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Abstract

This paper investigates the solution of a 3D atmospheric dispersion problem using a time-dependent adaptive gridding
technique. A cell-vertex "nite volume scheme based on tetrahedral elements is used to solve the atmospheric di!usion
equation. Preliminary studies of dispersion from a single source in stable, unstable and neutral boundary layers have
been carried out. The results show the e$ciency of using adaptive grids to represent accurately the structures of plumes in
the boundary layer and also the advantage of this method compared to "xed methods for mesh re"nement. Some
comments about the interpolation of input data such as wind "elds onto unstructured meshes are also made. ( 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The issue of mesh resolution in regional scale air pollu-
tion models is an important one since there are many
examples of the detrimental e!ects of using course
meshes on solution accuracy. Previous work has shown
(Talat, 1997; Tomlin et al., 1999; Hart et al., 1998) that
coarse horizontal resolution can have the e!ect of in-
creasing horizontal di!usion to values many times
greater than that described by models, resulting in the
smearing of pollutant pro"les and an underestimation of
maximum concentration levels. For reactive pollutants
the e!ects can be compounded by nonlinear chemical
reactions and inaccurate predictions of secondary species
budgets can occur. The e!ects of mesh resolution have
been well noted by the atmospheric modelling commun-
ity and attempts have been made to improve mesh res-
olution at the same time as trying to avoid excessive extra
computational work. The usual approach is to use nested
or telescopic grids where the mesh is re"ned in certain
regions of the horizontal domain which are considered of
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interest (Jacobs et al., 1995; Rajaona et al., 1998). This
may include for example regions of high emissions such
as urban areas, or close to regions where signi"cant
monitoring is taking place. Previous work has shown
however (Tomlin et al., 1997) that such telescopic grids
often cannot resolve plume structures occurring outside
of the nested regions and that adaptive re"nement in the
horizontal domain can provide higher accuracy without
entailing large extra computational costs.

In the vertical domain usually a stretched mesh is used,
placing more solution points close to the ground. As in
the horizontal domain, the resolution of the mesh in the
vertical direction a!ects the vertical mixing of pollutant
species. The use of adaptive meshes in the vertical do-
main has so far received little attention. This paper
describes the application of a fully adaptive 3D unstruc-
tured dispersion code to test problems describing the
dispersion of pollutants from a single source due to
typical boundary layer wind pro"les. The solution
method is a 3D "nite volume cell-vertex approach based
on a tetrahedral mesh. The test problems have been
designed to determine the importance of mesh structure
on both horizontal and vertical mixing for typical me-
teorological conditions. The paper therefore concentrates
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on simple scenarios and on the comparison between
di!erent mesh structures in order to highlight the solu-
tion accuracy of di!erent modelling approaches. In
particular, we compare a telescoping gridding method
to a fully adaptive one. Section 2 describes the method
of solution and Section 3 contains a description of
the mesh adaption strategy. The #ow integration scheme
is described in Section 4 and 5 explains the implicit}
explicit method used to solve the transport equation.
Section 6 contains the test examples and "nally, we
draw conclusions in Section 7 regarding the importance
of adaptive methods in solving 3D atmospheric #ow
problems.

2. Method of solution

The atmospheric di!usion equation in three space
dimensions is given by
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where c is a column vector representing the concentra-
tions with the dimension of c equal to the number of
species. The scalars u, v,w are wind velocities and
K
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, K
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, K

z
are turbulent di!usivity coe$cients in the x,

y and z directions with respect to a cartesian coordinate
system with the z-axis pointing upwards. The vector
S represent the source term which may also contain
reaction terms which are usually nonlinear, and depos-
ition terms. Our approach uses a fully 3D unstructured
mesh based on tetrahedral elements. A cell-vertex "nite
volume scheme has been chosen so that the number of
variables per partial di!erential equation is less than that
of a cell centred scheme. The solution method consists of
two major parts, a mesh adaption routine and a #ow
integration routine. The mesh adaption routine changes
the connectivity in the data structure of the mesh in
response to changes in the solutions. The #ow integration
routine advances the solution in time. These two major
parts are described in detail in the next sections. Each
component of the di!usion equations (1) is discretized
using the same method. Hence, for simplicity, instead of
treating the vector c, we choose one of its components,
c say, and describe its discretization.

