratory scanners, on the other hand, have shown evidence for restricted
diffusion [166]. More references, and a thorough review of the anatomy, issues, and
evidence related to restricted diffusion in nervous tissue is given by Beaulieu [24].

In light of this, the diffusion tensor measured by MRI is not the intrinsic diffusion
tensor within any subcellular component, but rather an effective diffusion tensor which
summarizes and simplifies diffusion behavior over the heterogeneous structures within
nervous tissue. The relative simplicity of the diffusion tensor has been recognized as
a hindrance to fully characterizing regions where multiple white matter fibers cross or
intersect [20, 198]. When Fick’s first law is a poor model of diffusive behavior, the
molecular displacement equi-probability isosurfaces may diverge from simple ellipsoids,
acquiring a more complex multilobed shape [182]. Imposing the tensor model in this
case obscures subtleties in the directional dependence of the ADC that may help recover
connectivity information in the brain. To an extent as yet unknown, this may be resolved
with increases in the spatial resolution of the imaging (see the discussion of partial volume
effects in Section 2.3.3).

Another approach is to increase the angular resolution of the ADC measurements, and
fit no model at all, or fit a model with more degrees of freedom than a single tensor (e.g.,
spherical harmonics). This is called high angular-resolution diffusion imaging [182, 64,
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181, 65], in which every antipodal pair of vertices on a tessellated spherical mesh has an
associated ADC value. This provides a much more complete account of the distribution
of microstructure orientations, but the task of processing, analyzing, and visualizing this
kind of data is formidable.

Although there is currently a great deal of enthusiasm about high angular-resolution
diffusion (HARD) imaging, an implicit premise of this dissertation is that diffusion tensor
imaging is not moot simply because HARD imaging provides a more complete account
of the directional microstructure within each voxel. Even while fully recognizing that the
diffusion tensor is an incomplete and somewhat simplistic indicator of microstructure,
it still provides a wealth of information that enables a variety of biologically important
visualization and analysis tasks. Computing and quantifying neuroanatomic models of
gross white matter structure, for example, may not require knowing absolutely everything
about how water diffuses through a given region. Furthermore, image processing tasks
such as edge detection and feature-preserving smoothing may be significantly enhanced by
the information from diffusion tensors, even though yet more information is potentially
available from HARD imaging. For context, it is interesting to consider the immense
variety of essential scientific and diagnostic tools that are based on traditional magnetic
resonance imaging, which primarily measures only three fundamental material character-
istics: proton density, and the T1 and T2 relaxation constants.

2.3 Quantifying Tensor Shape
This section reviews previous work and existing knowledge on tensor invariants and

their relationship to tensor eigenvalues. We describe tensor invariants in the context of
the role they play in solving the cubic characteristic equation of a tensor, to calculate
the tensor eigenvalues. Three particular invariants that are statistical properties of the
eigenvalues (mean, variance, and skewness) are used in the analytical formulae for the
tensor eigenvalues. This relationship between the eigenvalues and their statistics is
summarized with a graphical device we term the eigenvalue wheel, which provides an
intuitive way to reason about the degrees of freedom in tensor shape. We finish the
chapter with an alternative way of describing tensor shape, a novel triangular barycentric
space which bridges the extremes of spherical, linear, and planar shapes.

The motivation to describe tensor shape in terms of invariants, rather than individual
eigenvalues, is based on two related considerations. Primarily, as explained in Sec-
tion 2.3.3 below, we feel that in the context of tensor image processing, certain invariants,
especially the moments of the eigenvalues, have a more biologically significant relationship
to tensor shape than do the eigenvalues themselves. The secondary consideration is that
we want to avoid unnecessary computational expense. Section 2.3.1 (below) shows how
in the standard solution of the cubic characteristic equation, the eigenvalue moments are
actually precursors to the computation of the individual eigenvalues, even though one
might think that the reverse is true. In some circumstances, the descriptive power of the
eigenvalue moments makes the additional computation of the individual eigenvalues less
compelling.

2.3.1 Invariants Towards Eigenvalues
The eigenvalues of a tensor D are computed by solving the cubic polynomial in

Equation 2.11:
det(λI − D) = 0 .
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The determinant may be evaluated in any coordinate frame, such as the laboratory frame
in which the tensor was acquired:

det(λI − D) = det(λI − [D]L)

=

∣∣∣∣∣∣
λ − Dxx −Dxy −Dxz

λ − Dyy −Dyz

(Sym) λ − Dzz

∣∣∣∣∣∣
= λ3 + (−Dxx − Dyy − Dzz)λ2

+(DxxDyy + DxxDzz + DyyDzz − D2
xy − D2

xz − D2
yz)λ

−2DxyDxzDyz − DxxDyyDzz + D2
xzDyy + DxxD2

yz + D2
xyDzz)

= λ3 − J1λ
2 + J2λ − J3 ;

J1 = Dxx + Dyy + Dzz (2.23)
J2 = DxxDyy + DxxDzz + DyyDzz − D2

xy − D2
xz − D2

yz

J3 = 2DxyDxzDyz + DxxDyyDzz − D2
xzDyy − DxxD2

yz − D2
xyDzz .

From Section 2.1.4 we know that the characteristic polynomial is an invariant, and hence
its coefficients J1, J2, J3 are invariant. These are the principal invariants (or fundamental
invariants) of the tensor, which can be expressed in terms of trace and determinant as
follows [36, 86]:

J1 = tr(D) (2.24)

J2 =
tr(D)2 − tr(D2)

2
J3 = det(D) .

Equation 2.23 represents how the principal invariants are typically computed in practice,
based on the matrix components of the tensor represented in the laboratory frame, as
measured by diffusion-weighted MRI (Section 2.2.3). The relationship between the in-
variants Ji and the eigenvalues λi can be seen by computing the characteristic polynomial
in the principal frame E (Section 2.1.4):

det(λI − [D]E) =

∣∣∣∣∣∣
λ − λ1 0 0

0 λ − λ2 0
0 0 λ − λ3

∣∣∣∣∣∣
= (λ − λ1)(λ − λ2)(λ − λ3)
= λ3 − (λ1 + λ2 + λ3)λ2 + (λ1λ2 + λ1λ3 + λ2λ3)λ − (λ1λ2λ3)
= λ3 − J1λ

2 + J2λ − J3

⇒ J1 = λ1 + λ2 + λ3 (2.25)
J2 = λ1λ2 + λ1λ3 + λ2λ3

J3 = λ1λ2λ3 .

Another invariant useful for the determination of eigenvalues is the squared norm:

J4 = ‖D‖2 = D : D = J2
1 − 2J2

= D2
xx + 2D2

xy + 2D2
xz + D2

yy + 2D2
yz + D2

zz

= λ2
1 + λ2

2 + λ2
3 .



25

Much of the DTI literature has noted the utility of the Ji invariants as measures of the
diffusion tensor shape that do not require diagonalization [16, 12, 22, 187, 78, 208].

Any arithmetic combination of invariants is another invariant. The eigenvalues of a
tensor are invariant, and they are computed from some intermediate invariants defined in
terms of Ji. Below, we follow the standard formulas for solving a cubic polynomial [33,
192, 155], and adapt the notation of [155]. Equivalent invariant expressions are included
for reference.

Q =
J2

1 − 3J2

9
=

J4 − J2

9
=

3J4 − J2
1

18
(2.26)

R =
−9J1J2 + 27J3 + 2J3

1

54
=

−5J1J2 + 27J3 + 2J1J4

54
(2.27)

Θ =
1
3

cos−1

(
R√
Q3

)
. (2.28)

Finally, the analytic formulae for the three eigenvalues are:

λ1 = J1/3 + 2
√

Q cos(Θ)
λ2 = J1/3 + 2

√
Q cos(Θ − 2π/3)

λ3 = J1/3 + 2
√

Q cos(Θ + 2π/3) .
(2.29)

2.3.2 Eigenvalue Wheel
The form of Equation 2.29 suggests a geometric analogy, shown in Figure 2.5, which

we term the eigenvalue wheel. A wheel with three equally placed spokes is centered on the
real number line at J1/3. The radius of the wheel is 2

√
Q, and Θ measures the orientation

of the spokes. The eigenvalues are the projection of the spoke ends onto the horizontal
axis. This wheel appears in Figure 2 of previous work by Nickalls [136]. He offers no

J1/3 λ1λ2λ3

2
√

Q

Θ

Figure 2.5. Diagram of cubic characteristic polynomial (in gray), its roots, and the
invariants required for determining the roots with Equation 2.29.
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name for the wheel, and presents it in the context of solving cubics in general (not as
eigenvalues of a tensor). It should be noted that this circle does not lie on the complex
plane: the symmetry of the D ensures that we have three real eigenvalues, rather than
one real and two complex-conjugate eigenvalues.

The central moments µ1, µ2, µ3 of the eigenvalues determine the geometric parameters
of the eigenvalue wheel. The central moments are defined as:

µ1 = 〈λ〉 =
1
3

∑
λi =

λ1 + λ2 + λ3

3
(2.30)

= J1/3

µ2 =
1
3

∑
(λi − µ1)2 =

2(λ2
1 + λ2

2 + λ2
3 − λ1λ2 − λ1λ3 − λ2λ3)

9
(2.31)

= 2Q

µ3 =
1
3

∑
(λi − µ1)3 (2.32)

=
2(λ3

1 + λ3
2 + λ3

3) − 3(λ2
1λ2 + λ1λ

2
2 + λ2

1λ3 + λ1λ
2
3 + λ2

2λ3 + λ2λ
2
3) + 12λ1λ2λ3

27

=
2J3

1 − 9(λ2
1λ2 + λ1λ

2
2 + λ2

1λ3 + λ1λ
2
3 + λ2

2λ3 + λ2λ
2
3)

27

=
2J3

1 − 9J1J2 + 27λ1λ2λ3

27
=

2J3
1 − 9J1J2 + 27J3

27
= 2R .

The variance of the eigenvalues is µ2, and the standard deviation is σ =
√

µ2 =
√

2Q.
The skewness of the eigenvalues, α3, is a dimensionless quantity defined as [5, 192]:

α3 =
µ3

σ3
=

R√
2Q3

=
cos(3Θ)√

2
(2.33)

⇒ Θ =
1
3

cos−1(
√

2 α3) .

It should be noted that, somewhat confusingly, “skewness” is also sometimes used to refer
to the third central moment, µ3 [42, 12, 78].

The statistical measures of the eigenvalues are directly bound to the geometric pa-
rameters of the eigenvalue wheel: the mean is the wheel center, the variance determines
the radius, and the skewness determines the orientation. Each of these degrees of
freedom corresponds to an intuitive element of tensor shape: size, anisotropy, and type
of anisotropy. Because there can be only three degrees of freedom in any set of 3 × 3
tensor invariants, the eigenvalue wheel is a complete and succinct means of conveying
tensor shape. The geometric intuition that one can modify the wheel’s location, radius,
and orientation in isolation from one another is grounded in the statistical property that
mean, variance, and skewness are not just independent invariants (such as J1, J2, J3), but
are orthogonal measures of the eigenvalue distribution. That is, viewing µ1, µ2, and α3 as
scalar functions over the space of (λ1, λ2, λ3) triples, and letting ∇λ denote the gradient
in this space:

∇λµ1 · ∇λµ2 = 0 ; ∇λµ1 · ∇λα3 = 0 ; ∇λµ2 · ∇λα3 = 0 . (2.34)

A self-contained proof of this fact is given in Appendix B. This Appendix also shows
that ∇λµ3 and ∇λµ2 are not orthogonal, motivating the distinction between “skewness”
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referring to α3 (our use) versus µ3. The orthogonality of eigenvalue mean, variance, and
skewness was noted by Bahn [5] in the context of developing a cylindrical coordinate
system for (λ1, λ2, λ3) space. Previous work in continuum mechanics defined orthogonal
measures of hyperelastic strain in terms of the mean, variance, and skewness of the
logarithms of the eigenvalues of the strain tensor, though without using the statistical
terminology adopted here [47].

Equations 2.30 through 2.33 demonstrate an interesting relationship (previously noted
in [78]) between the eigenvalues and their moments in the context of solving the char-
acteristic polynomial with Equations 2.26 through 2.29): the statistical moments of the
eigenvalues (mean, variance, and skewness) are actually prerequisites to the finding the
eigenvalues themselves. Also, the eigenvalue wheel illustrates an important property of
eigenvalue sorting. From Equations 2.28 and 2.33 we can see that range of Θ and α3

are bounded: as α3 varies from −1/
√

2 to 1/
√

2, Θ varies from π/3 to 0, assuming the
standard branch choice of defining cos−1(x) ∈ [0, π]. By looking at Figure 2.5, one can
see that the limited range in Θ means that the λ1, λ2, and λ3 defined by Equation 2.29
are already sorted in descending order [78]2.

Figure 2.6 compares three different tensor shape diagrams. The eigenvalue wheel
diagram (Figure 2.6(a)) is superficially similar to the Mohr circle diagram of continuum
mechanics, which has been previously applied to DTI [30, 31]. The Mohr circle diagram
(Figure 2.6(b)) uses three nested circles to convey the eigenvalues and their pair-wise
differences. The eigenvalue wheel, in contrast, uses a single circle to display the eigenvalue
mean and variance, with the spoke angle determining the individual eigenvalues. Another
tensor shape diagram previously described in the DTI literature uses a trilinear coordinate
system (Figure 2.6(c)) in which the set of eigenvalues is indicated by a single point in the
triangular space defined by λ1 + λ2 + λ3 = 1 and λi > 0 [78].

Figure 2.7 illustrates the three orthogonal degrees of freedom in tensor shape (µ1, µ2,
and α3), both with the eigenvalue wheel, and with glyphs. The style of glyphs used here
is described in Section 3.1; it suffices to say here that the dimensions of the glyph along
its principal axes are the three eigenvalues. Figure 2.7(c) in particular makes clear that
the extremal values of skewness are associated with equality between two eigenvalues.
This can be confirmed from Equation 2.29: when Θ = π/3 (minimal α3), λ1 = λ2,

2More precisely, the standard branch choice in cos−1 induces a particular ordering in the λi; a different
branch choice would lead to a different (fixed) ordering.
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λ2

λ3

(a) Eigenvalue wheel
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Figure 2.6. Comparison of tensor shape diagrams.
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and when Θ = 0 (maximal α3), λ2 = λ3. The glyph representations also suggest that
equality between two eigenvalues generates axial symmetry in the tensor. This can be
mathematically confirmed by starting with the spectral decomposition D =

∑
i λi(ei⊗ei),

assuming λ1 = λ2 > λ3 (left-most tensor in Figure 2.7(c)), and letting R be rotation by
angle θ around e3. The matrix representation of ψ(R,D) in the principal basis E of D is
then:

[ψ(R,D)]E = [R]E [D]E [R]tE

=

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 λ1 0 0
0 λ1 0
0 0 λ3

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


=

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 λ1 cos(θ) −λ1 sin(θ) 0
λ1 sin(θ) λ1 cos(θ) 0

0 0 1


=

 λ1 0 0
0 λ1 0
0 0 λ3


= [D]E

⇒ ψ(R,D) = D .

That is, D is unchanged by rotations around e3, which is the definition of axial symmetry.

2.3.3 Anatomical Significance of Tensor Shape
As statistical measures, mean, variance, and skewness are typically employed in

contexts where the distribution in question contains more than three values, as is the case
here. Also, the use of mean, variance, and skewness is often based on some application-
specific assumptions about the form of the distribution being measured. We do not make
any such assumptions. Our use of eigenvalue mean, variance, and skewness is grounded
first in the geometric intuition illustrated in Figure 2.7, and secondly, in the anatomical
and biological significance of these measures.

The eigenvalues of the diffusion tensor are the apparent diffusion coefficients (ADCs)
along the tensor eigenvectors, as measured in the diffusion-weighted image experiment [15].
The eigenvalue mean µ1 is the bulk mean diffusivity [14], the average of ADC over all
possible directions. This quantity readily distinguishes the cerebral spinal fluid (CSF) of
the ventricles (high µ1) from the white and gray matter (low µ1). In addition, we take as a
significant cue the empirical fact that µ1 is essentially constant across the white and gray
matter of healthy brains [153, 186, 187, 6, 14]. In fact, reductions in bulk mean diffusivity
have been established as an important indicator of acute ischemic stroke [134, 173].

The variance of the eigenvalues µ2 measures the extent of the directional dependence
of the ADC. From a biological standpoint, this indicates directional microstructure,
permitting diffusion of water in some directions faster than others. A diffusion tensor
is termed isotropic when the eigenvalues are all equal, and anisotropic when the tensor
eigenvalues differ [15]. Two common anisotropy measures in particular are defined in
terms of the eigenvalue variance (as well as other invariants). Basser and Pierpaoli defined
fractional anisotropy as [21, 152]:
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(a) Varying µ1; µ2 and α3 fixed.

(b) Varying µ2; µ1 and α3 fixed.

α3 = −1/
√

2 α3 = −1/2 α3 = 0 α3 = 1/2 α3 = 1/
√

2
Θ = π/3 Θ = π/4 Θ = π/6 Θ = π/12 Θ = 0

(c) Varying α3 through its full range by equal steps in Θ; µ1 and µ2 fixed.

Figure 2.7. Visualizations of degrees of freedom of tensor shape, with eigenvalue wheel
(top) and superquadric glyphs (bottom). The eigenvalue wheel location, radius, and
orientation correspond to tensor size, anisotropy, and anisotropy type, respectively.
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FA =

√
3
2
‖D − µ1I‖

‖D‖ =
3√
2

√
µ2

J4
= 3
√

Q

J4
=
√

J4 − J2

J4
, (2.35)

and relative anisotropy (here scaled by 1/
√

2 to lie in [0,1]) as:

RA =
‖D − µ1I‖√

2‖µ1I‖
=

√
µ2√
2µ1

=
3
√

Q

J1
. (2.36)

As can be determined by Equations 2.35 and 2.36, and as illustrated in Figure 2.7(a),
varying µ1 while holding µ2 and α3 fixed will change the tensor anisotropy, at least as
measured by FA or RA. Given the ubiquity of FA as an anisotropy measure in the DT-MRI
literature, one could argue that this is a problem with the µ1, µ2, α3 orthogonal measures
for characterizing shape. An alternative set of three orthogonal shape metrics is J4 (sum
of squares of eigenvalues), FA, and α3. For the purposes of doing image processing on
diffusion tensor fields, we adopt the µ1, µ2, α3 measures, based on the idea that aligning
one axis of the shape coordinate system with a variable that is empirically constant (µ1)
allows anisotropic anatomical features to be more easily characterized by changes in the
other two variables (µ2 and α3).

The relationship between eigenvalue skewness and tensor shape was shown in Fig-
ure 2.7(c). This degree of freedom in tensor shape isolates the variation between anisotropic
tensors that are “planar” (oblate, large in two axes and small in the other) versus “linear”
(prolate, large along one axis, small in the others). The shapes vary from planar to linear
as skewness ranges from negative to positive. This kind of shape variation is not measured
by FA or RA, and from Equation 2.34 one can show that skewness is orthogonal to FA
and RA. The problematic aspect of skewness is evident from Equation 2.33: it is most
meaningful when variance µ2 is high, and it is in fact numerically undefined when variance
is zero. Thus, it makes sense to describe an anisotropic tensor as varying in skewness
(being more linear or more planar), while an isotropic tensor varies only in overall size,
not skewness. By analogy, it makes sense to describe the hue of a color that is clearly
distinct from gray, while grays may vary only in intensity.

Another problematic aspect of skewness is that it is apt to be more sensitive to
measurement noise than µ1 or µ2, given its involvement of higher powers of differences
among eigenvalues, and given that the individual eigenvalues are significantly biased by
noise, as noted in the DTI literature [152, 23, 172, 14]. On the other hand, because
skewness can be formulated entirely in terms of the principal invariants (Equation 2.33),
and is actually a prerequisite to finding the individual eigenvalues (Equations 2.28 and
2.29), its noise sensitivity may have been previously overstated. A careful analysis of the
effect of measurement noise on α3 is needed, but beyond the scope of this work. In any
case, isolating this degree of freedom in tensor shape will allow subsequent analysis to
selectively respect or disregard its changes according to any prior knowledge about its
significance in the presence of measurement noise.

The distinction between linear and planar anisotropy matters in two related contexts.
The phenomenon of partial voluming is a basic characteristic of discretely sampled medical
images, in which the sample value records a measurement over some spatial extent related
to the spacing between samples. When two (or more) adjacent distinct materials occupy
the region represented by a single sample, the sample value will blend characteristics of the
constituent materials. Previous analysis of partial voluming in DTI demonstrated a bias
towards planar anisotropy caused by measurement mixing of adjacent regions of linear
anisotropy along orthogonal orientations [4, 3]. Locations in the brain characterized by
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this configuration of white matter fibers include the right-left trans-pontine tracts ventral
to the inferior-superior corticospinal tracts in the brainstem, and the right-left tracts of
the corpus callosum inferior to the cingulum bundles (anterior-posterior).

Planar anisotropy can also arise in more complex configurations, rather than mere
adjacency of orthogonal fiber orientations. Previous work in visualizing regions of signif-
icant planar anisotropy characterized locations where populations of differently-oriented
fibers apparently mix at a fine scale, far below that of the image resolution [198]. Lo-
cations with this configuration include the medial-lateral fanning within the otherwise
anterior-posterior tract direction of the superior longitudinal fascicle and the intersection
of the medial-lateral tracts of the corpus callosum with the inferior-superior tracts of
the corona radiata (as confirmed by high-angular resolution DWI [182]). More generally,
Tuch has demonstrated that in the brain, the residual error of fitting a tensor model
to high-angular resolution DWI increases with planarity of the tensor [181]. Because
eigenvalue skewness encapsulates the distinction between linear and planar anisotropy,
it is appropriate to isolate this variable for the purposes of analyzing and processing
diffusion tensor images.

2.3.4 Barycentric Shape Metrics
The anisotropy metrics described above are all directly expressible in terms of the

principal invariants and the eigenvalue moments, functions that enjoy the property of
being symmetric with respect to permutations of the eigenvalues. A different set of
anisotropy metrics was defined by Westin et al. [196] by explicit reference to the sorted
eigenvalues λ1 ≥ λ2 ≥ λ3. The certainty (c) with which a tensor can be said to be of a
linear, planar, or spherical configuration is parameterized with cl, cp, and cs:

cl =
λ1 − λ2

λ1 + λ2 + λ3

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3
(2.37)

cs =
3λ3

λ1 + λ2 + λ3

The metrics above are normalized by the trace, but alternative normalizations have
also be described, such as dividing by the maximum eigenvalue [194], or the L2 norm of the
eigenvalues [195]. In all cases, by design the metrics sum to unity, and thus parameterize
a barycentric space of tensor shape. The three barycentric coordinates of a point within
an equilateral triangle give the distances between the point and sides of a triangle [43].
The barycentric shape space defined by Equation 2.38 is visualized in Figure 2.8. At each
corner of the triangular space, one of the metrics is equal to unity, and the other two are
zero. The intermediate values of (cl, cp, cs) within the interior of the triangle represent the
smooth continuum of shapes between the three extremes. The linear and planar metrics
cl and cp both generally increase with higher anisotropy, and ca = cl + cp has been
proposed as an alternative to FA or RA as an overall anisotropy metric. The intuitive
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cl = 1 cp = 1

cs = 1

Figure 2.8. Barycentric space of tensor shapes.

geometric interpretation of the barycentric shape space motivates their repeated use in
this dissertation, such as in the formulation of superquadric tensor glyphs (Section 3.1),
tensorlines (Chapter 4), and volume rendering (Chapter 6). One particularly important
role of cl is to provide some measure of how meaningful the orientation of the principal
eigenvector e1 is.

It is useful to connect the barycentric shape space back to the other main descriptors
of tensor shape, the eigenvalue moments. As defined above, the eigenvalue mean µ1 is
constant within the barycentric triangle. Plots of eigenvalue variance µ2 and skewness
α3 are shown Figure 2.9. A more detailed comparison of different anisotropy measures,
in terms of the barycentric shape space, is given by Alexander et al. [2].

(a) µ2 (b) α3

Figure 2.9. Plots of eigenvalue variance µ2 and skewness α3 in barycentric shape space.
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2.3.5 Discussion
This chapter presented no research per se; however the essential concept of tensor

shape was explained in detail: from the formulaic standpoint of calculating eigenvalues,
from the statistical standpoint of the moments of the eigenvalues, and from two different
geometric standpoints (the eigenvalue wheel, and the barycentric shape space). The
geometric degrees of freedom in the eigenvalue wheel will be differentiated in the space
of tensor values in Chapter 5 to characterize changes in tensor shape.

Although the eigenvalue wheel is based on a figure previously published by Nick-
alls [136], this is apparently its first use in the context of describing tensor shape. The
barycentric shape space is a contribution of this chapter, first appearing in [102]. The
success of the barycentric shape space is confirm by its utility in engineering superquadric
glyphs (Section 3.1), assessing the distribution of anisotropy shapes throughout a dataset
(Figure 4.1), and as the domain of transfer functions for volume rendering (Section 6.2).
Barycentric histograms have also been adopted by Zhang et al. as an aid to voxel
classification [201].



CHAPTER 3

GLYPHS AND TEXTURES

Tensor field visualization is a challenging task due in part to the multivariate nature of
individual tensor samples. This chapter presents methods for visualizating of individual
tensor values at discrete locations, using superquadric glyphs and reaction-diffusion tex-
tures. Experience has shown that the ability to scrutinize the individual tensor samples
is an important first step in exploring and understanding a dataset and the structures
within it. Also, low-level visualization is an important tool in debugging errors of data
acquisition or representation, such as a disagreement between the handed-ness of the
image raster frame and the tensor coordinate frame. Accidentally reversing the order of
the slices in the dataset volume is one common example of this.

The principal intent in these methods is to permit local inspection of field properties,
rather than extraction or representation of large-scale anatomical structures. However,
judicious combination of glyphs and textures can indicate the presence of larger patterns
and structures, which may be subsequently explored with fiber tractography (Chapter 4)
or volume rendering (Chapter 6).