3. Mesh adaption

The cell-vertex scheme approach is hierarchical in na-
ture (Speares and Berzins, 1997; Biswas and Strawn,

1994) and is applicable to meshes constructed from
tetrahedral-shaped elements. The basic mesh objects of
nodes, edges, faces and elements, which together form the
computational domain, map onto the data objects within
the adaption algorithm tree data structure. The data
objects contain all #ow and connectivity information
su$cient to adapt the mesh structure and #ow solution
by either local rexnement or derexnement procedures. The
mesh adaption strategy assumes that there exists a `good
qualitya initial unstructured mesh covering the computa-
tional domain. The re"nement process adds nodes to this
base level mesh by edge, face and element subdivision,
with each change to the mesh being tracked within the
code data structure by the construction of a data hier-
archy. The dere"nement is the inverse of re"nement,
where nodes, faces and elements are removed from the
mesh by working back through the local mesh re"nement
hierarchy.

The main adaption is driven by re"ning and dere"ning
element edges. Thus, if an edge is re"ned by the addition
of a node along its length, then all the elements which
share the (parent) edge under re"nement must be re"ned.
In the case of dere"nement all the elements which share
the node being removed must be dere"ned. Numerical
criteria derived from the #ow "eld will mark an edge to
either re"ne, dere"ne or remain unchanged. It is neces-
sary to make sure the edges targeted for re"nement and
dere"nement pass various conditions prior to their adap-
tion. These conditions e!ectively decouple the regions of
mesh re"nement from those of dere"nement, meaning
that for example, an element is not both dere"ned and
re"ned in the same adaption step.

For reasons of both tetrahedral quality control and
algorithm simplicity only two types of element subdivi-
sions are used (Speares and Berzins, 1997). The "rst type
of subdivision is called regular subdivision where a new
node bisects each edge of the parent element resulting in
eight new elements. The second type of dissection, green
subdivision, introduces an extra node into parent tet-
rahedron, which is subsequently connected to all
the parent vertices and any additional nodes which
bisect the parent edges. Green re"nement removes incon-
sistently connected or `hanginga nodes without the
introduction of additional edge re"nement. The green
elements may be of poorer quality in terms of aspect ratio
and so the green element may not be further re"ned.
Fig. 1 demonstrates regular and green re"nement for
a tetrahedron. The "ve possible re"nement possibilities
(if all the edges are re"ned then the parent element is
regularly re"ned) give rise to between 6 and 14 child
green elements.

The choice of adaption criteria is very important since
it can produce a large or small number of nodes depend-
ing on the condition used to #ag an edge for adaption.
Also, when there are a large number of species, the choice
of a given criteria might result in high resolution for some
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Fig. 1. (a) Regular re"nement based on the subdivision of tetrahedron by dissection of interior diagonal (1 : 8) and (b) `greena re"nement
by addition of an interior node (1 : 6).

Fig. 2. Dual mesh faces attached to an edge.

species but low resolution for the other species. Let 0
and i be the nodes for a given edge e(0, i). We calculate
tol g and tol c by
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where dist is the length of the edge e(0, i). We re"ne the
edge e(0, i) if tol g and tol c exceed some tolerances,
otherwise it is dere"ned. Also a maximum level of re"ne-
ment is speci"ed at the beginning so that if an edge is
targeted for re"nement but it is at the maximum level,
then it is kept unchanged.

Suppose we have two edges with tol g"100 and 200.
If we take the tolerance parameter, ¹

g
say, for tol g equal

to 150, then only the second edge is re"ned to maximum
level. On the other hand, if ¹

g
"50, then both edges are

re"ned to maximum level. We expect that the solution
error for the edge with tol g"200 is greater than the
error in the edge with tol g"100. It might be advantage-
ous to use two sets of ¹

g
"50 and 150. If tol g'150,

than we re"ne an edge to maximum level and if
50(tol g(150, then we re"ne an edge to the level just
lower than the maximum level. Thus the idea is to re"ne
to the maximum level in the steepest gradient regions but
to lower levels in the regions of less steep gradients.

4. Flow integration

The di!usion equation is discretized over special vol-
umes that form the dual mesh. The dual mesh is formed
by constructing non-overlapping volumes, referred to as
dual cells, around each node. The dual mesh for a tet-
rahedral grid is constructed by dividing each tetrahedron
into four hexahedra of equal volumes, by connecting
the mid-edge points, face-centroids and the centroid of
the tetrahedron. The control volume around a node 0 is
thus formed by a polyhedral hull which is the union of
all such hexahedra that share that node. The quadrilat-
eral faces that constitute the dual mesh may not all
be planer.

4.1. Flux evaluation using edge-based operation

The evaluation of #ux around a dual cell can be cast in
an edge-based operation. Let us discretize the divergence
term
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enclosing the node 0. This
divergence form is converted to #ux form using the
Gauss divergence theorem:
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where the summation is over all the dual mesh faces that
form the boundary of the control volume around the
node 0 and the areas S

x
, S

y
,S

z
are projections of the dual

quadrilateral face.
Consider edge i, formed by nodes 0 and N(i). The

quadrilateral faces of the dual mesh that are connected to
the edge at its mid-point P are shown in Fig. 2. The
number of such quadrilateral faces attached to an edge
depends on the number of neighbouring tetrahedra.
There are four tetrahedra sharing the edge i in Fig. 2. The
projected area, A

i
, associated with the edge i is calculated
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The projections are computed so that the area vector
points outward from the control volume surface asso-
ciated with a node. The boundary of the control volume
around the node 0 is formed by the union of all such
areas A

i
associated with each edge i that share the node 0.

The contribution of the edge i to the #uxes across the
faces of the control volume surrounding the node 0 is
given by
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Hence Eq. (2) is replaced by
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where the sum is over the edges that share the node 0.
The #uxes are thus calculated on an edge-wise basis and
conservation is enforced by producing a positive #ux
contribution to one node and an equal but opposite
contribution to the other node that forms the edge.

4.2. Adjustments of wind xeld

In an atmospheric pollution model, we often use ob-
served wind data which are not mass conservative. Even
mass conserving wind data might not be mass conserva-
tive in the numerical sense when interpolated onto an
unstructured grid. Thus, we want to adjust the wind data
in such a way that the observed data are minimally
changed while still satisfying the mass conservation prop-
erty numerically. If u, v, w are the wind velocities, then
they must satisfy

Lu
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In the observed wind "eld data, usually the horizontal
velocities u, v are given. A popular technique for obtain-
ing the vertical velocity is the direct-di!erencing method.
This procedure numerically calculates the vertical velo-
city taking w"0 at z"0 to initiate the calculation. This
method is simple to use in regular cartesian meshes, since
it produces one unknown in w per node. For unstruc-
tured meshes, the number of unknowns per node depends
on the number of nodes sharing it. Here we enforce mass
conservation using the variational calculus technique of
Mathur and Peters (1990). The technique attempts to
adjust the wind velocity in a manner such that the inter-
polated data are minimally changed in a least-squares

sense, and at the same time, the adjusted values satisfy
the mass conservation constraint.

Let u0, v0,w0 be the interpolated wind velocity compo-
nents and u, v,w be the corresponding adjusted values.
The di!erence between the interpolated and adjusted
"eld may be expressed in a least-squares sense as

a2
1
(u!u0)2#a2

2
(v!v0)2#a2

3
(w!w0)2, (6)

where a
1
, a

2
and a

3
are weighting functions (Mathur

and Peters, 1990). Let G denote the mass conservation
constraint (Eq. (5)) to be satis"ed, then the adjustment
functional may be expressed as
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where the constraint G is introduced through the Lag-
range multiplier j. The resulting Euler}Lagrange equa-
tions obtained by setting dI"0 can be expressed as
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where i"1, 2, 3 denote the x, y, z components, respec-
tively. Introducing Eq. (8) into Eq. (5) we get
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Eq. (9) is similar to the di!usion equation with di!usivi-
ties 1, 1 and a2

1
/a2

3
and hence its discretization is similar

to the di!usion scheme.
We have adjusted one-dimensional stable, neutral and

unstable boundary layer wind velocities which are a func-
tion of z. The wind velocity is mass conservative analyti-
cally. It remains mass conservative in the numerical sense
in the base mesh, since the unstructured base mesh is
regular, but is not mass conservative once the grid is
re"ned or dere"ned. A representative one-dimensional
neutral boundary layer velocity is shown in Fig. 3(b). The
velocity "eld has to be adjusted in the re"nement region,
but away from the re"nement region the velocity remains
almost unchanged. The base grid spacings in the vertical
direction increase with height. Thus, the grid quality near
the ground is worse due to the large aspect ratio of the
tetrahedra. The velocity corrections decrease with height
as the re"nement region moves upwards. Suppose, we
have a re"nement region at 150 m height. The maximum
corrections are 12, 14 and 0.06 cm s~1, respectively, for
the u, v and w components. For a re"nement region at
600 m height the corresponding components are 11, 11
and 0.03 cm s~1. Finally, the corresponding corrections
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Fig. 3. A representative variation of wind with height for (a) stable, (b) neutral and (c) unstable boundary layers.

decreases to 0.3, 0.2 and 0.0002 cm s~1 at 1.8 km height.
The neutral boundary layer velocity increases from 0 to
9 m s~1 as z increases from 0 to 3 km and so the velocity
corrections are small.