3.1 Superquadric Tensor Glyphs
Tensor glyphs visualize individual tensor values by mapping the tensor eigenvectors

and eigenvalues to the orientation and shape of a base geometric primitive. The standard
glyph geometries for tensor visualization, cuboids and ellipsoids, are deficient in different
ways. Cuboids can display misleading orientation for tensors with underlying rotational
symmetry. Ellipsoids differing in shape can be confused, from certain viewpoints, because
of similarities in profile and shading. This section addresses the problems of asymmetry
and ambiguity with a new tunable continuum of glyphs based on superquadric surfaces.
Superquadric tensor glyphs enjoy the necessary symmetry properties of ellipsoids, while
also imitating cuboids and cylinders to better convey shape and orientation, where
appropriate.

Note: With the exception of Appendix C, this material was previously published
in [100]. The application to cardiac DT-MRI (Section 3.1.5 was previously published
as [61]. The same glyph method has also been applied to anatomical covariance tensors
derived from deformable registration of cortical surfaces [104].

3.1.1 Eigenvector Calculation
Because the tensor eigenvectors will be needed for glyph visualization and for later

chapters, we include here a brief overview of the process used to compute the eigenvectors.
This computation necessarily involves a particular coordinate frame in which to represent
the tensor as a matrix; we use the laboratory frame. From Equation 2.29 we know the
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multiplicity of the eigenvalue as a root of the characteristic polynomial. If the multiplicity
of eigenvalue λ is one, then the matrix

[D]L − λI =

 Dxx − λ Dxy Dxz

Dyy − λ Dyz

(Sym) Dzz − λ

 = [l1 l2 l3]

has rank two, and its column vectors li span the two-dimensional column-space of the
matrix. We then calculate the pair-wise cross-products of li, which we term cross vectors:

c1 = l1 × l2
c2 = l1 × l3
c3 = l2 × l3

Theoretically, all the cross vectors ci are parallel, and are all eigenvectors associated
with eigenvalue λ. Given the limited numerical precision of floating point representation,
however, a better method of computing the eigenvector in question is to average the
directions of the cross vectors. This is complicated by the fact that two cross vectors
may point in opposite directions. A reliable way of correcting this is to find the longest
cross vector cm, and change the change the sign of the other two ci so that ci · cm ≥ 0.
The average of the sign-adjusted ci has proven to be an accurate means of computing the
eigenvector.

If the multiplicity of eigenvalue λ is two (say, λ1 = λ2), then the rank of [D]L − λI
is one, and the column vectors li are all theoretically orthogonal to the eigenspace for
eigenvalue λ. This in turn means they are all parallel to e3, the eigenvector associated
with λ3. We use the sign-adjusted average of li to get a reliable estimate of e3. Then,
by picking any two perpendicular vectors both orthogonal to e3, we find eigenvectors
e1 and e2 to span the eigenspace. If all eigenvalues are equal, then any three mutually
orthogonal vectors may be chosen as eigenvectors.

3.1.2 Introduction and Related Work
Glyphs, or icons, depict multiple data values by mapping them onto the shape, size,

orientation, and surface appearance of a base geometric primitive [154]. In glyph-based
tensor visualization, the shape and orientation information are derived from the eigen-
values and eigenvectors of the tensor [164]. Section 2.3.1 described how the eigenvalues
are computed from tensor invariants.

The tensor field is defined as a function which maps from the spatial domain to the
space of symmetric tensor values:

D : R
3 �→ Sym3 .

Glyph-based visualizations typically sample D on a regular grid, and then transform
some base glyph surface geometry G0, such as a sphere, according to the tensor sample
attributes and location. The matrix representation and glyph transformation are com-
puted in laboratory frame. Recall from Section 2.1.4 (Equation 2.12), that the matrix
[D(x)]L can be diagonalized:

[D(x)]L = RΛRt ,
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where Λ is the diagonal matrix of eigenvalues, computed as described in Section 2.3.1,
and the columns of matrix R are the eigenvectors, computed as described above. The
tensor glyph G(x) at field location x is then defined by [164]:

D(x) = RΛR−1

⇒ G(x) = {RΛp + x ∀p ∈ G0} . (3.1)

That is, given the diagonalization RΛR−1 of the tensor sample at location x, the glyph
geometry is mapped through RΛ, and then translated by x. By not applying rotation
R−1, the axis-aligned features of G0 (such as the edges of a unit cube) become repre-
sentations in G(x) of the tensor eigenvalues and eigenvectors. Glyph geometries used in
the DT-MRI literature include cubes [207], cylinders [198], octahedra [189], and, most
commonly, spheres [153, 152, 21, 110]. Because eigenvectors are known only up to line
orientation (Section 2.1.4), practical tensor glyph geometries are constrained to shapes
with 180 degree rotational symmetry.

Strictly speaking, the superquadric shape we propose for the glyph geometry is a
superellipsoid, which was popularized by the architect Piet Hein in the 1960s [67]. The
larger class of shapes properly referred to as superquadrics, which includes superellip-
soids, superhyperboloids of one and two pieces, and supertoroids, were presented by
Barr [10] in the context of solid modeling for computer graphics. Subsequent work by
Pentland [148, 149] and Bajcsy and Solina [7] applied superellipsoids in computer vision,
using the tunable geometry (in addition to a smooth deformation) to simultaneously
segment objects from a scene and fit their shape parameters. Jaklic et al. review this
area of computer vision [91].

Superquadric tensor glyphs build on previous research by Shaw and Ebert which
applies superquadrics to glyph-based visualization [167, 168, 58, 59]. They describe
how parameterizing shape variations to encode data variables should enable effective
and intuitive “perceptualizations,” given that distinguishing shape from contours and
shading is apparently a preattentive process [143]. Offering a continuous two-parameter
space of shapes, superquadrics are a natural choice for a tunable geometric primitive.
The ability to discern differences between rendered superquadrics was experimentally
quantified [168], and the superquadric glyphs were successfully used for document corpus
visualization [167] and scientific visualization of magnetohydrodynamic flow [58, 59]. The
novel contribution of this section is the application of superquadrics as a tensor glyph
rather than simply a multivariate glyph. This requires selecting an intuitive subset
of the superquadric parameter space to encode tensor shape, and ensuring that the
display of tensor orientation faithfully conveys the symmetries that can arise in the tensor
eigensystem (described in Section 2.3.2).

Some DT-MRI voxels within the largest white matter structures of the brain (such as
the corpus callosum) exhibit purely linear anisotropy at the spatial scale of the individual
voxels, because the whole voxel region is homogeneously uni-directional. However, the
complex branching and crossing of the white matter tracts, combined with the limited
resolution of the DT-MRI modality, produces many measurements with significant planar
anisotropy. Visualizing the locations and orientation of planar anisotropy is a step
towards understanding the complex nature of white matter connectivity. The first step
in this direction was taken by Wiegell et al., using cylindrical glyphs (aligned with the
minor eigenvector e3) to visualize the orientation and context of regions of high planar
anisotropy [198]. The “stream-surface” approach of Zhang et al. provides an alternative
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way of visualizing planar anisotropy regions, by integrating a surface patch along the two
orthogonal directions with highest diffusivity [204, 203].

3.1.3 Motivation
Evaluating existing tensor glyph geometries and their properties is facilitated with an

intuitive domain that spans all possible tensor shapes. Such a domain is afforded by the
barycentric anisotropy metrics, described already in Section 2.3.4. The barycentric shape
space is drawn in Figure 3.1 using cuboid glyphs to emphasize the changes in aspect
ratio over the triangular domain. Complete isotropy is at the top corner (cs = 1), and
anisotropy increases toward the lower edge.

The advantage of the cuboid glyphs is how their sharp edges give an unambiguous
depiction of the glyph orientation, but with this comes their drawback: misleading
depiction of under-constrained orientation. Because cp = 0 ⇒ λ2 = λ3 for the linear
shapes at the left edge of the triangle, computation of the corresponding eigenvectors
e2 and e3 may return any two perpendicular vectors within the plane normal to the
principal eigenvector e1. An analogous problem occurs with the planar shapes along the
right edge of the triangle. The cuboid edges depict orientation with a visual clarity that
is disproportionate to the low numerical accuracy with which the eigenvectors can be
calculated [70]. For intermediate shapes, however, the sharp edges of the cuboids are
good at depicting legitimate tensor orientation.

Cylinder glyphs resolve this problem by aligning their axis of rotation along the
eigenvector for which the numerical accuracy is greatest, as done in Figure 3.2. There
is unfortunately a discontinuity problem, with a seam down the middle of the shape
space. Arbitrarily small changes in the tensor shape can result in discontinuous changes
in the glyph direction, even though the precise location of the seam is somewhat ar-
bitrary. Specifically, an alternate definition of cl, cp, cs (normalized by λ1 instead of
λ1 + λ2 + λ3 [194]) produces a slightly different distribution of intermediate shapes
within an otherwise similar barycentric shape domain. In addition, because cylinders
have only one axis of symmetry, cylindrical glyphs depict meaningless orientation for
spherical tensors, which have no intrinsic orientation.

cl = 1 cp = 1

cs = 1

Figure 3.1. Tensor shapes, with cuboids.
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Ellipsoidal glyphs, shown in Figure 3.3, avoid all such symmetry problems. There
is, however, a problem of visual ambiguity. Glyphs with differing tensor shapes exhibit
similar image-space shapes, with only shading cues for disambiguation. Figure 3.4 demon-
strates a pathological example. A wide range of tensors rendered with ellipsoid glyphs
can appear similar from one viewpoint (Figure 3.4(a)), though they are clearly different
when seen from another viewpoint (Figure 3.4(b)). This example is important because
it demonstrates that even standard, intuitive glyph geometries can sometimes fail to
properly convey data attributes.

3.1.4 Method
The problems of asymmetry and ambiguity can be addressed with a glyph geometry

that changes according to the underlying tensor shape. Ideally, the best of Figures 3.1,
3.2, and 3.3 could be combined: cylinders for the linear and planar cases, spheres for the
spherical case, and cuboids for intermediate cases, with smooth blending in between. The
general strategy is that edges on the glyph surface signify anisotropy: anisotropy implies a
difference in eigenvalues, which implies confidence in computing eigenvectors [70], which
implies lack of axial symmetry, which can be visually highlighted by a strong edge on the
glyph surface. When two eigenvalues are equal, the indeterminacy of the eigenvectors
ought to be conveyed by a circular glyph cross-section.

Superquadrics accomplish this goal. They can be parameterized explicitly (useful for
generating a polygonal representation):

qz(θ, φ) =

 cosα θ sinβ φ
sinα θ sinβ φ

cosβ φ

 ,
0 ≤ φ ≤ π
0 ≤ θ ≤ 2π

, (3.2)

where xα = sgn(x)|x|α. The superquadric surface may also be represented implicitly
(useful for ray-tracing):

qz(x, y, z) =
(
x2/α + y2/α

)α/β
+ z2/β − 1 = 0. (3.3)

Figure 3.5 shows how α and β control superquadric shape. From the entire space of

cl = 1 cp = 1

cs = 1

Figure 3.2. Tensor shapes, with cylinders.
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cl = 1 cp = 1

cs = 1

Figure 3.3. Tensor shapes, with ellipsoids.

(a) Eight different tensors, shown with ellipsoid glyphs.

(b) Same eight glyphs, but with a different viewpoint.

Figure 3.4. From some viewpoints, ellipsoids poorly convey tensor shape.

superquadrics defined by α > 0 and β > 0, the superquadric tensor glyphs draw from only
a small subset, indicated by a gray triangle in the background of Figure 3.5. The domain
of superquadric tensor glyphs is defined by: β ≤ α ≤ 1. Note that the formulations of
qz and qz are not symmetric with respect to axis permutation. Aside from the spherical
case, the superquadrics may have axial symmetry around only the z axis (when α = 1).
Thus, as a counterpart, we also use superquadrics which attain axial symmetry around
the x axis:

qx(θ, φ) =

 cosβ φ
− sinα θ sinβ φ
cosα θ sinβ φ

 ,
0 ≤ φ ≤ π
0 ≤ θ ≤ 2π

, (3.4)

qx(x, y, z) =
(
y2/α + z2/α

)α/β
+ x2/β − 1 = 0. (3.5)

With these ingredients, superquadric tensor glyphs are now defined in terms of the
geometric anisotropy metrics cl, cp, and a user-controlled edge sharpness parameter γ:
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cl ≥ cp =⇒


α = (1 − cp)γ

β = (1 − cl)γ

q(θ, φ) = qx(θ, φ)
q(x, y, z) = qx(x, y, z)

cl < cp =⇒


α = (1 − cl)γ

β = (1 − cp)γ

q(θ, φ) = qz(θ, φ)
q(x, y, z) = qx(x, y, z) .

(3.6)

Superquadric tensor glyphs use Equation 3.6 to define a base glyph geometry G0 that
is made into a tensor visualization via Equation 3.1. The rationale for how α and β
are defined in Equation 3.6 can be understood with reference to Figure 3.5. For tensors
that are more linear than planar (cl ≥ cp), the glyph shape becomes more distinctly
cylindrical as cl increases and β decreases. True axial symmetry is only present when
cp = 0 ⇒ α = 1. As the planar component increases with cp, the shape gradually tends
away from axial symmetry due to lower α, increasing the prominence of edges around the
glyph circumference. Analogous reasoning holds for cl < cp. When cl = cp, α = β,
and qx(x, y, z) = qz(x, y, z), in which case the x axis (Equations 3.4, 3.5) and the z
axis (Equations 3.2, 3.3) superquadrics are identical. Thus, like cylinders (Figure 3.2),
superquadric tensor glyphs do have a seam between the linear and planar sides of the
shape space, but the seam is mathematically continuous. Figure 3.6 illustrates how the
parameterization change may have an effect on a tessellation-based surface representation.

Figure 3.7 illustrates superquadric glyphs with the same tensors, lighting, and view-
point as used in Figures 3.1, 3.2, and 3.3. The glyphs have the necessary symmetry

β = 4

β = 2

β = 1

β = 1
2

β = 1
4

α = 1
4 α = 1

2 α = 1 α = 2 α = 4

Figure 3.5. Superquadrics defined by Equation 3.2. The gray triangle in the background
indicates the subset of the shape space employed by superquadric tensor glyphs. Edges
indicate the tessellation resulting from uniform steps in φ and θ.
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cl = 0.33 cl = 0.31 cl = 0.29 cl = 0.27
cp = 0.27 cp = 0.29 cp = 0.31 cp = 0.33

Figure 3.6. Parameterization change across the linear/planar seam, from cl > cp to
cl < cp (γ = 3).

properties of ellipsoids, but they tend to convey orientation and shape more clearly by
imitating cylinders and cuboids where appropriate. The edge sharpness parameter γ
controls how rapidly edges form as cl and cp increase, allowing the user to control the
visual prominence of orientation information at low anisotropy levels. Ideally, application
characteristics would enable an informed choice of γ: visualizations of noisy measurements
might use a lower (more conservative) γ than would visualizations of high-precision
simulation data. Note that pure ellipsoids can be recovered as a special case, with γ = 0.

Figure 3.8 shows how superquadric glyphs are better at conveying shape than the
ellipsoid glyphs in Figure 3.4, using the same tensors, viewpoint, and lighting. For
example, the third and sixth glyphs from the left have precisely linear (cp = 0) and
planar (cl = 0) shapes, respectively. The existence and the orientation of the resulting
axial symmetry is easier to see with superquadrics than with ellipsoids.

3.1.5 Results
Before showing results from superquadric tensor glyphs, we define here the spherical

colormap which will be used in numerous figures throughout the dissertation.R
G
B

 = cl

|e1 · x|
|e1 · y|
|e1 · z|

+ (1 − cl)

1
1
1

 . (3.7)

Though far from an unambiguous mapping of the principal eigenvector e1 to color, this
has become the de facto coloring scheme within the DT-MRI literature, and certain major
anatomical features are recognized by it [151, 142]. Equation 3.7 actually deviates slightly
from convention by using cl rather than FA as the anisotropy measure to desaturate color.
Using cl is more mathematically justified, however, since FA is nonzero for planarly
anisotropic tensors (for which e1 is not uniquely defined), while cl is by definition zero.

The figures in this Section are created by ray-tracing. Ray-tracing is a method of image
synthesis based on computing light along rays from the virtual camera into the synthetic
scene, through the pixel locations on the image plane. By nature, ray-tracing has the
virtue of sublinear computational time with respect to scene complexity [95], which has
motivated its recent use as a means of interactive scientific visualization [145, 144].
Appendix C describes an important implementation detail that facilitates the efficient
ray-tracing of superquadric tensor glyphs.

Section 3.1.2 described how one task of diffusion tensor visualization is the identi-
fication of regions of high planar anisotropy. For this task, Figure 3.9 compares the
effectiveness of superquadric tensor glyphs and ellipsoids for visualizing a portion of an
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(a) γ = 1.5

(b) γ = 3.0

(c) γ = 6.0

Figure 3.7. Tensor shapes, with superquadric glyphs, and three different values of edge
sharpness parameter γ.



43

(a) Same tensors, viewpoint, and lighting as Figure 3.4(a), but with superquadric
glyphs.

(b) Same as Figure 3.4(b), but with superquadric glyphs.

Figure 3.8. Superquadrics convey shape differences more reliably than ellipsoids (γ = 3).

axial slice through a diffusion tensor dataset, centered on the right half of the splenium
of the corpus callosum (the black region is the lateral ventricle). The background squares
represent isotropy levels for each sample (“interesting” anisotropic tensors have a darker
background and hence greater contrast with the glyph). The RGB coloring of the glyphs
is from Equation 3.7. Planarly anisotropic samples are located near the center of the
image. With ellipsoids, it is difficult to discern which of the glyphs represent planar
anisotropy, and it harder to appreciate the differences in shape that may occur between
neighboring samples. Also, the straight edges of the linearly anisotropic superquadric
glyphs provide a stronger orientation indication than possible with the rounded contours
of ellipsoids.

In three-dimensional glyph-based visualizations of tensor volumes, it is important to
restrict the number of glyphs, to avoid creating an illegible mass. In diffusion tensors,
glyphs may be culled according to an anisotropy threshold (such as FA > 0.5) so that
isotropic tensors (belonging to gray matter or cerebral spinal fluid) are hidden, resulting
in a coarse depiction of the major white matter pathways. Figure 3.10 uses this method
to compare ellipsoid and superquadric glyphs for visualizing half of a diffusion tensor
volume, centered again at the right half of the splenium of the corpus callosum. The
superquadrics depict the amount and orientation of the planar component in the white
matter more clearly than the ellipsoids. Comparing the planar orientation with the
direction of adjacent linear anisotropy is an example of a visualization query which is
better answered by the new glyph method.

Thought not a focus of this dissertation, DT-MRI has proven useful for measuring
the directional structure of the muscular wall of the heart (the myocardium), and this
provides the context for a second demonstration of superquadric tensor glyphs. This
work was done in collaboration with Dr. Daniel Ennis [61] as part of his doctoral studies
at Johns Hopkins University. The orientation of the contractile muscle cells (myofibers)
within the myocardium smoothly rotates as a function of position between the epicardial
and endocardial surfaces [178]. Diffusion tensor imaging can measure this feature, in
that the principal eigenvector e1 indicates the myofiber direction [88, 165] However, the
myocardium is also characterized by a laminar or sheet-like organization [115], although
there is relatively little work in assessing this structure through DT-MRI [55].

Figure 3.11 demonstrates the difference between ellipsoid and superquadric glyphs
in visualizing myocardial structure. Both glyphs show the twisting of the main fiber
direction, but the edges in the superquadric glyphs provide a cleaner depiction of the
direction, especially towards the endocardium, where the tensor anisotropy is lower. In
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(a) Ellipsoids

(b) Superquadrics (γ = 3)

Figure 3.9. Slice of DT-MRI dataset of brain visualized with ellipsoids (top) and
superquadrics (bottom).



45

(a) Ellipsoids

(b) Superquadrics (γ = 3)

Figure 3.10. Three-dimensional region of DT-MRI dataset of brain visualized with
ellipsoids (top) and superquadrics (bottom).
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Endocardium
Endocardium
Endocardium
Endocardium
Endocardium
Endocardium
Endocardium
Endocardium
Endocardium

EpicardiumEpicardium
Epicardium
EpicardiumEpicardiumEpicardiumEpicardiumEpicardium
Epicardium

(a) Ellipsoids (b) Superquadrics (γ = 4)

Figure 3.11. Slice of DT-MRI dataset of canine myocardium (left ventricle), using
ellipsoids (left) and superquadrics (right). Colormap encodes fiber orientation relative to
sampling plane. Figure courtesy of Dr. Daniel Ennis.

addition, at the midwall, the superquadric glyphs clearly show an increase in orthotropy :
wherein the eigenvalues are all distinct (half-way between linear and planar). This feature
had not been previously reported in the cardiac DT-MRI literature, and is significant
because the orientation of the planar component is broadly consistent with the purported
sheet architecture. Based on these initial findings from the glyph-based visualizations,
future work will seek to quantify the orientation and organization of the orthotropic
regions.

3.1.6 Discussion
In comparing Figures 3.4(a) and 3.8(a), one could argue that various rendering effects

would help clarify the shape differences among the ellipsoids: different lighting, specular
highlights, or surface textures, for example. Interactive manipulation and stereo rendering
would also help. On the other hand, these modifications would also benefit the depiction of
superquadrics. The same diffuse lighting and fixed viewpoint, which failed to distinguish
the ellipsoid shapes, were sufficient to differentiate the superquadrics. Using data-driven
variable geometry (Equation 3.6), in addition to the eigenvalue-based scaling, helps
superquadric glyphs convey shape more explicitly than previous tensor glyphs.

It should be pointed out that even though Figures 3.9 and 3.10 were ray-traced with a
resolution and sampling (800× 800, 49 rays per pixel) which makes interactive rendering
unlikely, the superquadric glyph method itself does not rule out interactively, which
is an important part of the overall scientific visualization process. On the contrary,
polygonal models created by uniform steps in the (θ, φ) parameter space of Equations 3.2
and 3.4 can easily create the necessary shapes, due to the fortuitous property that the
parameterization slows down near the edges (as indicated in Figure 3.5), thus creating
more faces in higher curvature areas. The BioTensor visualization program, for example,
uses polygonal superquadric glyphs as one of the interactive tools available for exploring
tensor fields [32] (these are seen in Figures 4.8 and 4.9).

The success of the superquadric glyphs rests on the mathematical property that their
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underlying geometry changes as function of tensor shape, while the base (spherical)
geometry of ellipsoidal glyphs does not. The consequence of this, demonstrated in
Figure 3.4, is that the set of ellipsoidal glyphs is closed under the scalings and shears
which hold the silhouette fixed. This is known in the computer vision literature as
the “Bas-Relief Ambiguity” [25]. Superquadric glyphs do not suffer this ambiguity
because scalings and shears will change the tensor shape, which in turn changes the glyph
geometry, as shown in Figure 3.8. The glyphs have been enthusiastically adopted by two
external collaborators, Dr. Daniel Ennis for the visualization of myocardial diffusion
tensors (Figure 3.11) [61], and Dr. Paul Thompson for the visualization of anatomic
covariance tensors [104]. Both collaborators have noted that the glyphs need no additional
explanation when shown to colleagues, and that people familiar with ellipsoidal tensor
glyphs appreciate the shape contrasts created by the superquadrics.

Starting with a more expressive glyph geometry allows further effects (color, textures,
etc.) to be saved for encoding additional degrees of freedom that may be required in
a more complex visualization application. The best way to enrich three-dimensional
glyph-based visualizations with extra information is an important direction of future
work, since there are usually a number of related field values which should be visualized
along with tensors. Inspiration may be drawn from artistic methods of painting and
illustration [110, 111, 106, 158]. Specifically, the composition of multiple glyphs into
a depiction of larger-scale structure may benefit from context-sensitive and multiscale
variation of rendering style [80].

The incentive to create sharp edges in the superquadric glyphs was based on the
observation that edges generate a strong visual cue for orientation. However, it is the
mathematical property of axial symmetry that constrains the glyph to be cylindrical and
spherical according to the tensor eigensystem, and the idea of continuity that informed
the design of an invisible seam through the middle of barycentric shape space. The
combination of aesthetic judgment and mathematical constraint may be useful in the
design of other visual abstractions for multivariate and tensor visualization.

3.2 Reaction-Diffusion Textures for Visualization
This section describes an application of reaction-diffusion textures, developed in math-

ematical biology and previously applied to computer graphics, to the task of tensor visu-
alization. The result is a texture of spots (in two dimensions) or “blobs” (in three) which
are visualizations of the local tensor attributes. The individual spots are effectively tensor
glyphs, and their stochastic placement (a natural consequence of the reaction-diffusion
process) allows the overall trends in shape and orientation to be seen clearly.

Note: Most of this material was previously published in [103]. However, the original
presentation had an error in the mathematical exposition and implementation (fixed in
Equation 3.13), and gave inadequate advice on parameter setting. The original work
demonstrated the generalization to three dimensions; below we focus on two-dimensional
textures for the sake of brevity. The idea of using reaction-diffusion textures for visualiza-
tion has since been adopted and extended to visualize vector fields and their uncertainty,
in two-dimensions, by Sanderson et at. [162].

3.2.1 Introduction and Related Work
Using reaction-diffusion texture as a tensor visualization tool is based on two separate

areas of previous work: flow visualization with textures, and reaction-diffusion texture
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synthesis for computer graphics. The spot noise method deforms a texture of randomly
positioned spots according to local flow properties [188, 50]. Line Integral Convolution
(LIC) blurs a white noise texture along the streamline direction [37, 174]. The problem of
extending these methods to volumetric flow has been addressed in various ways. Three-
dimensional spot noise textures can be rendered by an extension of the “splatting” method
of scalar field volume rendering [197, 45, 46], or by rendering the texture only near contour
surface [126]. Three-dimensional LIC can be made more comprehensible by virtual dye
advection [169], color-codings and halos [90], and interactive graphics hardware [157]. A
common attribute of these methods is that the texture underlying the visualization is
essentially random. An interesting recent exception to this by Li et al. uses a volume of
rasterized and parameterized streamlines to allow arbitrary textures to be interactively
placed and animated within a volumetric flow [117].