Here we have used an idealized wind pro"le. In reality,
the wind components are calculated directly from a me-
teorological model. A meteorological driver with nodes
located at the vertices of the adaptive grid would be
advantageous, but the time spent on solution may be
prohibitively large. Extra e!ort would be required to
discretize the equations for the meteorological model on
an unstructured grid. The dispersion model described
here would however work e$ciently with an o!-line
model, where the meteorological variables are calculated
on a regular interval of time (say 3 h) on a structured
grid. The calculated wind "elds would be interpolated
onto the adaptive grid and adjustments made using the
variational technique described in this section to ensure
mass conservation.

4.3. The advection scheme

Our aim is to discretize the term
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where A
i

is called the edge-normal associated with the
edge i and the sum is over all the edges sharing node
0 with control volume X

0
. Let (c)~

p
denote the value of

c at P interpolated from node 0 and (c)`
p

denote the value
at P interpolated from node i (refer to Fig. 2). Then an
upwind version of Eq. (10) is given by
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where U
0

and U
i
are the limiter functions at nodes 0 and

i, respectively. The limiter function at a node is chosen
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such that the reconstructed value is bounded by the
values at the node and its neighbours (Barth and
Jesperson, 1989). Speci"cally, let us consider node 0. Let
N

0
denote the set of neighbouring nodes to the node 0.

First, we compute the maximum and minimum of all
adjacent neighbours.
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Now, we calculate U
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by
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where the minimum is taken over all the edges that share
the node 0. The calculation of limiter functions and
gradients at the nodes is not on a node-by-node basis
which is CPU intensive. Instead, they are calculated in an
edge-based operation. The time step for the advection
scheme is chosen so that it satis"es the CFL condition
(Wierse, 1997). Again, let us consider the node 0. We
de"ne S1
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The time step at node 0 is *t
0

and is given by
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and in a similar way, the time step at every node is
calculated. The minimum of the time steps over all the
vertices constitutes the time step for the advection
scheme. Again this computation can be cast into an
edge-based operation.

4.4. Diwusion scheme

The di!usion term is discretized as
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are the turbulent di!usivity coe$cients.

Using Eq. (4), the above equation can be written as
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where A
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is the edge-normal associated with the edge
i and the sum is over all the edges sharing the node 0 with
control volume X
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. The "rst term in Eq. (13) can be
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with similar expressions for the other two terms.
Thus, we need to calculate the edge gradient term (+c)

p
for the edge e(0, i). For this, we again apply the Gauss
divergence theorem over a control volume. For edge
e(0, i), this control volume is the union of elements shar-
ing the edge e(0, i). Once we calculate (+c)

p
, its compo-

nents are substituted in Eq. (13) and the same is done for
all the edges that share the node 0. The discretized
version of Eq. (13) can be expressed as
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where the sum is over the nodes that share the node 0 and
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Thus, we need to store only the values of a
i

and these
values can be attached to the edge pointer. Importantly,
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the values of a
i
depend only on the mesh geometry and

turbulent di!usivity coe$cients. This is very useful and
results in the use of less CPU time since the values of
a
i

between two time steps remain the same as long as
there is no mesh adaption between these steps.

5. Solution of the atmospheric di4usion equation

Although in two space dimensional calculations we
have used sophisticated space}time error control tech-
niques (Berzins et al., 1998; Tomlin et al., 1997), the
computational cost and the need to evaluate spatial mesh
adaption has led us to focus here on less costly methods.
It is thus primarily for computational e$ciency that, in
common with many others, we have used an operator
splitting technique. In this approach, the chemistry is
decoupled from the transport. The nonlinear chemistry
part gives rise to sti! ordinary di!erential equations.
Here we consider solutions for the transport only, the
solutions for the chemistry will be discussed elsewhere.