Textures have also played a role in previous approaches to tensor visualization. Laid-
law et al. used a stripe texture on elliptical brush strokes to convey the out-of-plane
component of the principal eigenvector in an approach that can be termed “painterly”:
the visualization is a composition of different layers, each of which conveys one attribute of
the data, by some combination of color or opacity, or by the accumulation of small glyphs
mimicking brush strokes [110]. LIC has been advanced as a diffusion tensor visualization
method, in which the noise texture is convolved along the eigenvectors. Ou and Hsu
were the first to do this, by using traditional LIC along the principal eigenvector as
the input to a second stage which blurs along the secondary eigenvector, to visualize
myocardial structure [139]. Sigfridsson et al. perform local frequency-space filtering of
a noise texture according to tensor eigenvalues and eigenvectors to form volume which
is rendered in combination with interspersed glyphs [171]. The HyperLIC approach of
Zheng and Pang adapts LIC by performing filtering of a noise texture within a polygonal
area defined and deformed by the local tensor attributes [205].

We prefer to base our tensor visualizations on texture which is more organized or struc-
tured than random. One source of organized textures is the simulation of a combination
of chemical undergoing simultaneous reaction and diffusion. Turing proposed reaction-
diffusion equations as a mathematical model for biological morphogenesis: the emergence
of organized shape and structure essential to the growth of an organism [183, 135].
Turing’s paper describes systems of nonlinear partial differential equations modeling the
reactions between a number of chemicals (called “morphogens”), which undergo contin-
uous reaction (creation and destruction) and diffusion. Simulating the reaction-diffusion
system results in an assignment of morphogen levels at every node of the simulation grid,
and the results are visually assessed by mapping a morphogen concentration level to a
grayscale image intensity. Discrete implementations of reaction-diffusion systems became
a popular method in computer graphics for generating textures with the development of
methods for normalizing the density of texture on parameterized surface and polygonal
models, and for generating a rich variety of texture patterns [184, 199]. The Gray-Scott
reaction-diffusion equations provide another source of organized textures [147].

To a large extent, the value of reaction-diffusion textures as the basis of tensor visu-
alization is in how the texture spots tend to organize and space themselves according to
the underlying field attributes. In this sense, the method addresses the problem of glyph
and streamline placement in vector and tensor visualization. Turk and Banks gathered
adjacent and similar vector streamlines until a minimal representative set remains [185].
For visualizing the vector and tensor attributes of two-dimensional incompressible flow,
Kirby et al. draw arrow and ellipsoid glyphs in two visually distinct layers, with a
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placement strategy that minimizes overlap between glyphs within each layer [106].

3.2.2 Turing’s Reaction-Diffusion Formulation
Turing’s presentation of the mathematical properties of morphogenesis is largely

theoretical, although his Section 10 gives two concrete examples of a system of chemicals
undergoing continuous reaction and transformation, and includes a numerical solution
of the first system on a closed ring of 20 nodes. Bard and Lauder examined Turing’s
second chemical system, verifying with computer simulations that in one dimension it
generates the periodic pattern Turing predicted [9]. Significantly, they also showed that
in two dimensions, the pattern of spots which develops is organized in character, but not
strictly regular, and not entirely predictable. Thus, although unlikely as a mechanism for
limb and finger growth, Turing’s theory may apply to pigmentation patterns in skin
and fur, consistent with how the approach has been adopted in computer graphics.
Turk, for example, starts with a discretization of Turing’s second system, expressing
the relationship between morphogens a and b as [184]:

∆ai = s(16 − aibi) + da(ai+1 − 2ai + aa−i)
∆bi = s(aibi − bi − βi)︸ ︷︷ ︸

reaction

+ db(bi+1 − 2bi + bi−1)︸ ︷︷ ︸
diffusion

. (3.8)

The variables ai and bi represent the morphogen quantities at node i in the (linear) grid.
The morphogen diffusivities da and db are global constants, and s controls the contribution
of the reaction terms. The value βi is equal to 12, based on Turing’s exposition. However,
Turk includes in β a small amount of additive noise, the purpose of which is to move the
system away from the unstable equilibrium of the initial conditions defined by ai = bi = 4
for all i. Turk demonstrates numerical solutions of this system in one and two dimensions
with s = 0.03125, da = 0.25, and db = 0.0625 [184].

The diffusion terms in Equation 3.8 represent the standard three-point mask for
measuring second derivatives by discrete convolution. The system may be expressed
in a continuous and dimensionally general manner as:

∂a

∂t
= s(α − ab) + da∇2a (3.9)

∂b

∂t
= s(ab − b − β) + db∇2b .

We have made two modifications based on the implementation and experience of Lawlor [112].
First, we have replaced the constant 16 in the first equation with a variable growth
constant α. The (α, β) parameter space offers additional control of the form the textures
which emerge from the system. Second, we keep α and β fixed as global parameters,
moving the low amplitude noise out of β and into the initial concentration fields a and b.

We discretize the equations in space and time on a regular grid:

∆a = ∆t(s(α − ab) + daL ∗ a) (3.10)
∆b = ∆t(s(ab − b − β) + dbL ∗ b) ,

where L is the mask that implements the Laplacian by convolution. The two-dimensional
mask is:

L =
1

∆x2

0 1 0
1 −4 1
0 1 0

 . (3.11)
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In the interests of simplicity in implementation, we use simple Euler integration to solve
the systems; ∆t must therefore be small enough to avoid instabilities. An implicit solution
such as Crank-Nicholson [44] has greater stability, and a framework such as multigrid (as
proposed by Lawlor [112]) can decrease the computational time.

Figure 3.12 shows the results from Equation 3.10 for a small range of (α, β) settings.
The extreme sensitivity of the texture patterns to such parameter settings is the most
problematic aspect of using a reaction-diffusion system for visualization purposes. Note
that while Turing suggested (α, β) = (16, 12) for one-dimensional patterns, spots seem
to be more reliably formed with (α, β) = (16.1, 11.9). This parameter variation is
apparently controlling something akin to the surface tension of the spot boundaries,
and our parameter choice is based on the goal of creating well-formed spots which act as
individual glyphs.

Figure 3.13 shows how the solution behaves as a function of the Euler time step ∆t.
Notice that as long as ∆t is small enough to avoid divergence, using the same initial noise
conditions will result in essentially an identical texture, which is indirectly determined
by the initial noise pattern.
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α = 15.8, β = 12.2 α = 15.9, β = 12.1 α = 16.0, β = 12.0

α = 16.1, β = 11.9 α = 16.14, β = 11.86 α = 16.2, β = 11.8

Figure 3.12. Results from Equation 3.10 on a 128×128 grid, using ∆t = 0.5, ∆x = 1.0,
da = 0.25, db = 0.0625, s = 0.0125, and the specified values of α and β. The amount of
morphogen a is shown in grayscale. In all cases, number of iterations is 20000.

∆t = 1.0 ∆t = 0.5 ∆t = 0.25 ∆t = 0.125

N = 40 N = 20000 N = 30000 N = 53000

Figure 3.13. Demonstration of lowering the Euler time step ∆t. If ∆t is too large,
the system diverges (left-most image). If it converges, it tends to converge to the same
texture, assuming that the number of iterations N is large enough.
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3.2.3 Tuning Textures with Tensors
The reaction-diffusion texture is turned into a tensor visualization by locally adjusting

the diffusion properties according to the diffusion tensor field. Specifically, Equation 3.9
is replaced with:

∂a

∂t
= s(α − ab) + ∇ · (Da∇a) (3.12)

∂b

∂t
= s(ab − b − β) + ∇ · (Db∇)b

The diffusion terms should be recognized from Equation 2.21 as Fick’s second law in
inhomogeneous anisotropy. For a general concentration c and diffusion tensor D, this can
be expanded (with index notation) as:

∇ · (D∇c) =
∂

∂xi
(Dij

∂c

∂xj
) = Dij

∂2c

∂xi∂xj
+

∂Dij

∂xi

∂c

∂xj
(3.13)

The first term is the double contraction of D with the Hessian of c. The second term
vanishes where the anisotropy is homogeneous. We use standard first and second central
differences to implement all these derivatives (Section 2.1.8).

Two implementation details should be noted. First, to ensure that the texture spots
cover approximately the same area as a tensor sample, the tensor data should be up-
sampled by some factor when mapped onto the reaction-diffusion simulation grid. A
larger up-sampling factor produces a higher-resolution visualization, but at the expense
of more computation. Earlier work [103] used an upsampling factor of eight, below we
use between 12 and 15. The upsampling is performed as a preprocess using a cubic filter
(Section 2.1.8). Second, because the diffusion length is proportional to the square root of
the diffusivity, rather than the diffusivity itself (Equations 2.19 and 2.20), the spots which
emerge from the texture will be scaled by the square roots of the tensor eigenvalues. To
correct this, we replace each tensor D on the upsampled grid with D2.

Figure 3.14 show results from a synthetic tensor dataset. The texture spots have the

(a) Ellipse glyphs (b) Reaction-diffusion
texture

(c) Texture thresholded
to resemble (a)

Figure 3.14. Synthetic tensor dataset of a slice of torus, visualized by ellipse glyphs (a),
and a reaction-diffusion texture (b). Thresholding the texture (c) confirms that the spots
have the correct aspect ratio.
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same orientation and shape as the ellipse glyphs, but are positioned to avoid any overlap.
The packing naturally arises from the reaction-diffusion equations. In isotropic regions,
the spots form a hexagonal grid, and within the anisotropic region the packing ensures
that there are no large gaps.

Figure 3.15 demonstrates the method on a portion of an actual DT-MRI scan. Because

(a) Ellipse glyphs

(b) Reaction-diffusion texture

Figure 3.15. Portion of coronal slice of DT-MRI dataset, including the ventricles in the
lower-left, visualized by ellipse glyphs (a), and a reaction-diffusion texture (b).

this is only a two-dimensional coronal slice (along the Y axis), only the Dxx, Dxz, and
Dzz components of the diffusion tensor contribute to the texture formation. This figure
demonstrates how the placement of spots in the texture better follows the underlying
features of the data, compared to the strict grid of ellipses. Diffusivity is highest inside
the ventricles, between the hemispheres, and within the sulci, as these are locations with
cerebral spinal fluid. The ellipse glyphs are larger in these regions, and hence overlap.
More troubling from a visualization standpoint is that, the ellipse glyphs overlap when
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the direction anisotropy is aligned with the underlying grid. On the other hand, the
distribution of the texture spots is in accordance to their size and shape, allowing the
texture to more closely follow the curving path of white matter as it projects towards the
cortical surface. An unfortunate aspect is that spots on a boundary of cerebral spinal
fluid tend to spill out.

The reaction-diffusion textures provide the basis for a “painterly” approach to building
up a visualization, similar in spirit to earlier work by Laidlaw [110], shown in Figure 3.16.
The small images at the top of the figure show the ingredients to this image: fractional

FA RGB(e1) data mask data grid

Final composition

Figure 3.16. Reaction-diffusion texture-based visualization.

anisotropy FA, the RGB colormap of principal eigenvector e1 (Equation 3.7), a mask
covering the interesting data sample locations, and a grid indicating the underlying data
resolution, prior to upsampling. The product of the reaction-diffusion texture, the FA
image, and the RGB colors, is masked and composited over the grid. The RGB coloring
of the final image shows three-dimensional directional information, such as the superior
longitudinal fascicle, the green area in the lower right. As mentioned in Section 2.3.3,
this is a region which is primarily direction anterior-posterior (into and out of a coronal
slice), but with a significant planar anisotropy component, which is clearly shown in the
texture visualization.

3.2.4 Discussion
We have describe how to coax Turing’s model of morphogenesis into visualizations

of diffusion tensor data. As this work represents the first time such textures have been
used for scientific visualization, the “success” of this proof-of-concept work rests in a
visual comparison of the images in Figures 3.14 and 3.15. For further validation, one
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could do a shape quantification of the texture spots with a covariance matrix, and verify
that it matches the diffusion tensor at the corresponding location, however Figure 3.14
suggest that the match will be very good. Such a technique could be used, however,
to fix or remove any errant spots. Further extending the sort of effects demonstrated
in Figure 3.16 could allow additional data attributes to be indicated, such as noise or
uncertainty [93, 162].

As a visualization tool, reaction-diffusion textures have numerous short-comings: a
number of parameters had to be adjusted in order for the textures to form as desired
(so that the individual spots serve as glyphs), the method of parameter adjustment was
essentially trial and error, and the computational expense of generating the texture was
significant. Furthermore, there is little in the way of a user interface to this method. The
user has no way of adjusting spot placement, other than restarting the simulation and
hoping that the texture will form differently.

Still, the effectiveness of Figure 3.16 suggests that such textures can improve vi-
sualizations. Future work, however, should probably focus on the overall effect that the
textures achieve, rather than adjusting specific properties of the reaction-diffusion system
itself. Specifically, the major result of this method is that optimizing glyph placement
is an important step in creating a high-quality visualization. To our knowledge this
specific problem has not been examined in the context of diffusion tensor visualization.
Reaction-diffusion patterns provide an indirect way of solving the optimization, in the
sense that texture seems to optimize the density of packing of spots. Even though
reaction-diffusion implementations based on graphics hardware will be significantly faster,
we feel a direct computational solution to optimizing glyph packing and placement is
called for.



CHAPTER 4

FIBER TRACKING WITH TENSORLINES

Long-range communication between separate parts of the brain is conducted over
pathways, called fiber tracts, in which collections of axons and neuronal filaments run
in parallel [73]. The principal eigenvector of the diffusion tensor, the direction along
which the apparent diffusion coefficient is highest, is aligned with the direction of the
major white matter pathways [153, 122, 24, 14]. Basser proposed the technique of fiber
tractography, in which the direction information from the diffusion tensor field is spatially
integrated to create a geometric model for the white matter pathway [13, 20]. Provided
that one understands that the physical scales of individual axons (microns) and individual
voxels (millimeters) are roughly three orders of magnitudes apart [24], and that therefore
tractography can at best indicate aggregate directional organization, fiber tractography
can extract interesting structural information from DT-MRI datasets.

This chapter presents a method for tractography that incorporates the whole diffusion
tensor, rather than simply its principal eigenvector, into the integration of fiber pathways.
The two main motivations for this approach are the phenomenon of partial voluming,
and the fact that some regions of the brain contain multiple crossing fibers directions.
As described in Section 2.3.3, both of these situations can produce anisotropy which is
more planar in shape than linear. Extraction of putative white matter fiber pathways can
be based on the directional information provided by planar anisotropy, as well as linear
anisotropy. We accomplish this by incorporating tensor multiplication into the path
integration: the input direction towards a tensor sample is multiplied by the tensor value
to help determine the output direction. Note that this is essentially the “power method”
of matrix eigenvector computation [70], applied to the task of fiber tracking. We use the
term “deflection” to refer to the redirection of a vector by tensor multiplication, and the
fiber tracks based on deflection are termed tensorlines.

Note: This material was originally presented in [190], joint work with David Weinstein
(first author) and Eric Lundberg. The tensorline method in particular, and deflection as
the basis of tractography in general, has since been studied in detail by Lazar et al., who
have quantified the robustness to noise [113], and demonstrated its ability to extract the
major white matter pathways [114]. A fairly recent review of tractography approaches,
limitations, and solutions is given by Mori [133].

4.1 Introduction
The goal of fiber tractography is hindered by the low spatial resolution of DT-MRI

voxels compared to fine structure of axon pathways, and the physical proximity of path-
ways oriented in different directions. If we had very high resolution data (perhaps
on the order of tens of microns), and the direction of fiber pathways within a voxel
was purely homogeneous, then tractography would be straightforward. Unfortunately,
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clinical DT-MRI datasets are still relatively low resolution, and like any measurement,
they are subject to noise. Still, the directional information contained in tensors, linearly
anisotropic or not, can play a role in calculating a fiber tract. Specifically, the direction
of the secondary eigenvector in planar anisotropy can help provide a more complete
picture of the underlying neural connectivity. To appreciate the range of anisotropy
shapes present within actual data, Figure 4.1 shows a histogram of a DT-MRI scan,
in the barycentric space defined by the {cl, cp, cs} shape metrics (Section 2.3.4). The
important property of this histogram is that there is no obvious tendency towards linear
anisotropy, suggesting that there is substantial partial voluming taking place throughout
the measured volume.

cl cp

cs

Figure 4.1. Barycentric histogram of a diffusion tensor MRI dataset. The coordinates
correspond to the amount of linear, planar and spherical anisotropy in the tensor. The
lack of clustering suggests considerable partial voluming is taking place throughout the
volume.

Fiber tractography is based on the hyperstreamline method of tensor visualization [51,
52], which applies the streamline method of flow visualization to the field of tensor
eigenvectors. Advected along a single eigenvector, hyperstreamlines depict the additional
tensor information with an ellipsoidal cross-section which is oriented with the other two
eigenvectors, and scaled by the respective eigenvalues.

While hyperstreamlines are useful method for tensor visualization (since they strive to
communicate all the tensor attributes along their path), the path of the hyperstreamline
is not always ideal for tractography purposes. Whereas streamlines produced the path
indicated in light gray in Figure 4.2, which can “get lost” in isotropic regions, our method
produced the path of the dark gray tensorline from that same image - a path that
continued along its present course when it encountered a region of isotropic diffusion.

In Figure 4.3, we see one schematic example of how propagating a streamline according
to the e1 direction of the tensors can be misleading. For explanatory simplicity, we have
displayed a two-dimensional slice of data with two-dimensional diffusion tensors indicated
by the ellipses. In this figure we see a field which varies from being somewhat linearly
anisotropic on the left and right, to nearly isotropic in the middle. We have indicated the
e1-directed streamline with a dotted line and the borders of a hyperstreamline with gray.
What is not clear from either of these visualizations is that diffusion near the middle of
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Figure 4.2. Visualization of hyperstreamline (red) and tensorline (yellow) propagation
though anisotropic (left, right and bottom) and isotropic regions (top middle) in synthetic
data. The directions of the major eigenvectors are indicated with arrows. Note that the
tensorline continues along its present course, despite encountering a region of isotropic
diffusion.

Figure 4.3. Hyperstreamline advection through a nearly isotropic region. The S-shaped
path is an artifact of the noise in the region and conveys misleading information about
the direction of flow through the field.

the frame is nearly isotropic. The S-shaped path through the middle of the field is not
indicative of complex structure in the data, but might be an artifact of measurement
noise or partial voluming. However, it is in no way obvious to the viewer that this is the
case.

Extending our visualization to three dimensions, we can have confusion in isotropic
regions as well as in planar anisotropic regions. In the case of planar anisotropy, the
confusion is a result of the field having nearly equivalent first and second eigenvalues and,
therefore, major and medium eigenvectors that are only meaningful insofar as they span
a particular plane, but not in their particular orientations within that plane. Similarly,
for isotropic regions, none of the eigenvector directions are individually meaningful.
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4.2 Method
Section 2.2.2 described how diffusion is a probabilistic phenomenon, and how the

diffusion tensor models the probability density function (PDF) of where a particle’s
Brownian motion will move it over time. To visualize this PDF, we cover the unit sphere
with dots, as is shown for the unit circle in Figure 4.4. All of the points on the unit sphere
(circle) are then transformed by the diffusion tensor, resulting in an ellipsoid (ellipse).
Furthermore, the resulting distribution of dots on that ellipsoid (ellipse) corresponds to
the probable distribution of particles as they diffuse from the origin. As we can see in
Figure 4.4, the dots have a higher density in the e1 direction, and a lower density in
e2. This corresponds to the higher likelihood that a particle will be diffused in the e1

direction, and a lower likelihood that it will be diffused in some other direction.

Figure 4.4. Redistribution of uniform sample resulting from anisotropic diffusion tensor.
Particles have a higher probability of being diffused in the e1 (major eigenvector) direction
of the ellipsoid.

Figure 4.5. Redistribution of uniform sample resulting from nearly isotropic diffusion
tensor. Probability of particle diffusion is approximately the same in every direction.

However, if we look at the case in Figure 4.5, the dots on the diffusion ellipsoid (ellipse)
are nearly uniformly distributed. This case is representative of any nearly isotropic
diffusion tensor. In contrast to the previous example, here there is approximately the
same probability for particle diffusion in any direction. In such a case, choosing the
major eigenvector as the diffusion direction is very much an arbitrary decision. This
instability is also depicted in Figure 4.6, where we are examining the effects of applying
various tensors to a unit vector. In each row of the image, we apply a different tensor.
The matrix is given on the left, then the corresponding ellipse is shown (with the major
eigenvector axis indicated in gray), followed by the vector upon which the matrix will
operate, and finally the transformed vector is shown on the right. We also indicate the
effects of the transformation on the x and y unit vectors, depicted in dashed lines. We note
that for the last row, the diffusion tensor is nearly isotropic (as evidenced by the nearly
circular ellipse). The vector we are transforming by this matrix is almost orthogonal to
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Figure 4.6. Remapping of unit vector through four different tensors. Each row gives the
geometric interpretation of applying a different tensor (left matrix and left ellipsoid) to
the same example vector (middle vector and middle circle) and the resultant transformed
vector (right vector). The gray axis of the ellipses is the direction the major eigenvector
and is the direction in which a hyperstreamline would be propagated; in contrast, the dark
arrow on the right is the diffusion modulated direction. Our method uses a combination
of these two terms to produce more stable propagation paths through isotropic regions.

the first eigenvector. However, since the tensor is nearly isotropic, the output vector on
the right is only slightly rotated from its initial position shown in the middle.

If we follow an individual particle’s path as it moves through the volume (being
probabilistically diffused as it travels), we get a streamline traced through the field.
Delmarcelle’s method propagates these hyperstreamlines by always choosing to diffuse
the particle in the direction of the major eigenvector of the tensor through which it is
traveling. Delmarcelle has thus reduced the problem of advecting through a tensor field
to the problem of advecting through the e1 vector field. Although the streamline paths
generated with this method are, in fact, the most likely pure diffusion paths, they can at
times be misleading, as we saw in Figure 4.3.

Delmarcelle’s hyperstreamlines assume a pure diffusion model; however, in regions
of the data with planar and spherical anisotropy, the first principal component is a
rather arbitrary direction. These ambiguities result in unstable propagation. Our method
stabilizes the propagating by incorporating two additional terms to propagate through
ambiguous regions. Because these terms supplement the diffusion motion with a velocity
term, we refer to them as advection vectors, in the spirit of advection-diffusion particle
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physics.
The “advection” vector used to stabilize propagation is combination of two vectors,

with relative weightings chosen by the user. These vectors correspond to the incoming
direction vin (the direction of the previous propagation step), and the deflection direction
vdef (the incoming vector, transformed by the tensor). Specifically, we compute:

vdef = Dvin, (4.1)

where D is the diffusion tensor. We note that as a preprocess, we scale our diffusion
tensor D by 2/λmax, where λmax is the largest eigenvalue found within the brain white
and gray matter (as described in Section 2.3.3, and threshold of eigenvalue mean µ1

provides a simple effective test for whether a voxel belongs to brain tissue or highly
diffusive cerebrospinal fluid). This scaling has the effect of normalizing the diffusion term
to be to more appropriately scaled with respect to the advection terms.

The propagation direction used for path integration is a linear combination of e1, vin

and vdef. Because e1 and −e1 are both eigenvectors, we can avoid “doubling back” on
ourselves by (at each step of the integration) negating e1 if vin · e1 < 0. The way
in which these vectors are combined to produce the next propagation step vector, vout,
depends on the shape of the local tensor. We use the cl anisotropy metric (Section 2.3.4)
to assess the numerical confidence in the computed value of e1, to determine the relative
contribution of e1:

vout = cle1 + (1 − cl)((1 − wpunct)vin + wpunctvdef), (4.2)

A user-controlled parameter wpunct determines the relative contribution of vin and
vdef. Equation 4.2 is designed to satisfy the constraints listed in in Table 4.2. The
first and last rows of this table are straightforward. The second and third rows describe
what should happen in regions of planar anisotropy. That is, these two cases cannot
be disambiguated based on anisotropy type alone, so we resort to a user-controlled
parameter wpunct. This coefficient can take on values from 0 to 1, and affects how much
the propagation should be encouraged to “puncture” through planar tensors oriented
normal to its path, versus turning into the plane spanned by the directions of fastest
diffusivity. This property depends largely on the type of data being investigated, which is
why it has been left as a user-definable coefficient. For example, when identifying white
matter association tracts, a puncture coefficient of 0.20 worked well in practice, as shown
in Figure 4.2. For more rigid datasets, the appropriate coefficient choice would likely by
somewhat higher.

To constrain the computed fiber paths to regions which are plausibly white matter, we
use a conservative anisotropy threshold such as FA > 0.1 to terminate fibers when they

Table 4.1. Constraints for tensorline propogation.

Anisotropy Shape Direction In Desired Out
Linear Any e1

Planar Tangential to disk vin or vdef

Planar Normal to disk plane vdef

Spherical Any vin or vdef
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are straying into cerebrospinal fluid or isotropic regions. Discretely propagating along the
vout tensorlines, we generate different paths than we did by simply advecting through the
e1 principal eigenvector field. This is illustrated in the schematic Figure 4.7, where we
revisit the case shown in Figure 4.3. Now we have added solid tensorlines, and we note
that where the hyperstreamlines wandered through the isotropic region in the middle,
the tensorlines continued straight through, with only minor fluctuations.

4.3 Results
In the previous sections, we have shown simple images to illustrate indicate the theo-

retic efficacy of tensorline propagation. In this section we show a tensorline visualization
of actual diffusion tensor MRI data. The dataset is a 128× 128× 60 volumetric dataset,
with a diffusion tensor matrix at each voxel. The 60 slices extend from the tops of the
eyes at the bottom, to the top of the cortical surface at the top.

Figure 4.8 shows an example of how deflection in tensorlines serves to stabilize the
direction of the fiber tract. The standard tractography in Figure 4.8(a) gets diverted
from an anatomically plausible path by a transient change in the direction of e1 in voxels
with high planar anisotropy (high cp, low cl). The tensorlines in Figure 4.8(a) do not
have this problem because (from Equation 4.2), a low cl causes the tensorline to travel
in the weighted average of its current direction and the deflection vector vdef, which
points along a direction of high diffusivity. The RGB colormap and superquadric glyphs
on the nearby cutting plane surface provide the anatomical context to demonstrate that
the tensorline path is anatomically plausible, extending upwards to the cortical surface.
Although the cutting plane (and the glyphs placed within it) and the tensorlines are at
slightly different locations within the dataset, the shape and extent of the corpus callosum
and corona radiata in the anterior/poster direction (the green direction of the axis set in
the upper right corner) mean that cutting plane indicates the directional properties of the

Figure 4.7. Comparison of tensorlines (solid yellow) and hyperstreamline (core is dashed
red, border is gray). Note the tensorlines continue with only minor fluctuations through
the isotropic region in the center of the figure, whereas the hyperstreamline is diverted
into an S-shaped path.
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region through which the tensorlines propogate. Figure 4.9 shows additional examples of
tensorlines extracting major white matter features.

A standard termination criterion for tractography is a fractional anisotropy threshold,
such as FA = 0.1 or FA = 0.2 [133]. Because a tensor may have purely planar anisotropy
(cl = 0) and nonzero FA (see Figure 2.9(a)), this means that e1-based tractography
can become unstable. To compensate, an additional termination criterion is that the
curvature of the fiber path should be low [133]. This is a reasonable compensation for an
inherently unstable algorithm. A strength of the tensorlines method is that the stability
of its paths does not depend on this additional criterion.

4.4 Discussion
We have introduced a novel fiber tractography method, called tensorlines, for visual-

izing diffusion tensor fields. Tensorlines extend the traditional tractography methods by
stabilizing propagation through regions with planar anisotropy and isotropy. Tensorlines
travel along e1 when it is numerically well-defined (high cl values), and tend towards
directions of high diffusion probability by using deflection: multiplication by the diffusion
tensor. The free parameters in computing tensorlines include the usual components of
path integration (step size, integration method, interpolation method), a termination
criterion (such as an anisotropy threshold), and the wpunct parameter. This means that
besides the user-defined seed point, there are a manageable number of parameters to tune
to create a tensorlines visualization.

The success of the tensorlines method is evidenced by Figures 4.8 and 4.9, and should
be evaluated primarily relative to other methods published contemporaneously (circa
1999). Aspects of the tensorline method which likely impart greater accuracy include
the fact that we interpolate the whole diffusion tensor rather than just the principle
eigenvector, and we perform trilinear interpolation to form a continuous tensor field,
rather than step from voxel face to voxel face [132, 200]. Subsequent work by Lazar
et al. demonstrated the accuracy of tensorlines (in synthetic data) in the presence of
measurement noise [113], and has demonstrated that a deflection-based method accu-
rately extracts the major white matter fiber tracts [114]. More recent state-of-the-art
tractography work includes the approach of Zhukov et al. [206], which regularizes the
path by a local spline fit to the tensor values, and the approach of Zhang et al. [204, 203]
which includes “stream surfaces” advected in regions of planar anisotropy to explicitly
visualize the neighborhoods where tractography will be problematic. Ultimately, though,
the correctness of tractography as an indicator of axonal connectivity will have to be
verified by means of a careful histology [133].

In the future, we would like to encode additional information into the tensorline
surface, in a way similar to Delmarcelle’s method for surfaces about hyperstreamlines [51].
We could encode the deviation from e1 as a texture on the surface, providing the user
with a visual clue as to the difference between the various vectors being weighted in
Equation 4.2. Another way to enrich the visualization created by tensorlines is to place
superquadric glyphs along the path. This represents a different strategy for choosing the
set of discrete locations at which to display all the tensor information. Another simple
improvement would be to have the cross-section of the tensorline vary as a superellipse:
like with hyperstreamlines, the cross-section could encode the additional eigenvectors
and eigenvalues, but a superellipsoidal cross-section may confer the same benefits of
visual clarity that the superquadrics offered over ellipsoids. The placement of the seed
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(a) e1-based tractography

(b) Tensorlines

Figure 4.8. Comparison of behavior of standard e1-based tractography (a) and tensor-
lines (b) in the corpus callosum and corona radiata. At voxels with a significant planar
component, the direction of e1 can change suddenly, while tensorlines continue on an
anatomically plausible path.
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(a) Superior longitudinal (arcuate) fasciculus

(b) Internal capsule and corona radiata

Figure 4.9. Examples of major white matter tracts visualized by tensorlines. Note
superquadric glyphs populating the cutting plane surfaces.
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points could be automated to some extent, perhaps by looking for centroids of spots in a
reaction-diffusion texture.

We are also interested in stabilizing advection by propagating groups of streamlines
together as a cohesive bundle [191]. Our earlier work in this area focused on bundles
which advected through flow fields. In the future, we would like to extend these ideas to
also apply to tensor fields.



CHAPTER 5

INVARIANT GRADIENTS AND

ROTATION TANGENTS

The goal of this chapter is to develop a mathematical and computational framework
for decomposing the gradient (the first derivative) of the tensor field by its projection
onto shape and orientation changes. In this context, we will use “change” to refer to
the infinitesimal differences in tensor value associated with the gradient, which may be
differentiated with respect to either the space of tensor values, Sym3, or the spatial
domain of the tensor field R

3, depending on context. We will make heavy use of the
fact that the space of symmetric tensor values is a vector space (Section 2.1.5). The
tensor-valued gradients of invariants (Section 2.3.2) generate a basis for changes in shape,
and the tangents to the group action ψ (Section 2.1.7) will generate a basis for changes
in orientation. Figure 5.1 provides a schematic view. The mathematical notation will
be introduced in this paragraph, and fully defined in the following sections. Around a
given tensor value D, there are three mutually orthogonal directions (∇̂∇∇µ1, ∇̂∇∇µ2, and
∇̂∇∇α3) along which the tensor shape changes. These are computed from the tensor-valued
gradients of tensor invariants. Orthogonal to these directions, and also mutually orthog-
onal, are three directions (Φ̂1, Φ̂2, and Φ̂3) along which the tensor orientation changes.
These are all tangents to the orbit SO3(D) of the group action ψ. Together, these six
tensor-valued directions form an orthonormal basis for the vector space of symmetric
tensors, and therefore any change in tensor value can be analyzed by projections onto the
subspaces of shape and orientation change. The following sections develop these concepts

D

SO3(D)

shape changes:
invariant gradients

orientation changes:
rotation tangents

}

}

∇̂∇∇µ1
∇̂∇∇µ2 ∇̂∇∇α3

Φ̂1

Φ̂2 Φ̂3

Figure 5.1. Schematic view of shape and orientation changes around a given tensor value
D. The orbit SO3(D) contains orientation changes, and shape changes are all orthogonal
to the orbit.
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in greater detail.
This chapter ties together and builds on previous work from three separate areas:

diffusion tensor imaging, continuum mechanics, and image processing. Previous work
by Pajevic et al. [140] in developing a continuous tensor field from a discretely sampled
volume included a description of the tensor gradient, a third order tensor, and a means of
decomposing the tensor gradient into two parts: the isotropic component, and everything
else, called the deviator. Our decomposition of the gradient of a tensor field is more
detailed, accounting for three variables of shape and three of orientation. The three
variables of tensor shape are the eigenvalue statistics (mean, variance, and skewness),
defined and described in Section 2.3.2. Bahn used the same variables to describe diffusion
tensor shape [5]. In the context of continuum mechanics, the tensor-valued derivatives
of essentially the same three shape variables were employed by Criscione et al. to
characterize strain tensors [47]. The differences are that we express shape in terms
eigenvalues rather than the logarithms of the eigenvalues, and we take special care to
construct normalized (unit-magnitude) invariant gradients onto which the spatial gradient
of the tensor field is projected. For characterizing changes in tensor orientation, we use dψ,
the derivative of the group action ψ defined in Section 2.1.7, to define rotation tangents.
In the context of image processing, previous work by Damon [48] used dψ as part of
creating a topological description of Sym3, the space of three-dimensional symmetric
tensors, to build a framework for analyzing the scale-space of two-dimensional images.
As with the invariant gradients, our approach here is distinguished by the normalization
of the rotation tangents, which in turn enables the definition of a novel orthonormal basis
for tensor change around each tensor value. By having an orthonormal basis, the tensor
field gradient can be projected in a way which uniformly preserves the relevant gradient
magnitudes, around all tensor values.

The structure of this chapter is as follows. First, we describe an orthonormal basis for
shape changes, generated by the tensor-valued gradients of tensor invariants (Section 5.1),
and then describe a means of ensuring that the basis is defined at all tensor values,
including those tensors for which two or more eigenvalues are equal (Section 5.2). Next,
we describe how to measure the spatial gradient of a tensor field against this basis for
shape change, allowing us to locate boundaries and features of diffusion tensor images
in terms of tensor shape (Section 5.3). To characterize changes in tensor orientation, we
first review some mathematics associated with derivatives of manifold-valued functions
(Section 5.4), and then compute a general expression for rotation tangents based on the
derivative of the group action ψ (Section 5.5). From this, we make some qualitative and
quantitative observations about the space of tensor orientation (Section 5.6). Next, we
determine an orthonormal basis for shape change, and note that the normalized invariant
gradients and rotation tangents span all the symmetric tensors (Section 5.7). Finally, we
describe how to measure the gradient of the tensor field against the basis of orientation
change (Section 5.8).

The primary motivation for this chapter is to create a basis for generalizing basic image
processing operations like edge-detection to diffusion tensor images in a manner that
facilitates extraction of anatomically significant boundaries. Based on the observations
about the relationship between eigenvalue moments (µ1, µ2, α3) and tissue structure given
in Section 2.3.3, the basis onto which the tensor gradient is projected will created from
the same three degrees of freedom in tensor shape. This allows much greater specificity in
responding to different kinds of shape changes than is possible with previous approaches.

The secondary motivation of this chapter is to avoid computing the eigenvectors of a
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tensor (as described in Section 3.1.1) whenever possible. Parameterizing shape changes in
terms of individual eigenvalues requires knowledge of the tensor’s eigenvectors, while using
moments of eigenvalues typically requires neither eigenvalues nor eigenvectors. Notably,
we show in Section 5.8 that the overall magnitude of orientation change can be efficiently
computed without knowing the tensor eigenvectors, even though tensor orientation is
entirely determined by the eigenvectors.

5.1 Orthonormal Invariant Gradients
If ρ is a scalar-valued function over R

3, its gradient ∇ρ is a vector-valued function
mapping from R

3 to R
3. Analogously, a tensor invariant is a scalar-valued function J

over a vector space (of symmetric tensor values) Sym3, so its gradient maps from Sym3

to Sym3. We notate the gradient of a tensor invariant J as ∇∇∇J , preferring this over the
conventional notations “gradJ” and “∂J/∂D” for its brevity. It is important to keep
in mind that the domain and range of ∇∇∇J are not R

3 (the spatial domain over which
the tensor field is defined), but are Sym3 (the six-dimensional space of symmetric tensor
values). The boldface “∇∇∇” (in contrast to “∇”) is a reminder of this. The gradient ∇∇∇J
of invariant J is defined as:

∇∇∇J : Sym3 �→ Sym3

∇∇∇J(D0) ≡ ∂J

∂D

∣∣∣∣
D=D0

.

Recall that the spectral decomposition (Equation 2.13)

D = λ1(e1 ⊗ e1) + λ2(e2 ⊗ e2) + λ3(e3 ⊗ e3) ,

expresses a tensor value in terms of its eigenvalues λi and eigenvectors ei. This does
not require or assume that the eigenvalues are sorted. By Equation 2.15, the component
tensors ei ⊗ ei are mutually orthogonal:

ei ⊗ ei : ej ⊗ ej = δijδij = δij . (5.1)

Recalling that the gradient of a function gives the direction along which the function
increases fastest, it is clear from the spectral decomposition that adding to D some
fraction of (e1 ⊗ e1) will increase the value of eigenvalue λ1, and, by Equation 5.1, it will
not change the value of λ2 or λ3. In other words:

∇∇∇λi = ei ⊗ ei (5.2)

Equation 5.1 also shows that ∇∇∇λi has unit norm:

‖∇∇∇λi‖ =
√

∇∇∇λi : ∇∇∇λi =
√

δii = 1 . (5.3)

Thus {∇∇∇λ1,∇∇∇λ2,∇∇∇λ3} is a local orthonormal basis for the vector space of shape change
around tensor D. Note that because this basis always has exactly three elements, the
space of shape change is always three-dimensional, regardless of tensor value.

This basis has two drawbacks, however. First is that its use requires the computation
of the tensor eigenvalues and eigenvectors. Second is the weaker anatomical relevance of
the individual eigenvalues, as compared to the eigenvalue moments (µ1, µ2, α3) which have
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a close connection to the definition of anatomical features in a tensor field: Section 2.3.3
detailed the relationship between µ1, µ2, α3 and structures associated with cerebro-spinal
fluid, gray matter, white matter, fiber tracts and their crossing, and the consequences of
partial volume.

Recall from Section 2.3.1 that the Ji invariants are defined as:

J1(D) = tr(D)
J2(D) = (tr(D)2 − tr(D2))/2
J3(D) = det(D)
J4(D) = ‖D‖2 .

Tensor analysis permits coordinate-free expressions of their gradients as [86]:

∇∇∇J1(D) = I
∇∇∇J2(D) = tr(D)I − D
∇∇∇J3(D) = det(D)D−1

∇∇∇J4(D) = 2D .

(5.4)

Appendix D explains how these expressions are derived from the Taylor expansion of
Ji(D + ε). Note that ∇∇∇J1(D) = I is the only invariant gradient that is constant. All the
other gradients vary as the function of the tensor value they are evaluated at.

Equation 5.4 makes it straight-forward to compute the gradients of the Ji invariants
for a given tensor D, in the laboratory frame. For example,

[∇∇∇J2(D)]L = [tr(D)I − D]L =

 Dyy + Dzz −Dxy −Dxz

Dxx + Dzz −Dyz

(Sym) Dyy + Dzz

 .

The gradient of the determinant ∇∇∇J3(D) appears unwieldy by its use of the tensor inverse,
however for 3×3 matrices we know from Cramer’s rule that det(D)D−1 is just the matrix
of cofactors (determinants of 2 × 2 matrix minors). Thus:

[∇∇∇J3(D)]L =

 DyyDzz − D2
yz DxzDyz − DxyDzz DxyDyz − DxzDyy

DxxDzz − D2
xz DxyDxz − DyzDxx

(Sym) DxxDyy − D2
xy

 .

Because the goal is to create a local orthonormal basis for shape change from the eigen-
value moments, we have to know how to evaluate the (tensor) inner product between any
two invariant gradients. The chain rule allows us to convert the spectral decomposition
of a tensor into a spectral decomposition of an invariant gradient:

∇∇∇J =
∂J

∂D
=
∑

i

∂J

∂λi

∂λi

∂D
=
∑

i

∂J

∂λi
∇∇∇λi =

∑
i

∂J

∂λi
(ei ⊗ ei) . (5.5)

The utility of this decomposition is in reducing the inner product (the double contraction)
between ∇∇∇J and ∇∇∇K into a standard vector dot product between ∇λJ and ∇λK. Recall
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from Section 2.3.2 that ∇λJ is the gradient of invariant J viewed as a function over the
space of (λ1, λ2, λ3) triples:

∇∇∇J : ∇∇∇K =
(∑

i

∂J

∂λi
(ei ⊗ ei)

)
:
(∑

j

∂K

∂λj
(ej ⊗ ej)

)
=
∑

ij

∂J

∂λi

∂K

∂λj
(ei ⊗ ei) : (ej ⊗ ej)

=
∑

ij

∂J

∂λi

∂K

∂λj
δij

=
∑

i

∂J

∂λi

∂K

∂λi

= ∇λJ · ∇λK . (5.6)

Appendix D demonstrates that the gradients of the eigenvalue statistics µ1, µ2, and
α3 are orthogonal over the space of eigenvalue triples:

∇λµ1 · ∇λµ2 = 0
∇λµ2 · ∇λα3 = 0
∇λµ2 · ∇λα3 = 0 .

Then Equation 5.6 establishes that

∇∇∇µ1 : ∇∇∇µ2 = 0
∇∇∇µ2 : ∇∇∇α3 = 0
∇∇∇µ2 : ∇∇∇α3 = 0 .

(5.7)

That is, {∇∇∇µ1,∇∇∇µ2,∇∇∇α3} is an orthogonal set of gradients for all tensor values. Aside
from the minor difference between describing the statistics of eigenvalues versus statistics
of logarithms of eigenvalues, these invariant gradients are essentially the same as the
tensor-valued gradients of the K1, K2, K3 response functions defined by Criscione et
al. [47]. In the following, we first describe how to efficiently compute these gradients,
and then we address how to normalize their magnitude, in order to produce the desired
orthonormal basis of tensor shape change.

Knowing the definitions for µ1 and µ2 in terms of Ji (Equations 2.30, 2.31, 2.26), we
can express ∇∇∇µ1 and ∇∇∇µ2 in terms of ∇∇∇Ji as:

µ1 = J1/3 ⇒ ∇∇∇µ1 = ∇∇∇J1/3 (5.8)
µ2 = 2Q = 2(J2

1 − 3J2)/9 ⇒ ∇∇∇µ2 = 2(2J1∇∇∇J1 − 3∇∇∇J2)/9 (5.9)

Dividing the gradient of a invariant by its norm forms a unit-length tensor, provided
that the gradient is nonzero. We notate such a normalized tensor-valued gradient by ∇̂∇∇.

∇̂∇∇J : Sym3 �→ Sym3

∇̂∇∇J ≡ ∇∇∇J/‖∇∇∇J‖ (5.10)

The gradient of the eigenvalue mean is constant: ∇̂∇∇µ1 = I/
√

3. The variance of the
eigenvalues µ2 is nonnegative. When µ2 attains its minimum value of 0, then ∇∇∇µ2 = 0,
in which case ∇̂∇∇µ2 is undefined. In contrast, by Equation 5.3:

∇̂∇∇λi = ∇∇∇λi , (5.11)

so all three eigenvalue gradients ∇̂∇∇λi are always defined, though their values depend on
the eigenvectors.
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Given ∇̂∇∇µ1 and ∇̂∇∇µ2 (where defined), one could complete the local basis of shape
variation by directly calculating ∇̂∇∇α3, but this is a rather complicated expression. Instead,
we approach ∇̂∇∇α3 by taking the gradient of the determinant, ∇∇∇J3, and subtract out the
components parallel to ∇̂∇∇µ1 and ∇̂∇∇µ2:

G = ∇∇∇J3 − (∇∇∇J3 : ∇̂∇∇µ1)∇̂∇∇µ1 − (∇∇∇J3 : ∇̂∇∇µ2)∇̂∇∇µ2 . (5.12)

When G is nonzero, it must be parallel to ∇̂∇∇α3, by the orthogonality of ∇∇∇µ1, ∇∇∇µ2, and
∇∇∇α3, and the fact that they span the three-dimensional space of shape changes. On the
other hand, when G is zero, there must be linear dependence among ∇∇∇J3, ∇∇∇µ1, and
∇∇∇µ2. By Equation 5.6, we can examine this condition in the simpler space of (λ1, λ2, λ3)
triples, using the invariants expressed in terms of eigenvalues (Equation 2.25):

∇∇∇J3 = γ∇∇∇µ1 + β∇∇∇µ2

⇒ ∇λJ3 = γ∇λµ1 + β∇λµ2

⇒
 λ2λ3

λ1λ3

λ1λ2

 = γ

 1
1
1

+ β

 λ2 + λ3

λ1 + λ3

λ1 + λ2


⇒

λ2λ3 − βλ2 − βλ3 = γ
λ1λ3 − βλ1 − βλ3 = γ
λ1λ2 − βλ1 − βλ2 = γ

⇒
(λ2 − λ3)(λ1 − β) = 0
(λ1 − λ3)(λ2 − β) = 0
(λ1 − λ2)(λ3 − β) = 0 .

The last set of equations is formed by pair-wise differences of the previous set. The last
set of equations is satisfied if λ1 = λ2 = λ3 = β, in which case µ2 = 0 and α3 itself
is undefined. If the eigenvalues are not all equal, then without loss of generality let
λ1 �= β, which implies λ2 = λ3 = β. As seen in Section 2.3.2, this means that eigenvalues
skewness α3 is at an extremum. This implies that G vanishes when α3 is undefined or
at an extremum, which are precisely the conditions under which ∇∇∇α3 is undefined or
vanishes. Thus, without loss of generality we can define:

∇̂∇∇α3 = G/‖G‖ . (5.13)

Together with ∇̂∇∇µ1 and ∇̂∇∇µ2 (Equations 5.8, 5.9, 5.10) this completes an orthonormal
basis for shape change based on the eigenvalue moments, defined at those tensors with
three distinct eigenvalues.

The connection between eigenvalue statistics {µ1, µ2, α3} and biological features, de-
scribed in Section 2.3.3, carries over to the gradients {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3}. The eigenvalue
mean gradient ∇̂∇∇µ1 signifies the direction (in the space of tensor values) along which
tensors get bigger and bulk mean diffusivity increases, as with a transition into cere-
brospinal fluid. The variance gradient ∇̂∇∇µ2 indicates the direction along which tensors
become less spherical and anisotropy increases, as with a transition from gray to white
matter. Finally, the skewness gradient ∇̂∇∇α3 is the direction along which the shape of
anisotropy changes from planar to linear, as from a decrease in the voxel-level mixing of
heterogeneous fiber directions.



73

5.2 Extended Definition of {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3}
The significant drawback to using {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3} is that ∇̂∇∇µ2 and ∇̂∇∇α3 are not

always defined. Unlike the eigenvalues themselves, the eigenvalue variance µ2 and skew-
ness α3 are bounded, so their gradients can vanish, and the normalized gradients become
undefined. The failure of the shape gradients to consistently span the three-dimensional
space of shape changes can be explained in terms of permutation symmetries in the set
of eigenvalues. When exactly two eigenvalues are equal, say λ1 > λ2 = λ3, no invariant
gradient can point in a “direction” which separates the values of λ2 and λ3, since this
would violate the symmetry of the invariants with respect to permutation of eigenvalues.
Invariants must exhibit this permutation symmetry because, when evaluated on diagonal
matrices, the invariant is by definition fixed with respect to the changes of basis which
permute the axes of the coordinate system in which the tensor is expressed.

Our current approach to “fixing” the shape gradients is to revert to a modification
of the {∇̂∇∇λ1,∇̂∇∇λ2,∇̂∇∇λ3} basis (as defined below) whenever the {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3} basis
is not completely defined. Using ∇̂∇∇λi requires tensor diagonalization, which entails more
computational expense, so we use the values of ‖G‖ (Equation 5.12) and ‖∇∇∇µ2‖ to
determine exactly when diagonalization is needed. If ‖∇∇∇µ2‖ = 0, then all the eigenvalues
are equal, and the tensor is already diagonal. When ‖∇∇∇µ2‖ > 0 but ‖G‖ = 0, then exactly
two eigenvalues are equal, and diagonalization is required. If ‖∇∇∇µ2‖ > 0 and ‖G‖ > 0,
then the {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3} basis is completely defined as is. By slightly abusing our
previous notation, we give here extended definitions for ∇̂∇∇µ2 and ∇̂∇∇α3 which handle the
locations where ‖∇∇∇µ2‖ = 0 or ‖G‖ = 0:

∇̂∇∇µ2 =


∇∇∇µ2/‖∇∇∇µ2‖ if ‖∇∇∇µ2‖ > 0 (a)√

2/3(b1 ⊗ b1)
−√1/6(b2 ⊗ b2)
−√1/6(b3 ⊗ b3)

otherwise (b)
(5.14)

∇̂∇∇α3 =



G/‖G‖ if ‖G‖ > 0 (a)√
1/2(e2 ⊗ e2)

−√1/2(e3 ⊗ e3)
if ‖G‖ = 0 and λ1 > λ2 = λ3 (b)√

1/2(e1 ⊗ e1)
−√1/2(e2 ⊗ e2)

if ‖G‖ = 0 and λ1 = λ2 > λ3 (c)√
1/2(b2 ⊗ b2)

−√1/2(b3 ⊗ b3)
otherwise (‖∇∇∇µ2‖ = 0) (d) .

(5.15)

Equations 5.15(b) and 5.15(c) involve arbitrary decisions about how to separate the
two equal eigenvalues. The arbitrariness of this decision is effectively imposed by the
numerical properties of whatever procedure is used to pick two orthogonal eigenvectors
to span the two-dimensional eigenspace associated with the double eigenvalue. The differ-
ential changes of tensor value along the ∇̂∇∇α3 as defined by Equations 5.15(b) and 5.15(c)
will not change the value of µ1 or µ2. Considering Equation 5.15(b) (in which λ2 = λ3):
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µ1(D + ε
√

2∇̂∇∇α3) =
1
3
(λ1 + (1 + ε)λ2 + (1 − ε)λ3)

=
1
3
(λ1 + λ2 + λ3)

= µ1(D)

⇒ d

dε
µ1(D + ε∇̂∇∇α3)

∣∣∣∣
ε=0

= 0

µ2(D + ε
√

2∇̂∇∇α3) =
1
3
((λ1 − 〈λ〉)2 + ((1 + ε)λ2 − 〈λ〉)2 + ((1 − ε)λ3 − 〈λ〉)2)

=
1
3
((λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + ε2λ2

2 − 2ελ2〈λ〉
+ (λ3 − 〈λ〉)2 + ε2λ2

3 + 2ελ3〈λ〉)
= µ2(D) + 2ε2λ2

2

⇒ d

dε
µ2(D + ε∇̂∇∇α3)

∣∣∣∣
ε=0

= 0 .

Identical reasoning applies to Equation 5.15(c) (in which λ1 = λ2) to show that µ1 and
µ2 do not change along ∇̂∇∇α3.

When all three eigenvalues are equal, we must pick two directions that are both orthog-
onal to ∇̂∇∇µ1. Equation 5.15(d) reuses the same gradient as 5.15(b), and Equation 5.14(b)
is chosen so as to make ∇̂∇∇µ2 orthogonal to ∇̂∇∇α3. With these extended definitions, we
now have ∇̂∇∇µ1, ∇̂∇∇µ2, and ∇̂∇∇α3, which are always defined and mutually orthogonal.