If cn denotes the species concentration at time level n,
then the species concentration at the next time step is
given by

cn`1"cn#q g(c)#q f (c)#qS, (15)

where q is the time step and g(c) is the advection operator
and f(c) is the di!usion operator. In a fully explicit
scheme, f and g are evaluated using values at the time
level n. However, the time restriction for stability due to
vertical di!usion is severe since the grid spacings along
the vertical can be small. Hence we use an implicit-
explicit formulation for Eq. (15), where the advection is
evaluated explicitly and the di!usion is calculated impli-
citly. Again let us consider node i and let N(i) be the set
of nodes sharing the node i. The discretized form of
the advection}di!usion equation for c at the node i is
given by
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where i is varied over all the nodes and
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The time step q is chosen as the time step due to advec-
tion only. Its value mainly depends on the wind speed
and the vertical mesh spacings near the source. For the
base mesh (described in the next section) used in the test
examples, q is +35 s for the stable boundary layer but
decreases to +18 s for the unstable boundary layer.
Thus, the time step is smaller for higher wind speed and
vice versa. The system of equations given by Eq. (16) is
solved using the Gauss}Seidel iteration technique with

over-relaxation and the iteration is stopped when the
relative error is less than some prescribed tolerance. The
advantage of this method is its computational e$ciency.
The disadvantage is that we are introducing an extra
time integration and splitting error which is not easily
quanti"ed.

The error due to splitting can be reduced if the splitting
time step is small or the splitting is done at level of the
nonlinear equations (see Tomlin et al., 1997). The simula-
tion of reactive #ow problems using these techniques will
be discussed in greater detail elsewhere.

6. Test examples

The advection scheme has previously been tested by
advecting a pu! of NO around a horizontal circle with-
out any di!usion (Tomlin et al., 1999). The results
showed that the peak almost remains constant sugges-
ting that very little arti"cial di!usion has taken place for
re"ned meshes. Here we consider the solution of the
combined advection}di!usion problem with a source
term which relates to the long-range transport of a pass-
ive species from an elevated point source. The back-
ground concentration of NO is 7.5]1010 molecules
cm~3. The horizontal dimensions of the domain are 96
and 48 km along the x and y-axis, respectively. The
vertical height of the domain is 3 km. We consider
a point source at (6, 24, 0.24) km location with an NO
emission rate of 1.98]1024 molecules s~1. For simpli-
city, we consider constant wind direction along the x-
axis.

We consider three di!erent wind velocity and vertical
di!usion pro"les which are representative of stable, neu-
tral and unstable boundary layers. The corresponding
velocities and vertical di!usions are shown in Figs. 3
and 4 (Seinfeld, 1986). The horizontal di!usion coe$-
cients K

x
and K

y
are kept constant and equal to

50 m2 s~1. The initial tetrahedral mesh is generated by
dividing the whole region into cuboids and then sub-
dividing a cuboid into six tetrahedral elements. The
cuboids are 4 and 4 km along the x and y-axis, respec-
tively. The vertical height is divided into nine layers and
the layers are placed at 0, 0.206, 0.460, 0.767, 1.13, 1.54,
2.0, 2.45 and 3 km heights, respectively.

We compute the solutions on the adaptive grid and
also check the accuracy against a reference solution. The
reference solution is obtained on a "xed grid generated
from the base mesh by re"ning all the edges (to level 3)
which lie inside a box lying along the x-axis through the
source. We also compute the solution on a telescopic
grid with re"nement around the source and compare
the solution with the adaptive and reference solution. The
vertical turbulent di!usivity coe$cient is small for the
stable boundary layer. Thus the concentration does not
mix much above the source height. The height of the
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Fig. 4. A representative variation of vertical di!usion with height for (a) stable, (b) neutral and (c) unstable boundary layers.

reference box is 1/2 km and the width is 10 km for the
stable boundary layer. On the other hand, the pollutant
becomes well mixed above the source height for the
neutral and unstable boundary layers. Thus a box of
width 10 km and height 1 km is chosen for these condi-
tions. The total number of nodes in the reference grid is
114,705 for the stable layer and 142,247 for the neutral
and unstable boundary layers. The initial grid for the
adaptive solution is generated by re"ning a region
around the point source. The re"nement region lies hori-
zontally within 3 km of the point source and vertically
within 300 m of the source. The initial number of nodes is
6442 for all three boundary layers. The number of nodes
for the telescopic method remains 6442 throughout the
simulation period. On the other hand, the adaptive grid
is re"ned/dere"ned as the solution advances. The time
step q for the implicit}explicit scheme is small (usually
less than 1 min) due to small vertical spacings near the
ground level which e!ect the CFL condition. Instead of
carrying out the adaption after every time step (which
is CPU intensive), the adaption is carried out approxi-
mately every 20 min. This prevents large amount com-
putational e!ort being used to perhaps re"ne very few
tetrahedra each time step and does not signi"cantly a!ect
solution accuracy.

6.1. Grid adaption

Three sets of tolerance parameters are chosen for the
adaptive grid method for each boundary layer pro"le as
described below. Let TOL g be the maximum value of
tol g outside the source region. The re"nement criteria of

the edges are

(a) Re"ne edges to level 3 if tol c'9]1010 and
tol g'0.002]TOLg.

(b) Re"ne edges to level 2 if tol c'9]1010 and
tol g'0.00002]TOLg.

(c) Re"ne edges to level 1 if tol c'9]1010 and
tol g'0.000001]TOLg.

for the stable boundary layer.
The corresponding criteria for the neutral and unstable

boundary layers are

(a) Re"ne edges to level 3 if tol c'1011 and
tol g'0.01]TOLg.

(b) Re"ne edges to level 2 if tol c'1011 and
tol g'0.0005]TOLg.

(c) Re"ne edges to level 1 if tol c'1011 and
tol g'0.00005]TOLg.

The total number of nodes generated by the adaptive
grid method are 60,000, 51,000 and 52,000 for the stable,
neutral and unstable boundary layers, respectively. The
adaptive grid re"nement in the vertical plane downwind
along the plume centre-line is shown in Fig. 5. The
concentration is con"ned near the ground level due to
small vertical di!usion for the stable case. This produces
high spatial gradients within this region and grid re"ne-
ment is highest near the ground. Since the vertical di!u-
sion for the other two cases is larger compared to the
stable boundary layer, the grid re"nement extends to
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Fig. 5. Grid re"nement in the vertical plane through the source along the downwind direction for the (a) stable, (b) neutral and (c)
unstable boundary layers.

almost 1 km from the ground level. It is also interesting
to note that at large distances downwind from the source,
the adaptive technique places more mesh points at the
top of the boundary layer domain. This re#ects the steep
gradients found here due to a signi"cant drop in the
vertical di!usion coe$cient K

z
. This result may have

signi"cance for models attempting to represent boundary

layer transport and mixing since the usual approach to
vertical meshing is to place a greater number of mesh
points close to the ground and not the top of the bound-
ary layer. For the unstable boundary layer (see Fig. 5(c)),
the concentration becomes uniformly mixed below
the inversion layer but very little di!usion is taking place
above the inversion layer. The gradient is high near the
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Fig. 6. Grid re"nement in the vertical plane at three cross-wind directions for the (a) stable, (b) neutral and (c) unstable boundary layers.

inversion layer compared to the gradient near the
ground. Thus the edges near the inversion layer re"ne to
a higher level than the edges near ground level.

The adaptive grid re"nement at three di!erent loca-
tions in the cross-wind direction is shown in Fig. 6.
The concentration gradients remain high for the stable
case but low for the neutral and unstable cases far
downwind from the source. Thus the edges for the stable
boundary layer, far downwind the source, are re"ned to

higher level than for the neutral and unstable cases. The
gradients are high near the source for all the three cases
and the edges are re"ned to the maximum level for all of
them.

6.2. Downwind concentration proxles

The solutions downwind along the plume centre-line
in the ground level are shown in Fig. 7. The maximum
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Fig. 7. Comparison of solutions (molecules cm~3) along the
plume centre-line in the ground level for the (a) stable, (b) neutral
and (c) unstable boundary layers. The solid, dotted and dashed
lines correspond to solutions in the reference, telescopic and
adaptive grids, respectively.

relative errors with respect to reference solutions are 16,
20 and 20% approximately for the stable, neutral and
unstable boundary layers, respectively. The maximum
errors for the neutral and unstable cases occur far down-
wind of the source where the magnitude of the concentra-
tions are small. The solution on the telescopic grid is
accurate near the source region only, due to the re"ne-
ment in this region. Far downwind from the source, the
solution on the telescopic grid di!ers widely from the
reference solution.