In light of Equations 5.14 and 5.15 above, two important caveats accompany the
adoption of a coordinate system of shape based on ∇̂∇∇µ1, ∇̂∇∇µ2, and ∇̂∇∇α3. First, all
analysis (filtering, edge detection, conductance functions, etc.) must treat ∇̂∇∇α3 the same
as −∇̂∇∇α3, since the sign is chosen arbitrarily when α3 = 0. Second, the analysis should
recognize that ∇̂∇∇α3 becomes less and less meaningful as µ2 approaches zero. In fact,
at µ2 = 0, ∇̂∇∇α3 and ∇̂∇∇µ2 are interchangeable and arbitrary directions that can only be
trusted for their orthogonality to ∇̂∇∇µ1. Ideally, image processing methods which employ
the {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3} basis should gracefully make the transition from ∇̂∇∇α3 and ∇̂∇∇µ2

being distinctly significant (when µ2 � 0) to being interchangeable (when µ2 = 0).

5.3 Measuring Shape Gradients
in Tensor Fields

In practice, one applies ∇̂∇∇µ1, ∇̂∇∇µ2, and ∇̂∇∇α3 to a tensor image by looking at the
relationship between the spatial derivatives of the tensor (differentiating with respect
to the image domain coordinates) and tensor-valued invariant gradients. We start by
assuming that the tensor dataset is a smooth function D mapping from the image domain
R

3 to tensor values:

D : R
3 �→ Sym3 .

In practice, the tensor field will be only discretely sampled; we use separable convo-
lution with continuous kernels (Section 2.1.8) to generate a continuous field. Then, the
gradient of D, ∇D, is a third-order tensor (see Section 2.1.6). ∇D can be thought of as a
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vector of tensors, each of which is the partial derivative of D along an image coordinate.
The index notation for ∇D involves all 27 tensor products of triples of basis vectors:

∇D : R
3 �→ Sym3

3

∇D =
∂D

∂x
=

∂Djk

∂xi
bi ⊗ bj ⊗ bk (5.16)

(∇D)ijk =
∂Djk

∂xi
. (5.17)

Previous work by Pajevic et al. introduced ∇D to the DT-MRI literature [140], also in
the context of measuring local changes in the tensor field. We will decompose ∇D in
greater detail, by using the invariant gradients defined in the previous section.

By differentiating every component of D along every axis, ∇D measures all aspects
of the first-order change in D at a given point. Following the definitions of vector and
second-order tensor magnitude:

|v| =
√

v · v =
√

vivi

‖D‖ =
√

D : D =
√

DijDij

the magnitude of ∇D may be measured as:

‖∇D‖ =

√
∂Djk

∂i

∂Djk

∂i
. (5.18)

One may directly verify the rotational invariance of ‖∇D‖, analogously to how Ap-
pendix A shows the invariance of v · u.

Our interest is in the extent to which tensor change lies along a particular invariant
gradient. Because of the difference between the un-normalized and normalized invariant
gradients, for an invariant J we define two distinct spatial invariant gradients for a given
tensor field D:

∇J , ∇̂J : R
3 �→ R

3

∇J(x) ≡ ∇∇∇J(D(x)) : ∇D(x) (5.19)

∇̂J(x) ≡ ∇̂∇∇J(D(x)) : ∇D(x) . (5.20)

As described in Section 2.1.5, the double contractions between a second-order tensor (such
as ∇∇∇J or ∇̂∇∇J) and a third-order tensor (such as ∇D) is a first-order tensor, that is, a
vector in R3. Then ∇J and ∇̂J are vectors, just like the gradient of any scalar field.
There is an important difference between ∇J and ∇̂J . Note that ∇J (Equation 5.19)
is simply the chain rule applied to J(D), as can be seen in the laboratory frame (using
Equation 5.17):

([∇J ]L)k = ([∇∇∇J : ∇D]L)k

= ([∇∇∇J ]L)ij([∇D]L)ijk

=
∂J

∂Dij

∂Dij

∂xk
.

If J(D(x)) is at an extremum of J , then ∇∇∇J is zero, which means ∇J(D(x)) will be zero,
regardless of ∇D. This is unfortunate: the original idea was to project changes in tensor
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value onto the space of shape change, but ∇J additionally scales the magnitude of ∇D
as part of the projection. The definition of ∇̂ remedies this, by projecting ∇D onto the
span of ∇J , rather than ∇J itself. Section 5.2 gave a definition for ∇̂∇∇J for all tensor
values, including values for which ‖∇∇∇J‖ = 0.

Because ‖∇∇∇λi‖ = 1, any component of ∇D which represents a change in shape will
have a nonzero projection onto {∇∇∇λ1,∇∇∇λ2,∇∇∇λ3}. The spatial gradients of individual
eigenvalues (∇λ1, ∇λ2, and ∇λ3, as defined by Equation 5.19) collectively indicate any
and all spatial changes in tensor shape. The same cannot be said of ∇µ1, ∇µ2, and ∇α3,
because at some tensor values ‖∇∇∇µ2‖ = 0 and/or ‖∇∇∇α3‖ = 0. For example, ∇µ2 will be
zero at an isotropic point in a tensor field, around which anisotropy is increasing. Worse,
∇α3 will be zero at linearly anisotropic points in a field, even if the shape of anisotropy is
changing. Because both {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3} and {∇∇∇λ1,∇∇∇λ2,∇∇∇λ3} are orthonormal bases
for the same space of tensor shape change, projection of ∇D onto the span of either basis
is identical, but the individual components of the projection onto the {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3}
basis have the anatomical relevance described in Section 2.3.3.

Figures 5.2 and 5.3 and show a synthetic tensor image constructed to demonstrate
the invariant gradients described above. There are four distinct kinds of materials
visible in Figure 5.2(a): isotropic with low diffusivity (dark gray), isotropic with high
diffusivity (light gray), anisotropic with linear shape (red), and anisotropic with planar
shape (yellow). There are boundaries between every pair of materials. As suggested by
Figure 5.2(c), the design of the dataset ensures that the eigenvalue variance µ2 is constant
in the transition from linear to planar anisotropy. As seen in Figure 5.3, the orientation
of the tensors also changes smoothly within the anisotropic regions.

Figure 5.4 displays various gradient magnitude measures applied to the synthetic
tensor image. Note in Figure 5.4(a) that ‖∇D‖ is responding, as expected, to changes in
orientation which are not accompanied by any changes in shape. In Figures 5.4(b) and
5.4(c), however, only the shape changes are being detected, and they are being detected
equally by the {∇̂∇∇λ1,∇̂∇∇λ2,∇̂∇∇λ3} and {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3} bases. Figures 5.4(d), 5.4(e), and
5.4(f) show how the tensors change with respect to individual eigenvalues, which does
not facilitate distinction between, for example, the transition from low to high diffusivity,
versus low to high anisotropy. Figures 5.4(g), 5.4(h), and 5.4(i), on the other hand, show
that ∇̂µ1, ∇̂µ2, and ∇̂α3 successfully respond in isolation to the different changes in
shape. This kind of specificity in measuring different aspects of shape change, combined
with the sensitivity of the {∇̂∇∇λ1,∇̂∇∇λ2,∇̂∇∇λ3} shape change basis, has been the overall goal
of the mathematics in this and the previous sections.
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(0.133, 0.133, 0.133)

(0.633, 0.168, 0.168)

(0.333, 0.333, 0.333)

(0.498, 0.498, 0.005)

(a) (λ1, λ2, λ3) triples (also shown by RGB color) (b) µ1

(c) µ2 (d) α3

Figure 5.2. Eigenvalues and invariants in 90 × 90 tensor synthetic image. The value of
α3 is essentially noise when µ2 is at or near zero.
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Figure 5.3. Display of synthetic tensor image with superquadric glyphs. Image was
downsampled to 36×36 tensor samples for better visibility of individual glyphs. Viewpoint
is off-axis for better depiction of the difference between linear and planar anisotropy, as
well as glyph orientation.
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(a) ‖∇D‖ (b)
√|∇λ1|2+|∇λ2|2+|∇λ3|2 (c)

√|∇̂µ1|2+|∇̂µ2|2+|∇̂α3|2

(d) |∇λ1| (e) |∇λ2| (f) |∇λ3|

(g) |∇̂µ1| (h) |∇̂µ2| (i) |∇̂α3|

Figure 5.4. Gradient magnitude in synthetic tensor image, measured in different ways.
The grayscale values have been inverted (darker means higher gradient magnitude) for
better display of features at low gradient magnitudes.
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Figure 5.4(h) shows an example of how slight artifacts may be created by derivative
measurement. Even though eigenvalue variance µ2 is exactly constant at all tensor
samples in the synthetic image, the small amount of blurring inherent in discrete dif-
ferentiation causes slight changes in µ2 near large changes in eigenvalue skewness α3.
One way to understand this is that in the space of tensor values, isosurfaces of µ2 (unlike
those of µ1) are curved. Averaging between two tensors with equal µ2 but different
α3 will artifactually lower µ2, leading to faint edges in Figure 5.4(h) at the locations
where ∇̂α3 is largest. Such averaging is an unavoidable consequence of differentiation by
convolution, although the choice of kernel plays a role in accuracy. A careful analysis of
filter accuracy in the context of tensor processing (extending the work on scalar fields
by Möller et al. [130] to tensor fields) is beyond the scope of this dissertation, but is an
interesting direction for future work.

5.4 Rotations and Tangents to SO3
The previous sections in this chapter described how to construct, using the normalized

gradients of tensor invariants, a local coordinate system that captures all possible varia-
tions in tensor shape around a given tensor value. These are the directions indicated in the
upper part of Figure 5.1. The following sections will complete the local coordinate system
of tensor change with a basis spanning changes in tensor orientation. These directions are
associated with rotations of the tensor, as with orientation changes along a twisting fiber
tract in the brain. We term these tensor-valued directions “rotation tangents”, because
they are tangents to the orbits of the group action ψ (defined in Section 2.1.7), shown in
the lower part of Figure 5.1. Before describing how to compute ψ, this section provides
background on tangent spaces to manifolds, and the role of antisymmetric tensors. This
type of material is covered in textbooks on theoretical kinematics [127].

The tangent space of a n-dimensional manifold M at a particular point x ∈ M ,
notated Tx(M), can be thought of as a copy of R

n attached to M at x. Suppose that
σ(t) is a smooth path mapping R to M , and suppose that σ(0) = x. Then σ′(0) is an
element of the tangent space Tx(M). In fact, Tx(M) can be constructed as the union of
the tangents (at x) to all smooth paths through x.

By definition, a rotation R ∈ SO3 has the property that Rt = R−1. If σ(t) is a
smooth path within SO3, then σ(t)tσ(t) = σ(t)−1σ(t) = I for all t. If σ(0) = I, then
differentiating σ(t)tσ(t) = I at t = 0 gives:

σ′(0)tσ(0) + σ(0)tσ′(0) = σ′(0)tI + Itσ′(0) = σ′(0)t + σ′(0) = 0 .

Thus, σ′(0) is an antisymmetric tensor. The set of all antisymmetric tensors is notated

so3. Because the path σ was arbitrary, we have:

TI(SO3) = so3 . (5.21)

Considering that a rotation in SO3 very near the identity I can be approximated by I+ω

for a small magnitude ω ∈ so3, we will sometimes refer to I + ω as a “small rotation”.
If σ(t) is a smooth path in SO3 for which σ(0) = R �= I, then we can define

σ0(t) = Rtσ(t) ,

so that σ0(0) = I. Then, σ′
0(0) is an element of so3 (it is antisymmetric), and
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σ′(0) = Rσ′
0(0) ⇒ σ′(0) ∈ Rso3 = {Rω|ω ∈ so3} .

In fact, as a consequence of the so-called “Lie group” structure of SO3, one can show
that [120, 35]

TR(SO3) = Rso3 (5.22)

which generalizes Equation 5.21. That is, small changes in a rotation R can be repre-

sented by adding to R a tensor of the form Rω, for a ω ∈ so3.
An especially useful example of a smooth path through SO3 is a uniformly parame-

terized rotation around a given fixed vector a. Around a we can create a right-handed
orthonormal basis A = {u,v,a}, so that a = u × v. Rotation around a by angle φ can
be parameterized by Ra(φ), defined as:

[Ra(φ)]A =

 cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 .

This generates (by Equation 2.14) a coordinate-free representation:

Ra(φ) = cos(φ)(u ⊗ u + v ⊗ v) + sin(φ)(v ⊗ u − u ⊗ v) + a ⊗ a .

Then by differentiating with respect to φ:

R′
a(0) = v ⊗ u − u ⊗ v .

To better understand the antisymmetric structure of R′
a(0), we can determine its

matrix components in an arbitrary orthonormal basis B = {b1,b2,b2}, in which u = uibi,
v = vibi, and a = aibi:

([R′
a(0)]B)ij = bi · (v ⊗ u − u ⊗ v)bj

= bi · (v(u · bj) − u(v · bj))
= (bi · v)(u · bj) − (bi · u)(v · bj)
= ujvi − uivj . (5.23)

Recall the definition of the vector cross-product u × v:

a = u × v =

∣∣∣∣∣∣
b1 b2 b3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ ⇒
a1 = u2v3 − u3v2

a2 = u3v1 − u1v3

a3 = u1v2 − u2v1

.

From this, and Equation 5.23, we find:

[R′
a(0)]B =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (5.24)

Multiplying R′
a(0) by an arbitrary vector b shows that R′

a(0) has an interesting
property:

[R′
a(0)b]B = [R′

a(0)]B[b]B =

 a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

 = [a × b]B .
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That is, multiplying by R′
a(0) has the same effect as taking the vector cross-product with

a. The tensor that effectively performs the vector cross-product with a vector a can be
notated X(a)1:

X(a)b = a × b for all b . (5.25)
To summarize, the derivative of a smooth rotation around a is an antisymmetric tensor

which has the same multiplicative effect as taking the cross-product with a:

R′
a(0) = X(a) .

On the other hand, from Equations 5.24 and 5.25, one can show that any antisymmetric
tensor ω can be expressed as X(w) for some vector w.

5.5 Derivatives of ψ: Rotation Tangents
The background material in the previous section provides the basis for discussing

derivatives of the group action ψ. The derivative of a map between manifolds is a linear
map from tangent spaces at points in the domain to tangent spaces at points in the range.
Recall from the definition of ψ (Equation 2.16) that ψ maps from a rotation in SO3 and
a tensor in Sym3 to another tensor in Sym3:

ψ : SO3 × Sym3 �→ Sym3

ψ(R,D) = RDRt .

The derivative of ψ is a linear map between tangent spaces of SO3 and Sym3:

dψ(R,D) : TR(SO3) × TD(Sym3) �→ Tψ(R,D)(Sym3) .

If σ(t) is a smooth path in the vector space Sym3, then the tangents σ′(t) are also
contained in the same vector space Sym3, so Sym3 is identified with its tangent spaces:

TD(Sym3) = Sym3 ∀ D ∈ Sym3 .

Recall from the previous section that:

TR(SO3) = Rso3 .

Then, dψ can be more simply described as:

dψ(R,D) : Rso3 × Sym3 �→ Sym3 .

Following the approach of Damon [48], we calculate dψ at (Rω, ε) by evaluating
ψ(R + tRω,D + tε) and extracting the terms linear in t:

ψ(R + tRω,D + tε) = (R + tRω)(D + tε)(R + tRω)t

= R(I + tω)(D + tε)(I + tω)tRt

= R(I + tω)(D + tε)(I − tω)Rt

= R(I + tω)(D + tε − tDω − t2εω)Rt

= R(D + tε − tDω − t2εω + tωD + t2ωε − t2ωDω − t3ωεω)Rt

⇒ dψ(R,D)(Rω, ε) = R(ωD − Dω + ε)Rt . (5.26)

Equation 5.26 says that a change ε in D produces a change RεRt in ψ(R,D), while a
small rotation R(I+ω) produces a change R(ωD − Dω)Rt. Because we intend to focus

1The kinematics literature does not seem to have standard notation for this function [85].
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on the differential structure of changes in D = ψ(I,D) rather than in RDRt = ψ(R,D),
we can set R = I. Also, for the purposes of this section (the calculation of rotation
tangents), we need only consider rotations of D, so we can set ε = 0. With these
simplifications:

dψ(I,D)(ω,0) = ωD − Dω .

At this point, we may as well drop from dψ the (I,D) subscript, and the second argument
0, since these will be fixed from now on:

dψ(ω) = dψ(I,D)(ω,0) = ωD − Dω . (5.27)

Equation 5.27 is a general expression for all possible rotation tangents. To show a
concrete example of a rotation tangent, recall that the principal frame E = {e1, e2, e3} is
the basis for R

3 spanned by eigenvectors of a given tensor D. Consider the image, under
dψ, of the tangent associated with rotation around e1, namely R′

e1
(0) = X(e1):

[dψ(X(e1))]E = [X(e1)D − DX(e1)]E

=

 0 0 0
0 0 −1
0 1 0

 λ1 0 0
0 λ2 0
0 0 λ3

−
 λ1 0 0

0 λ2 0
0 0 λ3

 0 0 0
0 0 −1
0 1 0


=

 0 0 0
0 0 λ2 − λ3

0 λ2 − λ3 0

 .

Then by Equation 2.14:

dψ(X(e1)) = (λ2 − λ3)(e2 ⊗ e3 + e3 ⊗ e2) .

This equation describes exactly how the tensor value D changes as a result of small
rotations of the tensor around e1. By similar reasoning one can derive expressions for the
rotation tangents associated with e2 and e3:

dψ(X(e2)) = (λ3 − λ1)(e3 ⊗ e1 + e1 ⊗ e3)
dψ(X(e3)) = (λ1 − λ2)(e1 ⊗ e2 + e2 ⊗ e1) .

We define principal rotation tangents Φi according to the expressions above:

Φ1 = dψ(X(e1)) = (λ2 − λ3)(e2 ⊗ e3 + e3 ⊗ e2)
Φ2 = dψ(X(e2)) = (λ3 − λ1)(e3 ⊗ e1 + e1 ⊗ e3)
Φ3 = dψ(X(e3)) = (λ1 − λ2)(e1 ⊗ e2 + e2 ⊗ e1)

. (5.28)

Equation 2.15 states that:

(ei ⊗ ej) : (ek ⊗ el) = δikδjl .

This implies the principal rotation tangents Φi are mutually orthogonal. For example,

Φ1 : Φ2 = (λ2 − λ3)(e2 ⊗ e3 + e3 ⊗ e2) : (λ3 − λ1)(e3 ⊗ e1 + e1 ⊗ e3)

= (λ2 − λ3)(λ3 − λ1)


e2 ⊗ e3 : e3 ⊗ e1

+ e3 ⊗ e2 : e3 ⊗ e1

+ e2 ⊗ e3 : e1 ⊗ e3

+ e3 ⊗ e2 : e1 ⊗ e3


= (λ2 − λ3)(λ3 − λ1)(δ23δ31 + δ33δ21 + δ21δ33 + δ31δ23)
= 0 .
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Similar reasoning applies for Φ1 : Φ3 and Φ2 : Φ3. Then:

Φ1 : Φ2 = 0
Φ1 : Φ3 = 0
Φ2 : Φ3 = 0 .

(5.29)

Although the Φi are mutually orthogonal, they are not orthonormal, because they do not
have unit norm:

‖Φ1‖ =
√

2 |λ2 − λ3|
‖Φ2‖ =

√
2 |λ3 − λ1|

‖Φ3‖ =
√

2 |λ1 − λ2| .

It turns out at the Φi defined above support something akin to a spectral decomposi-
tion of arbitrary rotation tangents. Like the spectral decomposition of a tensor value, the
spectral decomposition of rotation tangents unfortunately incurs the computation cost of
determining the eigensystem of the tensor. Given an arbitrary axis of rotation a, we can
determine its coefficients ai in the principal frame: a = aiei. Recall from Section 5.4 that
Ra(φ) is the rotation by φ around axis a. We are interested in how tensor D changes as
result of small rotations around a, in other words, how ψ(Ra(φ),D) changes for small φ.
The spectral decomposition of the corresponding rotation tangent is:

d

dφ
ψ(Ra(φ),D)

∣∣∣∣
φ=0

= dψ(R′
a(0))

= dψ(X(a))
= ai dψ(X(ei))
= aiΦi .

With this, we can compute the inner product between two arbitrary rotations tangents,
associated with rotations around a = aiei and b = biei:

dψ(X(a)) : dψ(X(b)) = aiΦi : bjΦj

= aibj(Φi : Φj)
=
∑

iaibi‖Φi‖2

= 2(a1b1(λ2−λ3)2 + a2b2(λ3−λ1)2 + a3b3(λ1−λ2)2). (5.30)

Recall from Equation 5.5 that:

∇∇∇J =
∂J

∂λ1
(e1 ⊗ e1) +

∂J

∂λ2
(e2 ⊗ e2) +

∂J

∂λ3
(e3 ⊗ e3) .

Comparing this with the expressions for Φi (Equation 5.28), and again recalling Equa-
tion 2.15, it follows that all rotation tangents are orthogonal to all invariant gradients:

dψ(R′
a(0)) : ∇∇∇J = 0 . (5.31)

The unavoidable sign ambiguity of the eigenvectors ei causes a sign ambiguity of Φi.
Any subsequent processing or analysis based on computing Φi needs to be insensitive to
the difference between Φi and −Φi.
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5.6 Space of Tensor Orientation
Some insight into the space of tensor orientation can be derived from considering the

norm of an arbitrary rotation tangent. Given an arbitrary axis of rotation a, ‖dψ(X(a))‖
can be found directly from Equation 5.30:

‖dψ(X(a))‖ =
√

dψ(X(a)) : dψ(X(a))

=
√

2(a2
1(λ2 − λ3)2 + a2

2(λ3 − λ1)2 + a2
3(λ1 − λ2)2) . (5.32)

Equation 5.32 quantifies the intuitive notion that rotations create change only in the
presence of anisotropy, by showing that the magnitude of a rotation tangent is determined
by the differences between eigenvalues, as well as the components of the rotation axis in
the principal frame. A connection to tensor anisotropy can be made more precise by
calculating the expected value of ‖dψ(X(a))‖2 over the sphere of unit-length rotation
axes a:

〈‖dψ(X(a))‖2
〉

=
1
4π

∫ π

0

∫ 2π

0
2

 cos2(θ) sin2(φ)(λ2 − λ3)2

+ sin2(θ) sin2(φ)(λ3 − λ1)2

+ cos2(φ)(λ1 − λ2)2

 sin(φ) dθ dφ

= 2((λ2 − λ3)2 + (λ1 − λ3)2 + (λ1 − λ2)2)/3
= 6µ2 .

Another way to express this is that the RMS value of ‖dψ(X(a))‖ is proportional to√
µ2, the standard deviation of the eigenvalues. Equations 2.35 and 2.36 show that

fractional anisotropy and relative anisotropy also vary linearly with
√

µ2, though they
are normalized by different invariants measuring overall size.

Equation 5.32 highlights a fundamental difference between the space of shape changes
and the space of orientation changes. The dimension of the space of orientation change
around a given tensor D is exactly the dimension of SO3(D), the orbit of the group
action ψ containing D. The orbit dimension can be determined by counting the number
of orthogonal nonzero tangents to it. If λ1 = λ2 = λ3, then ‖Φ1‖ = ‖Φ2‖ = ‖Φ3‖ = 0, so
the dimension of the orbit is zero. If exactly two eigenvalues are equal, then exactly one
of the Φi is zero-magnitude, so the dimension of the orbit is two. If all the eigenvalues
are distinct, then all Φi are nonzero, and the orbit is three-dimensional.

Figure 5.5 illustrates how dimension of the orientation space changes gradually, in
a way governed by eigenvalue variance µ2 and skewness α3. Figure 5.5(a) shows a
triangular isosurface of µ1 in the three-dimensional space of tensors that are diagonal
in the laboratory frame. On the µ1 isosurface, µ2 and α3 are plotted in Figures 5.5(b)
and 5.5(c). Figure 5.5(d) displays the tensors sampled on the same triangular domain,
using superquadric glyphs. Figure 5.5(e) aims to visualize the space of tensor orientation,
based on tensors defined in terms of the principal rotation tangent magnitudes. For each
tensor D shown in Figure 5.5(d), where

D =
∑

iλi(ei ⊗ ei)

we define a new tensor P by:

P =
∑

i‖Φi‖(ei ⊗ ei)

The tensors P and D share the same eigenvectors, but the eigenvalue of P along ei is
the magnitude of the rotation tangent associated with ei. When D has axial symmetry,
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due to either linear or planar anisotropy, the orientation space is two-dimensional, and one
eigenvalue of P is zero, thus the glyph representation is a flat disc. Figure 5.5(e) shows
how the glyphs of P gradually flatten to discs as the eigenvalue skewness α3 approaches
both its minimum value (−1/

√
2, planar anisotropy) and maximum value (1/

√
2, linear

anisotropy). The overall size of P varies linearly with the distance from the center of
the triangular domain, that is, the eigenvalue standard deviation. Interestingly, the only
point at which P is isotropic is when P is zero.

Dxx

Dyy

Dzz

barycentric space

Dxx+Dyy+Dzz =1

(a) Isosurface of µ1 (b) Contour plot of
√

µ2 (c) Contour plot of α3

(d) Glyphs of D (e) Glyphs of P

Figure 5.5. The space of orientation changes, as represented by P, is reduced from three
to two dimensions when eigenvalue skewness α3 is at extremum, and is reduced to zero
dimensions when eigenvalue variance µ2 is zero.
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5.7 Orthonormal Rotation Tangents
Section 5.2 described how to define a local orthonormal basis for shape change at

all tensor values. This section will do the same for orientation changes. The principal
rotation tangents Φi previously defined in Section 5.5 (Equation 5.28) are orthogonal but
not orthonormal. The normalization is straightforward:

Φ̂1 = (e2 ⊗ e3 + e3 ⊗ e2)/
√

2
Φ̂2 = (e3 ⊗ e1 + e1 ⊗ e3)/

√
2

Φ̂3 = (e1 ⊗ e2 + e2 ⊗ e1)/
√

2 .

(5.33)

The simplicity of the definitions of the orthonormal rotation tangents Φ̂i, as com-
pared to the normalized invariant gradients ∇̂∇∇µ2 and ∇̂∇∇α3 (Equations 5.14 and 5.15),
is directly due to the fact that Φ̂i are defined in terms of eigenvectors. This simplicity
is therefore analogous to that of the eigenvalue gradient ∇̂∇∇λi definitions (Equations 5.2
and 5.11). In both cases, the apparent simplicity of the mathematical definition is actually
benefiting from the greater computational effort required to determine the eigenvectors
(Sections 2.3.1 and 3.1.1).

We are currently not aware of a method to efficiently compute orthonormal rotation
tangents without first computing eigenvectors. One possible approach is to start with the
rotation tangents associated with the basis vectors of the laboratory frame L = {x,y, z}:
{dψ(X(x)), dψ(X(y)), dψ(X(z))}. However, according to Equation 5.30, these are not
necessarily orthogonal, nor are they unit magnitude. A procedure such as Principal
Component Analysis may be applied to find an orthogonal set of vectors in the span of
{dψ(X(x)), dψ(X(y)), dψ(X(z))}, but the computational expense of this is not trivial,
comparable to the eigensystem computation which is currently required.

It should be noted that the normalized invariant gradients {∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3} and the
normalized rotation tangents {Φ̂1, Φ̂2, Φ̂3} do in fact span the entire space of symmetric
tensors. Equation 5.7 stated that {∇∇∇µ1,∇∇∇µ2,∇∇∇α3} were orthogonal, and the definitions
of ∇̂∇∇µ2 and ∇̂∇∇α3 (Equations 5.14 and 5.15) were careful to preserve this. Equation 5.31
stated that all invariant gradients are orthogonal to all rotation tangents. Equation 5.28
defined three rotation tangents which are mutually orthogonal, a property unchanged by
their normalization in Equation 5.33. Thus

{∇̂∇∇µ1,∇̂∇∇µ2,∇̂∇∇α3, Φ̂1, Φ̂2, Φ̂3}

is an orthonormal set of tensors with a six-dimensional span. Because everything in the
span is a symmetric tensor, and the space of symmetric tensors Sym3 is six dimensional,
the normalized invariant gradients and rotation tangents span all of Sym3 at all tensor
values, including places where two or more eigenvalues are equal (as per the extended
definitions of invariant gradients in Section 5.2).

5.8 Measuring Orientation Changes
in Tensor Fields

As with the normalized invariant gradients of Section 5.2, the practical utility of the
normalized rotation tangents Φ̂i is in measuring their alignment with the spatial gradient
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of the tensor field, ∇D, which is a third-order tensor. Mimicking the notation of ∇J and
∇̂J from Section 5.3, we define two different measures of spatial orientation change:

∇φi , ∇̂φi : R
3 �→ R

3

∇φi(x) ≡ Φi(D(x)) : ∇D(x) (5.34)

∇̂φi(x) ≡ Φ̂i(D(x)) : ∇D(x) . (5.35)

Note that the notation “∇φi” and “∇̂φi” is intended to be suggestive rather than literal.
We define no scalar function φi which is differentiated to form ∇φi. Rather, ∇φi indicates
the spatial direction along which the tensor values rotate around eigenvector ei fastest,
based on the notion that “φi” represents the angle of the rotation. ∇̂φi is the analogous
function defined to ensure equal sensitivity to all orientation changes, regardless of tensor
value.

Figure 5.6 shows the overall structure of a synthetic tensor image, designed to demon-
strate the detection of tensor change along rotation tangents. The eigenvalue mean µ1 is
held constant throughout the image, and the variance µ2 is constant except for bands at
the top and bottom of the image. The eigenvalue skewness α3 varies smoothly from the
top to the bottom of the high µ2 region, covering the full range of shapes from planar to
linear anisotropy. Horizontally, the image is divided into three regions of rotation, around
each of the eigenvectors. Figure 5.7 displays how the rotation affects the different glyph
shapes, including the rotation symmetries of linear and planar anisotropy.

planar

linear

rotation
around ... e3e1 e2

(a) Image layout; (λ1, λ2, λ3)
triples shown by RGB color

(b) µ2 (c) α3

Figure 5.6. Layout and invariants in 90 × 90 tensor synthetic image. The range of α3

along vertical axis is −1/
√

2 to 1/
√

2, as determined by linearly varying Θ from π/3 to
0. Rotation around eigenvectors occurs in three distinct regions.
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Figure 5.7. Display of synthetic tensor image with superquadric glyphs. Image was
downsampled to 30 × 30 tensor samples for better visibility of individual glyphs.
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Figure 5.8 shows different gradient magnitude measures applied to the synthetic image.
Figure 5.8(a) shows how both shape and orientation changes contribute to ‖∇D‖, while
Figures 5.8(b) and 5.8(c) show how the shape changes are decomposed into |∇̂µ2| and
|∇̂α3|. Figures 5.8(d), 5.8(e), and 5.8(f) show how |∇̂φ1|, |∇̂φ2|, and |∇̂φ3| can respond in
isolation to rotations around the eigenvectors e1, e2, and e3, respectively. These images
also confirm that |∇̂φi| = 0 when equality among eigenvalues creates axial symmetry
around eigenvector ei.

Section 2.3.3 described the anatomical relevance of the eigenvalue moments µ1, µ2,
and α3, which gave the spatial gradients ∇̂µ1, ∇̂µ2, and ∇̂α3 important roles in detecting
the boundaries of specific anatomical features. The anatomical connection to tensor
orientation change is also important for diffusion tensor field analysis. The eigenvector
e1 of a diffusion tensor D associated with the largest eigenvalue is the direction with the
highest apparent diffusion coefficient (λ1), or the “principal diffusivity direction.” The
direction of e1 is of such basic importance that it is sometimes the only quantity extracted
and analyzed from a measured diffusion tensor image. In nervous tissue, e1 is aligned
with the direction of the white matter fiber tracts [153, 24, 14], which is the basis of fiber
tracking algorithms [41, 20, 133, 206, 203].

The rate of change in e1 is therefore a useful indicator of tissue organization. Be-
cause the direction of e1 will be affected by rotations around e2 and e3, changes in e1

can be measured by
√|∇̂φ2|2 + |∇̂φ3|2. Twisting around e1 (as indicated by |∇̂φ1|) is

thereby ignored. Conversely, if the structural feature of interest is characterized by planar
anisotropy, then its rate of orientation change is assessed by

√|∇̂φ1|2 + |∇̂φ2|2.

(a) ‖∇D‖ (b) |∇̂µ2| (c) |∇̂α3|

(d) |∇̂φ1| (e) |∇̂φ2| (f) |∇̂φ3|

Figure 5.8. Gradient magnitudes in synthetic tensor image. Darker grays indicate higher
values. Quantization ranges for (d), (e), and (f) are equal, to permit comparison of the
different magnitudes by their gray values.
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Finally, we note that if the magnitude of orientation change can be acceptably mea-
sured with

√|∇̂φ1|2 + |∇̂φ2|2 + |∇̂φ2|3, then this quantity can be measured efficiently,
without computing eigenvectors, even though orientation is defined in terms of eigen-
vectors. Because the normalized invariant gradients and rotation tangents form a basis
for Sym3, and because the spaces of shape and orientation changes are orthogonal, the
magnitude of orientation change can be found from the magnitude of shape change, and
the overall gradient magnitude, using the Pythagorean theorem:√

|∇̂φ1|2 + |∇̂φ2|2 + |∇̂φ2|3 =
√

‖∇D‖2 − |∇̂µ1|2 − |∇̂µ2|2 − |∇̂α3|2 .

5.9 Discussion
This chapter has described a mathematical approach to characterizing changes in

tensor shape and changes in tensor orientation. Changes in shape are characterized in
terms of the tensor-valued gradients of three tensor invariants: the mean, variance, and
skewness of the eigenvalues. These are the same shape variables governing the geometry of
the eigenvalue wheel (Section 2.3.2). Changes in orientation are characterized in terms of
the derivatives of the group action ψ introduced in Section 2.1.7. Together, the normalized
invariant gradients and rotation tangents form an orthonormal basis for all symmetric
tensors. The tensor field gradient, a third-order tensor, can then be projected onto the
basis vectors (by double contraction) to quantify the components of tensor change at a
given point in field.

Projection by double contraction is only one of many possible ways of analyzing the
tensor field gradient. Another approach could be based on the invariants computed from
the third-order tensor defined by the gradient itself. That is, it may be that a few scalar
attributes of the tensor gradient suffice to characterize certain feature boundaries, which
may be faster to compute that the magnitudes of various tensor gradient projections.
Analogies to previous work include characterizing the eigenvalues of the Jacobian of a
vector field (the first derivative of the the vector field is a second-order tensor) [92], or
the eigenvalues and eigenvectors of the Hessian of the scalar field (another second-order
tensor), including its use to measure implicit surface curvature [131, 89, 26, 105].

As this chapter is more theoretical in nature than the others, the determination of
its “success” rests primarily in the soundness of the mathematical exposition, as well
as in the longer-term adoption of this framework by other researchers in tensor image
processing. More immediately, Figures 5.4 and 5.8 demonstrate that the mathematics
support a more nuanced approach to edge detection: three kinds of shape edges can
be detected, as well as three kinds of orientation edges. To our knowledge this kind of
specificity has not been described before in the context of tensor image analysis. More
generally, any edge or feature boundary indicated by a high magnitude of ∇D can, with
the mathematics described, be broken down into its constituent shape and orientation
changes. This is the basis of feature detection described in Chapter 7.



CHAPTER 6

DIRECT VOLUME RENDERING

Direct volume rendering is an established tool for visualizing scalar volume data, and
is valued for its ability to display structures without relying on a prior segmentation or
surface extraction step. This chapter extends direct volume rendering to visualization of
diffusion tensor data. Recall that the idea behind the glyph-based methods of Chapter 3
was to display all the tensor information at a discrete set of restricted locations, selected
either by a two-dimensional slice through the data, or by an anisotropy threshold in three
dimensions. In contrast, the idea of the volume renderings presented here is to chose
particular attributes of the data, such as those related to tensor shape (Section 2.3),
and display the continuous structures formed by the variation of the attributes within
the continuous tensor field. To create such visualizations, the basic ingredients of direct
volume rendering– color, opacity, and shading– must be determined from the data. This
chapter describes how transfer functions can be defined to specify colors and opacities,
and describes a new method of shading based on analytical gradients of tensor invariants.

Note: Some of this material was previously published in [102], and the extended
version of the same [103]. The unpublished material is Section 6.4, describing analytical
shading based on the invariant gradients presented in Section 5.3.

6.1 Introduction and Related Work
The premise of direct volume rendering is that features of interest within a dataset

can be shown on the basis of one or more locally measured data attributes. The transfer
function then maps these attributes to renderable properties like color and opacity.
Renderings are formed by casting rays through the volume, measuring these attributes,
mapping them through the transfer function, and compositing the results along rays to
determine pixel values. The canonical references for direct volume rendering describe how
this method works in scalar fields [116, 56, 160]. Transfer functions for volume rendering
are typically either univariate (mapping the scalar data value) [56] or bivariate (mapping
data value and its gradient magnitude) [116, 101, 99]. Often, the visual effect is of a
slightly “fuzzy” isosurface, rather than one explicitly formed of triangles, as by Marching
Cubes [121].

There is a small but growing amount of work on volume rendering nonscalar data. An
early example by Frühauf used raycasting and directional colormaps to display large-scale
patters in vector fields [66]. When rendering multiscalar fields, such as those from multi-
valued MRI or photographic cryosection, transfer functions have been implemented as a
two-dimensional lookup table indexed by the constituent scalar values [109, 108]. Other
work has converted vector field visualization into a scalar volume rendering problem,
such as the Flow Volume method of Max et al. [125]. Similarly, previous work in using
volume visualization of DT-MRI data has rasterized fiber tractography paths to a scalar



93

volume, which is rendered along with a precomputed tensor attributes such as mean bulk
diffusivity [193].

Section 2.3.3 described the role that tensor shape has in describing the underlying
anatomical structure, so we often use shape information from tensor invariants as the basis
for our transfer functions. At every step along each ray cast, the tensor components are
reconstructed by separable convolution (Section 2.1.8), from which the required invariants
are computed. In volume rendering scalar fields, shading plays the role clarifying the
shape of structures, and is often based on the gradient of the scalar field. In tensor
volume rendering, shading is more complicated, as there is no single gradient, so we
compute the the spatial invariant gradients based on the gradient of the tensor field, a
third-order tensor (Section 5.3).

6.2 Barycentric Color and Opacity Maps
One method for assigning colors and opacities in the volume rendering is based on

the barycentric space of tensor shape presented in Section 2.3.4. Because of the intuitive
nature of this space, it is fairly easy to design transfer functions which reflect interest in
particular ranges of tensor shape.

Figure 6.1 demonstrates some barycentric opacity maps. Each opacity map is depicted
by gray-scale representation: brighter regions in the triangle correspond to higher opacity
assignment. For the purposes of this figure, the effect of the opacity map is demonstrated
by applying the map to the the tensor dataset, resulting in a scalar volume of opacity
values. This new scalar volume is visualized with a linear opacity function, and shaded
according to the gradient of opacity values. One can see that appropriately chosen opacity
functions allow one to see the form of structures in the dataset that have one predominant
type of anisotropy.

Because of its expressive power, the barycentric space also makes sense as the domain
of the color function, which assigns color to each sample point in the volume rendering
according to its anisotropy. Most importantly, different kinds of anisotropy receiving
equal opacity can be disambiguated by assigning different colors. Also, to the extent
that various classes of white-matter tissue are found to have a characteristic anisotropy
throughout the volume, they can be color-coded with an appropriate barycentric color
map. Volume renderings made with both barycentric opacity and color maps allow an
extra dimension of information about the diffusion tensor to be represented in the volume
rendering. Figure 6.2 shows two examples of these.

6.3 Lit-Tensors
Streamlines used in vector visualization are sometimes hard to interpret because

they lack the shading cues which we are accustomed to seeing on surfaces. However,
illuminated streamlines (“lit-lines”) have shading and highlights which give information
about their direction and curvature, creating the appearance of shiny filaments [209, 175].
In the case of diffusion tensor visualization, we have made tensors opaque and colored
based on their anisotropy. The shading used in Figures 6.1 and 6.2 is based on the gradient
of the precomputed opacity field (essentially preclassified volume rendering [119]). Here,
we describe a shading technique termed lit-tensors which seeks to indicate the type and
orientation of anisotropy.

Lit-tensors are designed according to following certain constraints:
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Figure 6.1. Examples of barycentric opacity maps and resulting volumes.
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Figure 6.2. Examples of barycentric color maps and resulting renderings.
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1. In regions of complete linear anisotropy, the lighting model should be identical to
that of illuminated streamlines. Complete linear anisotropy means movement by
diffusion is constrained to one dimension, so it is sensible for the lighting model to
degenerate to one already developed for vector fields.

2. In regions of complete planar anisotropy, the lighting model should be the same
as with traditional surface rendering. The obvious choice for the “surface normal”
for a planar anisotropic tensor is the third eigenvector, perpendicular to the plane
formed by the span of the first two eigenvectors (associated with the largest two
eigenvalues).

3. There has to be a smooth interpolation between these two extremes. Because
tensor data can exhibit a wide variety of anisotropies, allowing small variations in
anisotropy to lead to large changes in shading will probably create a more confusing
image.

This can be seen as a problem of how to interpolate illumination between different
codimensions. The codimension of the diffusion tensor’s representative ellipsoid is two in
the linear anisotropy case, and one with planar anisotropy. Previous work [8] has rigor-
ously developed illumination methods for general manifold dimension and codimension,
but did not cover cases part-way between different codimensions. Unlike that work, no
claim to physical accuracy or plausibility is made for the model presented here; it is just
one simple way of satisfying the constraints above.

We take as our starting point the Blinn-Phong lighting model [34]:

I = Iambient + Idiffuse + Ispecular

= kaAλOλ + Iλ(kdOλl · n + ks(h · n)s) (6.1)

ka, kd, and ks control the contributions of ambient, diffuse, and specular reflection to the
final image. Following Foley et al. [63], we add the subscript λ to those variables which
vary according to color. For example, there are separate values Ir, Ig, Ib, for the red,
green, and blue components of the directional light source. The ambient light color is
Aλ. Instead of representing the intrinsic object color with different ka and kd for red,
green, and blue, we use Oλ for object color and keep ka and kd as separate controls. In
our case, the intrinsic object color is determined by any of the methods described in this
paper (barycentric maps, hue-balls, or reaction-diffusion textures). l is the vector pointing
towards the directional light source, v points towards the eye, and n is the surface normal.
We following the convention for computing the specular term introduced by Blinn [34],
whereby instead of using the reflection r of l across n, we use the “half-way” vector h,
computed as the normalized average of l and v. The size of the specular highlight is
controlled by s, the shininess exponent.

Because a streamline is one-dimensional, at any given point along it there is an infinite
set of normals, all perpendicular to the tangent direction t, radiating outwards in a circle.
If naively using Equation 6.1 to illuminate a streamline, one must find the normal which
is in the plane spanned by l and t to evaluate l · n. Similarly, another specific normal
must be found to evaluate h ·n. The insight which makes lit-lines simple is that one does
not need to actually find a specific normal in order to evaluate a dot product with it.
With the Pythagorean theorem, the dot product with n can be expressed in terms of the
tangent t:

u · n =
√

1 − (u · t)2 (6.2)
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where u is either l or h, for the diffuse and specular terms, respectively.
The relevant property of Equation 6.2 is that the lighting calculation depends on a

tangent vector t that gives the object’s direction, instead of its surface normal n. The
direction and orientation of a diffusion tensor is determined by not one, but two vectors:
the first and second eigenvectors.1 Both of these could be interpreted as tangents,
but their relative importance is determined by the magnitudes of the corresponding
eigenvalues. To control the relative importance of the first two eigenvectors in determining
the tensor’s orientation, we introduce a parameter cθ which characterizes anisotropy type.
Assuming that the eigenvalues are ordered λ1 ≥ λ2 ≥ λ3, we define

cθ =
π

2
cp

ca
=

π(λ2 − λ3)
λ1 + λ2 − 2λ3

. (6.3)

As anisotropy varies from completely linear (cl = 1; cp = 0) to completely planar (cl = 0;
cp = 1), cθ varies from 0 to π

2 . The role of cθ is to control how much the second
eigenvector contributes to the lighting of the diffusion tensor. In the linear case, only
the first eigenvector determines the tensor orientation, and in the planar case, both the
first and second eigenvectors matter equally.

The expression to be used in lieu of dot products with n is:

“u · n” =
√

1 − (u · e1)2 − (u · e2 sin(cθ))2 . (6.4)

In the case of linear anisotropy, sin(cθ) = sin(0) = 0, so the contribution from e2

vanishes, and the expression reduces to the formula for lit-lines (Equation 6.2), with
the principal eigenvector e1 taking the role of the tangent t. This is appropriate, since in
linear anisotropy, the principal eigenvector points in the direction of movement, as does
a streamline’s tangent vector.

In planar anisotropy, sin(cθ) = sin(π
2 ) = 1, and the contributions of the two dot

products are equal. This means that for any other vector w such that

(w · e1)2 + (w · e2)2 = (u · e1)2 + (u · e2)2 , (6.5)

Equation 6.4 will have the same value. Therefore, in planar anisotropy the lighting
model is rotationally symmetric around e3. Rotational symmetry in this case is actually
an important feature of the lighting model. In planar anisotropy, the diffusion tensor
ellipsoid degenerates to a disc, and any vector in the plane spanned by the disc is an
eigenvector. Because of this numerical instability, the calculated directions of the first and
second eigenvectors will be essentially random. The illumination should not be sensitive
to this arbitrary orientation, and should only be a function of the third eigenvector. In
fact, one can use the Pythagorean theorem to show that if cθ = π

2 , Equation 6.4 gives an
exact formula for u ·e3. Interpreting both e1 and e2 as surface tangents, then the surface
normal n is aligned along e3. Therefore the model contains standard surface shading as
a special case.

To demonstrate lit-tensors, Figure 6.3 shows nine different synthetic diffusion tensor
datasets which were direct volume rendered with a fixed viewpoint and light. The
anisotropy index ca of the sphere is also constant in every case, but cθ is changing. The

1Because the eigenvectors always form an orthogonal basis, and because we are adopting two-sided
lighting, the third eigenvector does not contribute any additional information.
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Figure 6.3. Sequence of volumes of differing anisotropy, rendered with lit-tensors.
Anisotropy varies gradually between the nine volumes, going in scanline order.

dataset in the upper left has complete linear anisotropy in a concentric circular pattern
(along lines of latitude). The dataset in the middle has complete planar anisotropy (and
hence looks just like a standard surface rendering). The dataset in the lower right has
complete linear anisotropy along lines of longitude, going from pole to pole. The images
provide a convincing sense of surface anisotropy, which is not a typical trait in direct
volume renderings.

The spheres shown in Figure 6.3 have well-behaved anisotropy in the following sense:
the changes in the orientation of anisotropy are directly correlated to the changes in the
orientation of the sphere’s surface normal. Experience has shown that measured diffusion
tensor data is generally not so well-behaved, so that still images created using lit-tensors
tend to be confusing2. The underlying problem is that lit-tensors were designed to indicate
anisotropy type and direction, not the shape of the structure made opaque by the opacity
function. On a complex structure with significant self occlusion, the lack of surface shape
cues can lead to a rather ambiguous, water-color effect, as seen in Figure 6.4.

Our current solution to this problem is to perform a separate (and significantly
simpler) shading calculation, using standard Phong shading with the normalized gradient
of opacity serving as the surface normal. This is accomplished by a two-step preprocess:
the opacity at each data point is determined, and then the gradient of the opacity field is
calculated. The normalized negative gradient of opacity is stored at each sample point,
and during volume rendering, these directions are interpolated to determine a surface
normal at every point along the ray. The interpolated surface normal is used in the Phong

2Animations that vary viewpoint location can disambiguate surface shape while enhancing the effect
of lit-tensors by showing motion of the specular highlights.
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Figure 6.4. Lit-tensor model shading on the whole brain, with the same opacity and
light direction as first image in Figure 6.2.

shading equation. This results in an image in which shading is entirely determined by
the opacity assignment and the shape of the opaque structures selected by it.

However, it is also possible to arbitrarily mix the results of lit-tensor shading and
opacity gradient shading, as shown in Figure 6.5. Both shading calculations are per-
formed, and then the results are mixed on a per-voxel basis by a user-defined parameter.
This sort of mixing is quite different than varying the anisotropy type as was done in
Figure 6.3. Instead of one specular highlight changing shape gradually, there are two
different specular highlights which cross-blend.

The range of possibilities illustrated by Figure 6.5 demonstrates an important differ-
ence between scalar and tensor volume rendering. In scalar volume rendering, opacity
is nearly always determined as a function of the (scalar) data value, hence the opacity
gradient is always aligned with the gradient of original data value. This means that
the data value gradient can be computed only once per dataset and used to shade the
output of any opacity function. Unfortunately, such a preprocess is not possible with
tensor data under barycentric opacity maps, as the domain of the opacity function is
a multidimensional space which varies nonlinearly with the tensor matrix component
values. On the other hand, given the overall computational expense of tensor volume
rendering, we have found the cost of having to compute the opacity gradient once per
opacity function to be acceptable.

6.4 Volume Rendering with Tensor Gradients
A significant drawback to the method of rendering and shading presented in Section 6.2

is the use of preclassification: the tensor volume was mapped through the opacity function
to create a scalar opacity field, which was then shaded as in standard scalar volume
rendering (although with color assigned by a transfer function of interpolated tensor
values). As with any use of preclassification, especially with transfer functions with
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Figure 6.5. Mixing between lit-tensor and opacity gradient shading, for a synthetic
sphere (left), and a portion of brain data (right). Going from top to bottom, the
contribution of lit-tensors is 1.00, 0.66, 0.33, and 0.00.
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sharp transitions, this creates errors in rendering small features [119, 108].
The mathematical results of Chapter 5 allow us to improve upon this. In particular,

the ability to project the tensor gradient ∇D along some invariant gradient ∇∇∇J allows us
to compute the analytical spatial gradient of J within the tensor field, once a particular
set of reconstruction and derivative kernels has been chosen. Here, the invariant J will
be an anisotropy measure such as fractional anisotropy, FA. This work represents the
first use of analytical shading in nonscalar volume rendering. The importance of this is
two-fold. First, the limited resolution of DT-MRI scans motivates special care in rendering
the small features which may be represented by only a few voxels, which preclassification
fails to do. Second, the extensive use of anisotropy thresholds in other tensor visualization
methods, such as determining which glyphs contribute to a three-dimensional rendering
(Section 3.1.5) or the termination criteria for fiber tractography (Section 4.2), suggests
that anisotropy isosurfaces are fundamental structures that can be visualized in their own
right. Proper shading helps us better understand the shape of anisotropy isosurfaces.

Recall from Equation 2.35 that fractional anisotropy FA can be defined as:

FA =
3√
2

√
µ2

J4
.

Shading in volume rendering is based on the normalized gradient of the underlying scalar,
so it does not matter if we take the gradient of FA or FA2:

∇∇∇(FA2) =
9
2

J4∇∇∇µ2 − µ2∇∇∇J4

J2
4

.

Again, the overall magnitude of this tensor is not important, so to define the spatial
gradient of FA as the basis of a surface normal for shading, we may say (following the
definition of ∇J in Equation 5.19)

∇FA ≈ (J4∇∇∇µ2 − µ2∇∇∇J4) : ∇D .

Equations 5.9 and 5.4 can be used to define ∇FA in terms of the principal invariant
gradients. Then, shading for volume rendering may be based on a “surface normal”:

nFA = −∇FA/|∇FA| .

Figure 6.6 shows four volume renderings of FA isosurfaces with Lambertian shad-
ing [170] based on nFA. The isosurface is rendered with what is nearly an opacity step
function: except for a narrow transition, opacity is 0.0 or 1.0 depending on whether FA
is below or above the indicated threshold. Also, a high sampling rate along the volume
rendering rays (roughly five samples per voxel) avoids aliasing artifacts at the surface.
The reconstruction kernel is the cubic B-spline (Figure 2.2(c)), and the derivative kernel
is the B-spline derivative (Figure 2.3(c)). The clarity of these images, due in part to the
analytical shading of small features, is a significant improvement over Figure 6.1. The
drawback, however, is in having a univariate (instead of bivariate) opacity function.

To further demonstrate that volume rendered anisotropy isosurfaces are informative
visualizations of major white matter structure, Figures 6.7 and 6.8 show lateral and medial
views, respectively, of a volume rendered isosurface of FA, with the RGB color-coding
(Equation 3.7) to help identify the major white matter structures, which are labeled in
the second half of each figure. As with Figure 6.6, the cubic B-Spline and its derivative
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FA = 0.0 FA = 0.3

FA = 0.5 FA = 0.65

Figure 6.6. Volume-rendered isosurfaces at a range of FA values show basic 3D structure
of white matter in a DTI brain scan.
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(a) Volume Rendered Isosurface
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(b) Anatomical Anotations

Figure 6.7. Volume renderings of half a DT-MRI brain scan, with isovalue FA = 0.4,
from a medial and slightly inferior view.
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(a) Volume Rendered Isosurface
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(b) Anatomical Anotations

Figure 6.8. Volume renderings of half a DT-MRI brain scan, with isovalue FA = 0.5,
from a lateral and slightly inferior view.
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are used for value and derivative reconstruction, respectively. The smooth shading and
specular highlights assist in the shape perception of the isosurface. The RGB coloring
is the usual colormap of the principal eigenvector (Equation 3.7). These direct volume
renderings complement Figure 3.10 (the three-dimensional glyph renderings of the same
dataset) because the volume renderings show the features and texture in the continuous
FA isosurface that defines the region of discrete sampling visualized by the glyphs.

Finally, Figure 6.9 demonstrates the effect of kernel choice on the resulting anisotropy
isosurface. Different kernel choices allow different aspects of the field to be seen. Trilinear
interpolation is not C1 continuous, so the sharp edges in Figure 6.9(a) indicate the
underlying data resolution. The Catmull-Rom kernel (graphed in Figure 2.2(b)) is a
C1 kernel which interpolates, so any noise in the data is manifest as a more bumpy
surface. The B-spline curve is C2, and not interpolating, so the corresponding isosurface
is significantly smoother, allowing the ridged structure of the internal capsule (underneath
the red corpus callosum) to be seen clearly.

6.5 Discussion
This chapter has described the generalization of direct volume rendering to diffusion

tensor data. The approach of Section 6.4 in particular represents the first time that
diffusion tensors have been volume rendered directly from the tensor field, rather than
by preprocess conversion to a scalar opacity field (as in Section 6.2). The success of the
method is supported by the ability to discern the major white matter structures in, for
example, Figure 6.7. The numerical accuracy of the rendering is assured by the small step
size (about a fifth the width of a voxel) used in the ray integration, and by the consistent
reliance on separable convolution to reconstruct the tensor values and their derivatives.
All field information is reconstructed on-the-fly, at each sample point, by convolution,
which enables analytical shading based on the gradient of fractional anisotropy.

One aspect of diffusion tensor volume rendering that has not been addressed is
the importance of differentiability of the tensor invariants used to define the transfer
function. A compelling reason for using fraction anisotropy FA for the demonstrations of
analytical shading is that FA is defined in terms of invariants µ2 and J4, both of which are
differentiable everywhere in Sym3. This is not true of cl and cp, however, because of the
eigenvalue sorting inherent in their definition. On the other hand, the barycentric shape
space (based on cl and cp) provides a vastly more flexible domain for opacity functions.
Determining how to combine with the flexibility of barycentric shape space with the
differentiability of metrics like FA is an area of future work.

Given the amount of work involved in computing a volume rendering of a tensor field,
the term “direct volume rendering” seems to be a misnomer. Multiple convolutions are
required to estimate, at each sample point, the tensor components and their derivatives
(Section 2.1.8), often the eigenvalues and eigenvectors are computed (Sections 2.3.1
and 3.1.1), and then colors and opacities were determined based on these values. For
this reason, tensor volume rendering is currently not interactive. The computational
speed and flexibility of modern graphics hardware is increasing at such a rate, however,
that this should soon be feasible. For example, volume renderings from two-dimensional
transfer functions took many minutes to compute (in software) when introduced in
1988 [116], but can now be rendered at multiple frames per second with commodity
graphics hardware [108]. Whether applied to scalar or tensor data, the intrinsically
data-parallel nature of direct volume rendering means it is well suited to streaming-based
processors found on modern graphics hardware [62].
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(a) Trilinear (b) Catmull-Rom

(c) B-Spline

Figure 6.9. Renderings of anterior corpus callosum and cingulum bundle, showing the
effect of different kernel choices



CHAPTER 7

ORTHOGONAL TRACT DELINEATION

This brief chapter applies the theoretical framework of Chapter 5 to a particular task
of feature analysis in diffusion tensor fields: detecting proximity between two regions of
orthogonally oriented linear anisotropy. This configuration was discussed in Section 2.3.3
as source of planar anisotropy due to partial voluming. As noted there, at least two
locations in the brain are characterized by this configuration: the anterior-posterior di-
rection of the cingulum bundles directly superior to to the left-right direction of the corpus
callosum, and the right-left trans-pontine tracts directly ventral to the inferior-superior
corticospinal tracts in the brainstem. The first of these configurations was illustrated in
Figure 3.10: the cingulum bundle is represented by the path of green/blue glyphs, and
the corpus callosum is represented by the orthogonal oriented red glyphs beneath.

In the context of feature-preserving filtering of diffusion tensor fields, these are anatom-
ical locations where it is especially important to avoid smoothing or blurring, since this
would imply additional mixing or communication between the distinct tracts. Unfortu-
nately, this configuration is not easy to characterize in terms of shape or orientation alone:
anisotropy is high within both tracts, and the orientation change appears to be discrete,
not continuous. The mere presence of planar anisotropy is not a sufficient indicator,
because (as was noted in Section 2.3.3) other regions of the brain such as the superior
longitudinal fasciculus have high planar anisotropy without touching an orthogonally
oriented tract. This chapter presents a novel method of localizing configurations of
orthogonal tract proximity based on analysis of the tensor field gradient. We also confirm
that the gradients of the eigenvalue mean µ1 can detect the boundary between gray matter
and cerebro-spinal fluid (CSF), and that (to a lesser extent) the gradient of eigenvalue
variance µ2 can detect the boundary of white and gray matter.
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7.1 Analysis of Tensor Gradient Components
Figure 7.1 shows three slices of a DT-MRI volume used for this analysis, both with

the standard RGB colormap (Equation 3.7). On the same slices, Figure 7.2 shows ‖∇D‖,
the overall magnitude of the spatial gradient of the tensor field D (Equation 5.18). The
corpus callosum is the upward red arc in the coronal image, and the downward red arc in
the sagittal images. The cingulum bundles are the green/blue structures directly above
the corpus callosum in the coronal view, and wrapped around the corpus callosum in the
second sagittal view. In the first sagittal image are visible the (red) trans-pontine tracts
directly ventral to the inferior-superior (blue) corticospinal tracts in the brainstem. This
image also shows the anterior commissure as a small left-right pathway, visible as a red
dot below the corpus callosum. The feature detection task of this section is essentially to
isolate those regions where tracts with different primary colors in Figure 7.1 are physically
touching.

Aside from the RGB colormap images which show the slice at original resolution, all
the other images in this section (images of gradient magnitudes) show measurements on
a continuous tensor field created by convolution with the B-spline filter (Figure 2.2(c)),
and up-sampled by a factor of four. The small amount of smoothing helps deal with
noise in the original data. Also, as in Figures 5.4 and 5.8, the grayscale mapping of the
gradient magnitude images is inverted for better visibility of faint features. To assist in
qualitative comparison, the quantization ranges and grayscale mapping is identical for all
images of gradient magnitudes.

Figure 7.3 decomposes ‖∇D‖ into the overall magnitudes of shape change and of
orientation change. Note that the hard boundary at the surface of the ventricles, indicated
by arrows, is present in Figure 7.3(a) but not in Figure 7.3(b), consistent with the idea
that the transition between white or gray matter and CSF is indicated by a change in
tensor shape, but not in orientation.

Figure 7.4 decomposes the changes in shape along the three orthonormal invariant
gradients, as defined in Section 5.3. The features of these images are broadly consistent
with the earlier discussion (Section 2.3.3) of the relationship between anatomy and
tensor shape. The hard boundary between CSF and the brain is present only in |∇̂µ1|
(Figure 7.4(a)), and not |∇̂µ2| or |∇̂α3| (Figures 7.4(b) or 7.4(c)), which confirms that
the CSF boundary is marked primarily by a change in mean bulk diffusivity. On
the other hand, by comparison with the brightly colored regions of Figures 7.1, it is
clear that outlines of the white matter structures are visible in Figure 7.4(b) but not
Figure 7.4(a), confirming that the contrast between white and gray matter is in the
variance µ2 of the eigenvalues, not the mean µ1. The structures in the skewness gradient
|∇̂α3| image (Figure 7.4(c)) are less clear, but the boundary between the corpus callosum
and the cingulum bundles is being delineated (as indicated). This is consistent with
current knowledge of partial voluming in DT-MRI: the voxels in between orthogonally
oriented fiber tracts will exhibit planar anisotropy, which has a lower skewness than linear
anisotropy (recall Figure 2.7(c)).

However, there is a basic difference between this anatomically-based skewness change
and the one created in the synthetic dataset for the sake of Figure 5.4: the continuum
of tensor shapes between the corpus callosum and the cingulum bundle ranges from
linear, to planar, and back to linear. Skewness reaches a local minimum at the half-
way point. Figure 7.5 illustrates this kind of shape variation. Eigenvalue skewness α3

decreases towards, and increases away from, the planar configuration at the middle of the
shape variation, at which skewness is minimal. Because eigenvalue mean and variance
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(a) RGB map

A

B

C

D

E

F

(b) RGB map with region labels

Figure 7.1. One coronal (left) slice and two sagittal (right) slices used for inspecting
tensor gradient components, shown with the RGB colormap (a), and with anatomical
regions of interest labeled (b). A: cingulum bundle (green) superior to corpus callosum
(red), B: inferior longitudinal fasciculus (green) lateral to internal capsule (purple),
C: cerebellar commissures (green) lateral to cortico-spinal tracts (blue), D: anterior
commissure (red), E: trans-pontine tracts (red) amidst cortico-spinal tracts (blue), F:
cingulum bundle (green and blue) superior to corpus callosum (red).

Figure 7.2. Tensor gradient magnitude ‖∇D‖ on the same dataset slices shown in
Figure 7.1.
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(a)
√|∇̂µ1|2 + |∇̂µ2|2 + |∇̂α3|2

(b)
√|∇̂φ1|2 + |∇̂φ2|2 + |∇̂φ2|3

Figure 7.3. Images of overall magnitudes of shape change (a) and orientation change
(b). Arrows point to boundary of ventricle, which is essentially absent in the orientation
change image.
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(a) |∇̂µ1|

(b) |∇̂µ2|

(c) |∇̂α3|

Figure 7.4. Magnitudes of changes in eigenvalue mean (a), variance (b), and skewness
(c). The boundary between cingulum bundle and corpus callosum is indicated by arrows
in the coronal (right-most) slice of (c), and by the indicated box (including zoom) in the
second sagittal (left-most) slice of (c).

decreasingα3 increasingα3
minimalα3

e3rotation around

Figure 7.5. Continuous variation between linear, planar, and linear.
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is constant throughout this (synthetic) variation, all tensor invariants are fixed at the
planar configuration. The difference in orientation which is evident between the initial
and final linear shapes is thus concentrated around the planar shape, as a rotation around
the minor eigenvector e3 (the short axis of the planar shape). Consistent with this, close
inspection of Figure 7.4(c) reveals isolated pixels of very low magnitude |∇̂α3|: the local
change here is in orientation, not shape.

Figure 7.6 helps explain the remaining components of the tensor gradient at this
particular anatomical feature. The most striking feature is the clean line in the |∇̂φ3|
image (Figure 7.6(c)), at a position which separates the corpus callosum and the cingulum
bundle, as indicated. This component of the tensor gradient responds to rotations
around the minor eigenvector e3, the eigenvector associated with the lowest diffusivity.
A secondary feature of Figure 7.6 is that no white matter structures are clearly visible in

(a) |∇̂φ1|

(b) |∇̂φ2|

(c) |∇̂φ3|

Figure 7.6. Magnitudes of orientation changes measured in DT-MRI slices. The
boundary between cingulum bundles and corpus callosum is highlighted in the |∇̂φ3|
image in (c).
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the |∇̂φ1| and |∇̂φ2| images (Figures 7.6(a) and 7.6(b)). The potential implication is that
rotations around the principal eigenvector e1 and the secondary eigenvector e2 are not
significant indicators of anatomical boundaries, and thus these components of the tensor
gradient may be disregarded in the context of feature detection and feature-preserving
filtering.

Figure 7.7 shows the two tensor gradient components that successfully delineated the
corpus callosum and the cingulum bundle. Recalling that proximity between orthogonally
oriented linear anisotropy creates planar anisotropy, Figure 7.7(c) shows that multiply-
ing
√|∇̂α3|2 + |∇̂φ3|2 by cp (Section 2.3.4) leads to an effective indicator of proximity

between orthogonally oriented structures. This is visually confirmed by comparing Fig-
ure 7.7(c) with Figure 7.1. The corpus callosum and cingulum bundles are delineated
by two dark spots in the coronal slice (left-most image), and by a solid line in the
second sagittal image (right-most image). The zoomed-in box regions in Figures 7.4(c),

(a)
√|∇̂α3|2 + |∇̂φ3|2

(b) cp

(c) cp

√|∇̂α3|2 + |∇̂φ3|2

Figure 7.7. High values of
√|∇̂α3|2 + |∇̂φ3|2 (a), multiplied by cp (b), lead to a

successful indicator of proximity between orthogonally oriented linear anisotropy (c).
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7.6(c), and 7.7(a) in particular demonstrates complementary roles of |∇̂α3| and |∇̂φ3| in
detecting the proximity of orthogonal fiber tracts: where one is low the other is high, so
that Figure 7.7(a) shows a solid line between the cingulum bundle and corpus callosum
as measured by

√|∇̂α3|2 + |∇̂φ3|2.
Figure 7.7(c) outlines the numerous locations of proximal orthogonal tracts shown in

Figure 7.1. The success of the detection method is indicated by the presence of dark strips
at the centers of the regions indicated by red dashed outlines. The anterior commissure,
for example, is visible as a single dark spot in the first sagittal image (middle image).
Less striking but also visible are the demarcations of orthogonally oriented pathways in
the brainstem. To our knowledge, the sensitivity and specificity of cp

√|∇̂α3|2 + |∇̂φ3|2
(Figure 7.7(c)) for detecting contact between orthogonal fiber structures has not been
previously demonstrated. Feature-preserving filtering of the tensor field can using this
information as a means of avoiding inappropriate blurring in these regions.

7.2 Application to a Second Dataset
The 1 mm × 1 mm × 1 mm × resolution of the dataset used in the previous

section (and elsewhere in the dissertation) is higher than datasets typical in DT-MRI
studies. This section applies the method developed in the previous section to such a
typical dataset, published online in an effort to standardize comparison of tractography
algorithms1. The specifics of the pulse sequence are unfortunately not disclosed. It
is likely acquired by echo-planar imaging, based on the amount of “ghost” anisotropy
(anatomically implausible high anisotropy on the surface of the cortex) caused by mis-
registration of the individual diffusion weighted images used for tensor computation [156].
The spatial resolution of the data is 1.25 mm × 1.25 mm along X and Y , and 2.5 mm
along Z. To have the correct aspect ratio, the RGB images below were up-sampled by
a factor of two along Z with nearest-neighbor interpolation. All the gradient magnitude
images are up-sampled by three along X and Y , and by six along Z, using a cubic spline
and its derivative for all measurements. The particular spline is from the (B, C) family
of cubic splines, with (B, C) = (0.5, 0.25), which is a compromise between the blurring
characteristics of the B-spline ((B, C) = (1, 0)) and the interpolation of Catmull-Rom
((B, C) = (0, 0.5)) [128].

Figure 7.8 shows a coronal and a sagittal slice of this dataset. Compared to Fig-
ure 7.1(a), Figure 7.8(a) makes clear that the number of voxels per anatomical feature is
lower in this dataset, especially along the Z direction. The major anatomical structures
in Figure 7.8(a) are the same as in Figure 7.1(a), and as before, the main task here will
be to delineate the corpus callosum from the cingulum bundles.

Figure 7.9 shows the decomposition of ‖∇D‖ into three degrees of freedom in shape
change (left side) and orientation change (right side). The patterns described in the
previous section are visible here as well: the brain-CSF boundary is most visible in the
|∇̂µ1| image (Figure 7.9(a)), the interface between white and gray matter is most visible
in the |∇̂µ2| image (Figure 7.9(c)), while little structure is obvious in the |∇̂φ1| and
|∇̂φ2| images (Figures 7.9(b) and 7.9(d)). However, |∇̂α3| and |∇̂φ3| seem to delineate
the cingulum bundles and corpus callosum.

Figure 7.10 separately demonstrates the
√|∇̂α3|2 + |∇̂φ3|2 and cp factors in the

cp

√|∇̂α3|2 + |∇̂φ3|2 indicator of proximal orthogonal fiber tracts. The cingulum bundle

1http://www.ujf-grenoble.fr/ismrm/Diffusion/DTI/
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(a) RGB map

(b) ‖∇D‖

Figure 7.8. Images of RGB colormap (a) and overall gradient magnitude (b) in one
coronal (left) and one sagittal (right) slice.

and corpus callosum are well-delineated, and the tracts in the brainstem are actually
better indicated in this dataset than in the previous. One notable aspect of Figure 7.10(c)
is that the narrowness and smoothness of the tract delineations is in contrast to the
coarse data resolution evidenced in Figure 7.8(a). This can be ascribed to the careful
use of continuous convolution for all value and derivative measurements, as originally
motivated in Section 2.1.8.

7.3 Discussion
This chapter has described preliminary results of feature-detection relevant for feature-

preserving filtering of diffusion tensor fields. Based on inspecting images of tensor gradient
components, we verified that anatomical boundaries can be characterized by certain
gradient components. At the boundary between the brain tissue and the cerebrospinal
fluid (CSF) |∇̂µ1| is high. At the boundary between gray and white matter, |∇̂µ2| is
high, but this boundary is not manifest as sharply as the CSF boundary. Both |∇̂α3|
and |∇̂φ3| were used to delineate regions where orthogonal fiber tracts touch. Finally,
cp

√|∇̂α3|2 + |∇̂φ3|2 was demonstrated as a novel indicator of orthogonally oriented
anisotropy.

More work is required to continue and refine this approach. For example, Figure 7.4(a)
convincingly shows that the boundary with CSF may be detected by high values of |∇̂µ1|,
but using |∇̂µ2| as an indicator for the gray-matter/white-matter boundary is less clear
cut. Looking at Figure 7.1 confirms that not all white matter tracts have equal anisotropy
contrast: the boundary of the internal capsule and corticospinal tracts in the brainstem
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(a) |∇̂µ1| (b) |∇̂φ1|

(c) |∇̂µ2| (d) |∇̂φ2|

(e) |∇̂α3| (f) |∇̂φ3|

Figure 7.9. Magnitudes of three shape and three orientation components of ∇D.

(the blue “V”-shaped configuration in the coronal image) is much sharper than than of
the corona radiata, so the values of |∇̂µ2| are lower around the corona radiata. It may
be that for the purposes of feature-preserving filtering, the most reliable way to isolate
the gray-matter/white-matter boundary is not by the derivative of the tensor field, but
by choosing a threshold value of fractional anisotropy. Such a method, combined with
|∇̂µ1| to indicate the CSF boundary, and cp

√|∇̂α3|2 + |∇̂φ3|2 to delineate orthogonally
oriented tracts, should permit feature-preserving filtering of DT-MRI datasets.
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(a)
√|∇̂α3|2 + |∇̂φ3|2

(b) cp

(c) cp

√|∇̂α3|2 + |∇̂φ3|2

Figure 7.10. Second demonstration of the two factors in detecting proximal orthogonal
tracts:

√|∇̂α3|2 + |∇̂φ3|2 (a) detects the linear-planar-linear transition, while the cp

measure (b) highlights regions of planar anisotropy, resulting in a successful delineation
(c) of the cingulum bundle and corpus callosum, as well as orthogonal tracts in the
brainstem (indicated by arrows).



CHAPTER 8

CONCLUSIONS

This dissertation has presented a diverse combination of novel methods for diffusion
tensor visualization and analysis. As mention in Chapter 1, the different visualization
methods can be compared in terms of what aspect of the tensor field is shown, how that
information is transformed to a visible form, and where are the locations at which it is
visualized.

Superquadric glyphs and reactions diffusion textures display all the degrees of freedom
in tensor values, at a discretely sampled set of points. By encoding shape information into
a variable base geometry, superquadric glyphs avoid the visual ambiguities of standard
ellipsoidal glyphs. The packing and spacing of the spots that arise in the reaction-
diffusion textures help indicate the form of underlying structures more explicitly than by
glyphs on a strictly regular sampling grid. Tensorlines visualize a subset of the tensor
information, along a collection of continuous paths initiated by points chosen by the
user. Each tensorline conveys the directional information imparted to it by deflection,
in addition to the the principal eigenvector (the basis of standard tractography). Direct
volume rendering, on the other hand, seeks to convey one or two aspects of tensor shape,
everywhere, by rendering and shading the continuous form associated with the spatial
variation of the shape information through out the field. The mathematical center of the
dissertation is Chapter 5, describing a framework for calculating the components of shape
change and orientation change in the gradient of a tensor field, the first-order differential
structure of the tensor field at each point. The tensor gradient mathematics was first
applied to create analytical shading of anisotropy surfaces in volume rendering, and to
create a novel indicator for proximity of orthogonally oriented fiber tracts.

All the different methods can be characterized in terms of local versus global field
information, and in terms of which tensor attributes are embodied. This even includes
the mathematics of the tensor gradient analysis (Chapter 5): by definition it is completely
local (it describes the field at exactly a point), and Sections 5.3 and 5.8 described how to
extract its shape and orientation attributes.

8.1 Future Work
As stated in Chapter 1, this dissertation contributes a discrete set of methods, rather

than a unified solution to a single over-arching problem of visualization or analysis. How-
ever, the methods described are complementary in their approach and focus. The possible
bridges between the methods are natural areas for future work. Rather than visualizing
tensorlines (Chapter 4) has a continuous tubular geometry, a string of superquadric
glyphs (Section 3.1) could indicate the path of the tensorline, while also conveying all the
tensor attributes at regularly spaced points along the path. The tensorlines themselves
could be seeded from the centers of the spots created by the reaction-diffusion textures
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(Section 3.2). The anisotropy thresholds required for tensorline or glyph renderings could
be chosen based on direct volume renderings of the continuous anisotropy isosurface (Sec-
tion 6.4), and volume renderings could be integrated into tensorline or glyph visualizations
to provide further indication of large-scale structures. In particular, the features identified
by the methods of Chapter 7 could be visualized and contextualized by a combination of
glyphs, tensorlines, and volume rendering.

Although Section 2.2.4 stated that the methods of this dissertation are targeted at
diffusion tensor rather than high angular resolution diffusion (HARD) imaging, certain
methods may generalize naturally to HARD data. For example, the description of
tensor shape based on orthogonal statistical measures of the eigenvalues (Section 2.3)
may naturally extent to higher-order moments or cumulants, which may provide a more
straight-forward approach to shape description than the spherical harmonics that are cur-
rently favored [4, 65]. Although the generalization of glyphs and textures to HARD data
is a challenge, the deflection principle behind tensorlines may generalize well, whereby
the input direction is simply steered towards the directionally closest peak in diffusivity.
One of the most promising visualization methods may actually be volume rendering.
Because it is so flexible with respect to which data attributes contribute to the rendering,
generalized anisotropy and shape measurements could serve as transfer function domain
variables, creating renderings of continuous three-dimensional forms which to date have
not been computed from HARD data.

There are numerous possible directions of future work based on the mathematical
formalism of Chapter 5. As stated there, the original intent of this approach was the
development of feature-preserving nonlinear filtering, akin to the Perona-Malik method
for grayscale images. It is this method which motivated the detection of proximity of
orthogonal fiber tracts, since these are especially important to keep seperate during fil-
tering. However, the same mathematical vocabulary for decomposing the tensor gradient
may allow the detection of other fiber tract features such as the branches. This location
is also characterized by a linear-planar-linear transition in the field, but of a different
configuration than that illustrated in Figure 7.5. In other case, it would be useful to verify
the feature detection based on gradient analysis with HARD imaging, since this provides
a more direct validation of the underlying directional composition. Another exciting
direction of future work involves using topological methods to decompose the tensor
field into spatially discrete regions, bounded by critical points and separating surfaces,
within which the structure of the field is topologically constant. Limited versions of these
methods have been described for tensor fields [83, 53, 82] and vector fields [77, 68]. The
generalizations to tensor fields may detect anatomical landmarks which serve as fiducial
points for deformable registration methods.

An important area that this dissertation has left for future work is that of perception
and perceptual psychology. Although the efficacy of superquadric glyphs (over ellipsoids)
is evident from Figure 3.8, and the improvements from reaction-diffusion textures (over
ellipses on a regular grid) is visible in Figure 3.15, rigorous validation of the methods
will be found in future user studies. User studies could quantify the improvement in
the ability to discern the relevant tensor and field properties, as well as the viewing and
presentation conditions under which the methods perform best.

Different studies are possible for the different visualization methods. One study
could quantify the advantage of superquadrics to convey the orientation of the principal
eigenvector (a fundamental task of diffusion tensor visualization), and another could
quantify the ability to differentiate the tensor shape variations that occur within the
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field. The effectiveness of glyphs also depends on their screen resolution, so another
study could determine if the greater surface complexity of superquadric glyphs decreases
their legibility as a function of lower screen resolutions. With the reaction diffusion
textures, it would be interesting to quantify the extent to which the nonregular placement
of the spots allows underlying field properties to be perceived. To validate the volume
rendering methods, it would be interesting the compare the volume rendered isosurfaces
of anisotropy with a polygonal representation of the same, to determine the improvement
in ability to perceive the overall form of the anisotropic regions. To a large extent,
the tensorline method has been validated by Lazar et al. [113, 114], although future
studies could assess how to best combine the different visualization methods to facilitate
particular diagnostic or analysis tasks.

Another related area left largely unaddressed by this dissertation is the issue of interac-
tivity and presentation. The scientific utility of a visualization method is lessened if it can
not interactively respond to queries and exploration by a researcher, and if the images are
not accessible in a natural context for scientific exploration. These “meta”-visualization
issues have been previously addressed for diffusion tensor visualization, although mainly
for exploration by tractography [54, 202, 1]. An interesting example of the role of
interactivity in visualization is the interactive and artistic design of glyphs in a virtual
environment, to improve the expressiveness of multivariate flow visualizations [96, 97].

Experience has shown that interactivity fundamentally simplifies the task of trans-
fer function specification in direct volume rendering of scalar fields [107, 108], so it is
frustrating that volume rendering directly from the tensor field currently exceeds the
computational ability of graphics hardware. As mentioned in Section 6.5, however, this
can be expected to change, in which case the vocabulary of interactive tensor visual-
izations methods would expand significantly. Interactive methods would be especially
helpful in the exploration and design of analysis methods (Chapter 5), since the variables
defined by projections of the tensor gradient could be used in transfer functions, allowing
volumetric exploration of the structures delineated by gradients of the tensor field.

Beyond the perceptual validation of the methods described above, a major avenue
for longer-term future work is the clinical validation of the methods presented in this
dissertation. The initial component of clinical validation would be a careful determination
of the noise sensitivity of the methods, based on previous work describing the noise
characteristics that can be expected in clinical scans [17, 18, 19, 141]. This is a problem
for some methods more than others. The virtue of the superquadric glyphs, for example,
is that they can display all tensor attributes at the originally scanned point samples, noise
included. Volume rendering is similar in that noise will be evidenced in visibly rougher
anisotropy surfaces, especially when using reconstruction kernels which interpolate rather
than smooth. Because of its reliance on differentiation, the analysis method of Chapters 5
and 7 is especially sensitive to noise, although the intended development of feature-
preserving filtering may address this.

A more significant component of clinical validation will be demonstrating that the
methods provably assist in one or more of the many clinical applications of DT-MRI
(outlined in Section 1.1). It is common to find a gap between the intent of an advanced
visualization method, and its actual acceptance by the scientists or doctors for whom the
method is intended. The reason for this gap is likely due to the basic difference between
the work involved in developing the algorithmic and mathematical underpinnings for a
technique, versus performing statistical tests in a specific scientific or clinical context to
evaluate the application of the technique. Visualization research in computer science has
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generally focused more on the former than the latter, and this dissertation is no exception.
In this light, our reliance on a single dataset is a short-coming, but not a major weakness.

Each of the methods presented in this dissertation could be tested by collaborations
with medical professionals to define a particular diagnostic task, testing the new methods
against established ones through user-studies, and calculating the statistics to quantify
the difference between methods. This represents a major undertaking because the task
will likely be different for the different methods: for glyphs the task may be detecting
certain artifacts in the tensor dataset, for tensorlines it may be characterizing a tumor’s
influence on surrounding white matter, and for volume rendering it may be detecting
larger-scale anatomical differences between a disease and a normal population. It is our
hope that at least some of the methods presented here can be carried through to this
final stage of validation and scientific acceptance.



APPENDIX A

INDEX NOTATION

Index notation, or Einstein summation notation, enables complicated expressions,
often involving matrix multiplications, to be represented concisely, so that essential trans-
formations and simplifications are easier to apply. This appendix provides a self-contained
introduction to index notation; Barr [11] provides additional information.

The basic rule is that the repetition of an index within a term implies summation of
the term over the index’s range of values. As an example of index notation, here are two
definitions of the matrix multiplication C = AB, in both explicit summation and index
notation:

Cij = (AB)ij =
∑

k

AikBkj

(AB)ij = AikBkj .

Two types of indices appear in index notation. Indices repeated within a term (such
k above) are dummy indices, since they could be replaced by any other (un-used) letter
without changing the value of sum. Non-repeated indices (such as i and j above) are free
indices, and these have some significance outside the scope of an individual term. The
(AB)ij on the left-hand side indicates which row and which column of the product matrix
is being defined, so i and j have significance on the right-hand side, whereas k could just
as well be replaced by l or m. Typically, dummy indices appear exactly twice in each
term. In the context of matrix multiplication, for example, the dummy index is always
the second index of the first matrix (running over the columns), and the first index of the
second matrix (running over the rows): AikBkj .

As seen in Section 2.1.2, a common use of index notation is to express a vector in
some basis. Assume an orthonormal basis B = {b1,b2,b3}, so that bi · bj = δij . The
coordinates of v in B are (v1, v2, v3), vi = v · bi, so we can write:

v = vibi .

As a first example of using index notation, we can prove that the dot-product of
two vectors is invariant with respect to basis. If the dot product has been defined
geometrically, in terms of the cosine of the angle between the vectors, then there is
nothing to prove, because the dot product is inherently coordinate-free. If the dot product
is defined, however, as the usual pair-wise product of coordinates:

v · u =
∑

i

viui .
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then showing the invariance is less trivial. Let P be the orthogonal matrix which repre-
sents a change of basis from unmarked coordinates vi to tilde coordinates ṽi. Without
index notation:

v · u =
∑

i

ṽiũi

=
∑

i

(
∑

j

Pijvj)(
∑

k

Pikuk)

=
∑

i

∑
j

∑
k

PijPikvjuk

=
∑

j

∑
k

∑
i

P t
jiPikvjuk

=
∑

j

∑
k

(P tP )jkvjuk

=
∑

j

∑
k

δjkvjuk

=
∑

j

vjuj .

With index notation:

v · u = ṽiũi

= PijvjPikuk

= PijPikvjuk

= P t
jiPikvjuk

= (P tP )jkvjuk

= δjkvjuk

= vjuj .

As another example of the utility of index notation, two proofs of
∑3

i=1 bi ⊗ bi = I
are given. Both proofs work by showing that (

∑3
i=1 bi⊗bi)v = v for any vector v. First,

the proof without index notation:∑
i

(bi ⊗ bi)v =
∑

i

bi(bi · v)

=
∑

i

bi(bi · (
∑

j

vjbj))

=
∑

i

bi(
∑

j

vjbi · bj)

=
∑

i

bi(
∑

j

vjδij)

=
∑

i

bivi

= v .
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Then with index notation:

(bi ⊗ bi)v = bi(bi · v)
= bi(bi · vjbj)
= bi(vjδij)
= bivi

= v .

Note that in both of the proofs above, δij plays the role of filtering out a single term from
a summation over the j index, effectively replacing occurances of j with i elsewhere in
the expression.

Showing that the trace of a matrix is invariant under change-of-basis is another
example of the utility of index notation. First, note that the trace of matrix D can
be notated simply as Dii. The repeated index represents summation of the matrix entries
for which the row and column are equal (the diagonal). The trace could also be notated
Dkk: the letter used in the dummy index doesn’t matter. Below, the matrix P represents
the change of basis, which could actually be any invertible matrix (not just an orthogonal
one representing a rotation):

tr(PDP−1) = (PDP−1)ii

= PijDjkP
−1

ki

= P−1
kiPijDjk

= (P−1P )kjDjk

= δkjDjk

= Dkk

= tr(D) .

The ability to rearrange factors (such as moving P−1 to the beginning of the term) without
worrying about distinctions between row and column vectors is another advantage of index
notation. The individual factors of an index notation term are in fact scalars, and unlike
matrix multiplication, scalar multiplication is commutative, which enables the reordering
used above. The proofs above were careful to only show one small transformation or
rearrangement at a time, but familiarity with index notation eventually permits one to
comfortably write these proofs with much fewer steps.



APPENDIX B

ORTHOGONALITY OF µ1, µ2, α3

This section provides a self-contained proof of the fact that that mean µ1, variance
µ2, and skewness α3, viewed as functions from R

n to R, are mutually orthogonal in the
sense that:

∇µ2 · ∇µ1 = 0 (B.1)
∇α3 · ∇µ1 = 0 (B.2)
∇α3 · ∇µ2 = 0 . (B.3)

In the following, �x = (x1, x2, ..., xn) ∈ R
n, �1 = (1, 1, ..., 1), and 〈x〉 = 1

n

∑
xi.

Starting with expressions for µ1, µ2, and µ3,

µ1 = 〈x〉
µ2 = 〈(x − 〈x〉)2〉

= 〈x2 − 2x〈x〉 + 〈x〉2〉
= 〈x2〉 − 2〈x〉〈x〉 + 〈x〉2
= 〈x2〉 − 〈x〉2

µ3 = 〈(x − 〈x〉)3〉
= 〈x3 − 3x2〈x〉 + 3x〈x〉2 − 〈x〉3〉
= 〈x3〉 − 3〈x2〉〈x〉 + 3〈x〉〈x〉2 − 〈x〉3
= 〈x3〉 − 3〈x2〉〈x〉 + 2〈x〉3 ,

we form expressions for their gradients:

∇µ1 =
�1
n

∇µ2 =
2
n

(�x − 〈x〉�1)

∇µ3 =
3
n

�x2 − 3
(

2
n

�x〈x〉 +
1
n
〈x2〉�1

)
+

6
n
〈x〉2�1

=
3
n

(
�x2 − 2〈x〉�x + (2〈x〉2 − 〈x2〉)�1

)
.

From this we can show ∇µ1 · ∇µ2 = 0 (Equation B.1):

∇µ1 · ∇µ2 =
2
n2

(�x ·�1 − 〈x〉�1 ·�1)

=
2
n

(〈x〉 − 〈x〉)
= 0 .
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To show ∇µ1 ·∇α3 = 0 (Equation B.2) and ∇µ2 ·∇α3 = 0 (Equation B.3), we start by
expressing ∇α3 using the quotient rule of derivatives. Recall that skewness α3 = µ3/σ3

and σ3 =
√

µ2
3.

∇α3 =
σ3∇µ3 − µ3∇σ3

σ6

=
∇µ3

σ3
− 3

2
µ3

√
µ2∇µ2

σ6

=
∇µ3

σ3
− 3

2
µ3∇µ2√

µ2
5 .

With this and Equation B.1, to show ∇α3 · ∇µ1 = 0 (Equation B.2), it suffices to show:

∇µ3 · ∇µ1 =
3
n2

( �x2 ·�1 − 2〈x〉�x ·�1 + (2〈x〉2 − 〈x2〉)�1 ·�1)

=
3
n

(〈x2〉 − 2〈x〉〈x〉 + 2〈x〉2 − 〈x2〉)
= 0 .

Because ∇µ1 = �1/n, this implies ∇µ3 ·�1 = 0, and from Equation B.1 we know ∇µ2 ·�1 = 0.
It is also helpful to know:

∇µ2 · �x =
2
n

(�x − 〈x〉�1) · �x

=
2
n

(�x · �x − n〈x〉〈x〉)
= 2(〈x2〉 − 〈x〉2)
= 2µ2 ,

and:

∇µ3 · �x =
3
n

( �x2 − 2〈x〉�x + (2〈x〉2 − 〈x2〉)�1) · �x
= 3(〈x3〉 − 2〈x〉〈x2〉 + (2〈x〉2 − 〈x2〉)〈x〉)
= 3(〈x3〉 − 3〈x〉〈x2〉 + 2〈x〉3)
= 3µ3 .

From these pieces, Equation B.3 follows easily:

∇α3 · ∇µ2 =
2
n

(
∇µ3

σ3
− 3

2
µ3∇µ2√

µ2
5

)
· (�x − 〈x〉�1)

=
2
n

(
∇µ3

σ3
− 3

2
µ3∇µ2√

µ2
5

)
· �x

=
2
n

(
3µ3

σ3
− 3µ3√

µ2
3

)
= 0 .
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Note that ∇µ3 and ∇µ2 are not perpendicular:

∇µ3 · ∇µ2 =
2
n
∇µ3 · (�x − 〈x〉�1)

=
6
n

µ3 .



APPENDIX C

RAY-TRACING SUPERQUADRICS

This appendix describes a previously unpublished detail pertinent to ray-tracing
superquadric tensor glyphs, based on the implicit surface representation.

Glyph-based visualization is most easily implemented in ray-tracing by the method of
“instancing” [170, 69]. Instead of computing the intersection of the ray and the glyph, we
compute the intersection of a transformed ray and the canonical base glyph geometry G0.
The superquadric glyph ray-tracing task is thereby reduced to computing ray intersections
with the surface represented by the qz function Equation 3.3 (axial symmetry around z
axis) and Equation 3.5 (axial symmetry around x axis). The discussion below considers
only the former.

The ray is parameterized by:

p(t) = p0 + td; t ∈ [tmin, tmax] .

As sampled along the ray, the superquadric function can be parameterized by:

q(t) = qz(p(t)) .

The ray-superquadric intersection is defined as the lowest t0 ∈ [tmin, tmax] such that
q(t0) = 0. Because the superquadric is analytically defined, we should be able to use the
Newton-Raphson iterative root-finding method to rapidly compute the intersection [155].
For this we need the gradient of qz:

∇qz(x, y, z) =
2
β

x
2
α
−1(x

2
α + y

2
α )

α
β
−1

y
2
α
−1(x

2
α + y

2
α )

α
β
−1

z
2
β
−1

 .

The derivative of q(t) can be computed using the definition of the directional deriva-
tive [124]:

q′(t) = p′(t) · ∇qz(p(t)) = d · ∇qz(p(t)) .

In ray-tracing it is often helpful to perform a number of checks to rule out the
possibility of an intersection, before doing the work to compute it. The first test, and a
standard part of instancing, is to test if the ray intersects the superquadric bounding box
[−1, 1]3. Next, because α ≤ 1 and β ≤ 1 (by Equation 3.6), the superquadric glyphs are
always convex, which allows three further sequential tests:

1. If q(tmin) < 0 and q(tmax) < 0, then the ray segment endpoints are within the glyph,
and there is no intersection.
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2. If q(tmin)q(tmax) > 0 and q′(tmin)q′(tmax) > 0, then the segment starts and stops
on the same side of the glyphs surface (inside or outside), and the derivative q′(t)
must have constant sign within the segment, so there is no intersection.

3. If q′(tmin)q′(tmax) ≤ 0, then q′(tmin) ≤ 0 and q′(tmax) ≥ 0 (by convexity), and the
Golden Section Search [155] is used to find the tm ∈ [tmin, tmax] such that q(tm) is
minimized. If q(tm) > 0, then there is no intersection. Otherwise, assign tmax ← tm.

At this point, we know there is an intersection within [tmin, tmax], and one iteration of
bisection is used to generate an initial guess.

α = 1.0 α = 0.3 α = 0.1 α = 0.05

t

q(t)

1

−1

t

q(t)

1

−1

t

q(t)

1

−1

t

q(t)

1

−1

t

log(1+q(t))
1

−1

t

log(1+q(t))

3

−3

t

log(1+q(t))

10

−10

t

log(1+q(t))

20

−20

α = 1.0 α = 0.3 α = 0.1 α = 0.05

Figure C.1. As α decreases, due to higher anisotropy or a higher setting of γ (Equa-
tion 3.6), root-finding by Newton-Raphson becomes more challenging for the function
q(t), but not so for log(1 + q(t)).

Using Newton-Raphson to find the root is hampered by the fact that q(t) often exhibits
precisely the kind of behavior which causes Newton-Raphson to diverge: steep slopes
next to flat regions. Figure C.1 demonstrates how this problem arises in glyphs for
anisotropic tensors, especially given a high γ setting. Our solution is to perform root-
finding on log(1 + q(t)) rather than q(t). The bottom row of graphs in Figure C.1 shows
that the shape of log(1 + q(t)) is much more conducive to iterative root-finding. We
evaluate log(1+q(t)) numerically, but use the analytical gradient of log(1+qz(x)) to find
d log(1 + q(t))/dt:
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∇ log(1 + qz(x, y, z)) =


2x

2
α−1

b(x2/α+y2/α+z2/β(x2/α+y2/α)
1−α

β )

2y
2
α−1

b(x2/α+y2/α+z2/β(x2/α+y2/α)
1−α

β ))
2

bz(1+z−2/β(x2/α+y2/α)α/β)


d

dt
log(1 + q(t)) = d · ∇ log(1 + qz(x, y, z)) .

Although the expressions appear complicated, most of the sub-expressions are repeated,
which permits faster evaluation. With this method, three to five iterations of Newton-
Raphson are sufficient to find the intersection within acceptable tolerances. This ray-
tracing technique is how Figures 3.9 and 3.10 were produced.



APPENDIX D

COMPUTING INVARIANT GRADIENTS

This appendix provides a brief explanation of how the symbolic form of the invariant
gradients are derived. The procedure used in the derivations below is presented in [86].

Assuming D is symmetric, the gradients of the Ji are:

∇∇∇J1(D) = I
∇∇∇J2(D) = tr(D)I − D
∇∇∇J3(D) = det(D)D−1

∇∇∇J4(D) = 2D .

The basic tool for deriving the relations above is the first-order Taylor expansion of
invariant J around tensor D:

J(D + ε) = J(D) + ε : ∇∇∇J(D) + O(ε2) .

The strategy is to symbolically expand J(D + ε), subtract out J(D) and any O(ε2) or
O(ε3) terms, and then manipulate what remains until it is of the form ε : G. Then,
because ε is arbitrary, ∇∇∇J = G.

Showing ∇∇∇J1(D) = I is easy:

J1(D + ε) = tr(D + ε) = tr(D) + tr(ε) = J1(D) + tr(ε)
⇒ ε : ∇∇∇J1 = tr(ε) = ε : I

⇒ ∇∇∇J1 = I .

To show ∇∇∇J2(D) = tr(D)I − D:

J2(D + ε) = (tr(D + ε)2 − tr((D + ε)2))/2
= (tr(D)2 + 2 tr(D) tr(ε) + tr(ε)2 − tr(D2) − 2 tr(Dε) − tr(ε2))/2
= J2(D) + tr(D) tr(ε) − tr(Dε) + O(ε2)

⇒ ε : ∇∇∇J2 = tr(D) tr(ε) − tr(Dε)
= tr(D)(ε : I) − Dt : ε

= ε : (tr(D)I) − ε : Dt

⇒ ∇∇∇J2 = tr(D)I − Dt .

If D is symmetric, then ∇∇∇J2 = tr(D)I − D.
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To show ∇∇∇J4(D) = 2D:

J4(D + ε) = ‖D + ε‖2

=
(√

(D + ε) : (D + ε)
)2

= tr((D + ε)t(D + ε))
= tr(DtD + Dtε + εtD + εtε)
= J4(D) + tr(Dtε) + tr(εtD) + O(ε2)

⇒ ε : ∇∇∇J4 = D : ε + ε : D
⇒ ∇∇∇J4 = 2D .

Showing ∇∇∇J3(D) = det(D)D−1 is a bit more involved:

J3(D + ε) = det(D + ε) = det(D + Iε)
= det(D + DD−1ε) = det(D(I + D−1ε))
= det(D) det(I + D−1ε)
= −det(D) det(−I − D−1ε) .

This may seem somewhat contrived, but now det(−I − D−1ε) is the characteristic poly-
nomial of D−1ε, evaluated at λ = −1:

det(λI − D−1ε) = λ3 − J1(D−1ε)λ2 + J2(D−1ε)λ − J3(D−1ε)
= λ3 − tr(D−1ε)λ2 + (tr(D−1ε)2 − tr(D−2ε2))λ/2 − det(D−1ε)

⇒ det(−I − D−1ε) = −1 − tr(D−1ε) + O(ε2) + O(ε3) .

This used the fact that the determinant is cubic in its argument. The higher order terms
in ε can now be dropped:

J3(D + ε) = −det(D) det(−I − D−1ε) = −det(D)(−1 − tr(D−1ε)
= det(D) + det(D) tr(D−1ε)
= J3(D) + det(D)((D−1)t : ε)

⇒ ε : ∇∇∇J3 = ε : (det(D)(D−1)t)
⇒ ∇∇∇J3 = det(D)(D−1)t .

Then, if D is symmetric, so is D−1, in which case ∇∇∇J3 = det(D)D−1.
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and C Weiller. Diffusion tensor MRI of early upper motor neuron involvement in
amyotrophic lateral sclerosis. Brain, 127:340–350, 2004.

[162] A Sanderson, M Kirby, and CR Johnson. Display of vector fields using a reaction
diffusion model. In Proceedings of IEEE Visualization 2004, page (to appear),
October 2004.

[163] HH Schild. MRI Made Easy. Berlex Laboratories, Wayne, New Jersey, 1994.

[164] W Schroeder, K Martin, and B Lorensen. The Visualization Toolkit: An Object
Oriented Approach to Graphics. Kitware, Inc., Clifton Park, New York, 2003.

[165] DF Scollan, A Holmes, R Winslow, and J Forder. Histological validation of my-
ocardial microstructure obtained from diffusion tensor magnetic resonance imaging.
American Journal of Physiology, 275:2308–2318, 1998.

[166] Y Seo, H Shinar, Y Morita, and G Navon. Anisotropic and restricted diffusion of
water in the sciatic nerve: A (2)H double-quantum-filtered NMR study. Magnetic
Resonance in Medicine, 42:461–466, 1999.

[167] CD Shaw, DS Ebert, JM Kukla, A Zwa, I Soboroff, and DA Roberts. Data
visualization using automatic, perceptually-motivated shapes. In Proceedings of
Visual Data Exploration and Analysis. SPIE, 1998.

[168] CD Shaw, JA Hall, C Blahut, DS Ebert, and DA Roberts. Using shape to visualize
multivariate data. In Proceedings of the 1999 Workshop on New Paradigms in
Information Visualization and Manipulation, pages 17–20. ACM Press, 1999.

[169] H-W Shen, C Johnson, and K-L Ma. Visualizing vector fields using line integral
convolution and dye advection. In Proceedings of IEEE 1996 Symposium on Volume
Visualization, pages 63–70, San Francisco, California, 1996.

[170] P Shirley and R Morley. Realistic Ray Tracing. AK Peters, Wellesley, Mas-
sachusetts, 2003.

[171] A Sigfridsson, T Ebbers, Heiberg, and L Wigström. Tensor field visualization using
adaptive filtering of noise fields combined with glyph rendering. In Proceedings of
IEEE Visualization 2002, Boston, Massachusetts, 2002.

[172] S Skare, T-Q Li, B Nordell, and M Ingvar. Noise considerations in the determination
of diffusion tensor anisotropy. Magnetic Resonance Imaging, 18:659–669, 2000.

[173] CH Sotak. The role of diffusion tensor imagging in the evaluation of ischemic brain
injury - a review. NMR in Biomedicine, 15:561–569, 2002.

[174] D Stalling and H-C Hege. Fast and resolution independent line integralconvolution.



145

In Proceedings of ACM SIGGRAPH 95, pages 249–256. Addison Wesley, 1995.
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[187] AM Uluğ and PCM van Zijl. Orientation-independent diffusion imaging without
tensor diagonalization: Anisotropy definitions based on physical attributes of the
diffusion ellipsoid. Journal of Magnetic Resonance Imaging, 9:804–813, 1999.

[188] JJ van Wijk. Spot noise: Texture synthesis for data visualization. In Proceedings
of ACM SIGGRAPH 1991, volume 25, pages 309–318. Addison Wesley, 1991.



146

[189] VJ Wedeen, TG Reese, VJ Napadow, and RJ Gilbert. Demonstration of primary
and secondary muscle fiber architecture of the bovine tongue by diffusion tensor
magnetic resonance imaging. Biophysical Journal, 80:1024–1028, Feb 2001.

[190] D Weinstein, G Kindlmann, and E Lundberg. Tensorlines: Advection-diffusion
based propagation through diffusion tensor fields. In Proceedings of IEEE Visual-
ization ’99, pages 249–253, 1999.

[191] D.M. Weinstein. Stream bundles - cohesive advection through flow fields. Technical
Report UUCS-99-005, University of Utah, Department of Computer Science, Salt
Lake City, UT, 1999.

[192] EW Weisstein. CRC Concise Encyclopedia of Mathematics, pages 362–365, 1652.
CRC Press, Florida, 1999.

[193] A Wenger, D Keefe, S Zhang, and DH Laidlaw. Interactive volume rendering
of thin thread structures within multivalued scientific datasets. Transactions on
Visualization and Computer Graphics, page (to appear), 2004.

[194] C-F Westin, SE Maier, B Khidhir, P Everett, FA Jolesz, and R Kikinis. Image
processing for diffusion tensor magnetic resonance imaging. In Proceedings of the
2nd Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pages 441–452, September 1999.

[195] C-F Westin, SE Maier, H Mamata, A Nabavi, FA Jolesz, and R Kikinis. Processing
and visualization for diffusion tensor MRI. Medical Image Analysis, 6:93–108, 2003.

[196] C-F Westin, S Peled, H Gubjartsson, R Kikinis, and FA Jolesz. Geometrical
diffusion measures for MRI from tensor basis analysis. In Proceedings of the 5th
Annual Meeting of ISMRM, 1997.

[197] L Westover. Footprint evaluation for volume rendering. In Proceedings of ACM
SIGGRAPH 90, pages 367–376. Addison Wesley, 1990.

[198] MR Wiegell, HBW Larsson, and VJ Wedeen. Fiber crossing in human brain
depicted with diffusion tensor MR imaging. Radiology, 217(3):897–903, Dec 2000.

[199] A Witkin and M Kass. Reaction-diffusion textures. In Proceedings of ACM
SIGGRAPH 1991, volume 25, pages 299–308, 1991.

[200] R Xue, PCM van Zijl, BJ Crain, M Solaiyappan, and S Mori. In vivo three-
dimensional reconstruction of rat brain axonal projections by diffusion tensor
imaging. Magnetic Resonance in Medicine, 42:1123–1127, 1999.

[201] S Zhang, ME Bastin, DH Laidlaw, S Sinha, PA Armitage, and TS Deisboeck.
Visualization and analysis of white matter structural asymmetry in diffusion tensor
MRI data. Magnetic Resonance in Medicine, 51:140–147, 2004.
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