The programs have been run serially on an Origin2000
computer. For the stable boundary layer the times for the
telescopic, adaptive and reference grids are approxim-
ately 45 min, 7 and 27 h, respectively. The corresponding
times are about 1, 10 and 46 h for the neutral boundary
layer. For the unstable boundary layer, these are approx-
imately 2, 26 and 66 h, respectively. Thus the adaptive
method is e$cient compared to the reference solution
and achieves greater accuracy than the telescopic method
in a reasonable time. Note that the computing time

increases with an increase in the extent of vertical
di!usion.

6.3. Cross-wind and vertical concentration proxles

We plot the concentrations along the cross-wind and
vertical directions at 34 km downwind from the source in
Fig. 8. The higher values of vertical di!usion, K

z
, enhan-

ces vertical mixing for the neutral and unstable cases.
Thus, the maximum in the vertical concentration pro"les
occur at the ground level for the neutral and unstable
cases. Since, K

z
is small for the stable boundary layer,

the mixing along the vertical is relatively small. Thus the
maximum in the vertical pro"le remains at the height of
the source. For unstable conditions with an inversion
layer above we would expect to see uniform concentra-
tion below the inversion layer with a very steep gradient
across it. This pro"le is shown by both the reference and
adaptive solutions (see Fig. 8(c)). The telescopic solution
however enhances mixing both in the horizontal and
vertical directions allowing a greater #ux of pollutants
through the inversion layer than determined by the verti-
cal di!usion pro"le alone.

7. Discussions and conclusions

In this paper we have presented a solution method for
the atmospheric di!usion equation based on an unstruc-
tured, 3D adaptive mesh. The test cases have demon-
strated that adaptive methods can give much improved
accuracy when compared to telescopic re"nement
methods particularly at large distances from the source.
Adaptive re"nement methods are capable of using less
mesh points than using "xed re"ned meshes since they
are able to place mesh points where the solution requires
them rather than in pre-de"ned locations where they may
not be necessary for solution accuracy. There is an extra
cost with the adaptive codes, that of periodically re"n-
ing/coarsening the mesh, but this cost is small if the mesh
is not adapted every time-step. The results shown here
demonstrate that adapting every 20 min provides solu-
tion pro"les which are very close to the fully re"ned
reference solution. The CPU times are very much lower
for the adaptive mesh.

Some care must be taken when using emission data
with the adaptive grid. Elevated sources (such as chim-
neys) are treated as point sources and cause no major
di$culties as they are easily distributed to the nearest
nodes. If emissions from ground level are distributed
uniformly then we calculate the #ux contribution from
the emissions by multiplying the ground level area of
a control volume by the emission rate. On the other
hand, if the emissions are nonuniform, the following
procedure is adopted. First, the ground level is divided
into areas with uniform emissions in each of them. The

S. Ghorai et al. / Atmospheric Environment 34 (2000) 2851}2863 2861



Fig. 8. Comparison of solutions (molecules cm~3) along the cross-wind direction in the ground level and along the vertical in the plane
through the source for the (a) stable, (b) neutral and (c) unstable boundary layers. The solid, dotted and dashed lines correspond to
solutions in the reference, telescopic and adaptive grids, respectively.

proportion of each of these areas which overlaps a given
control volume on the unstructured mesh is then deter-
mined. The #ux contribution can then be calculated in
a straightforward way.

The results here for 3D problems con"rm "ndings in
2D that telescopic methods which use a priori re"nement
provide arti"cial di!usion away from emission sources
which smears the plume pro"les. For regional scale dis-

persion modelling where meteorological conditions vary
with time, telescopic methods are not capable of follow-
ing plume boundaries. Further, the test cases used
here have demonstrated some important consequences of
vertical mesh resolution for boundary layer pollutant
dispersion.

It is usual in tropospheric dispersion models to stretch
the mesh in the vertical domain and place more solution
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points near to the ground. Close to ground level sources
this often makes sense since it gives a better resolution of
the initial stages of vertical mixing. It also corresponds to
meshes commonly used in meteorological codes and bet-
ter represents deposition to the ground. However, at
large distance from their sources pollutants can become
well mixed close to the ground and the important feature
is their escape from the boundary layer to higher levels of
the troposphere. For neutral-to-unstable conditions ver-
tical di!usion pro"les can vary dramatically with height,
with large gradients in pollution pro"les occurring across
the inversion layer. The results here demonstrate that
under such conditions solution accuracy requires ref ined
meshes not close to the ground but close to the inversion
height where steep gradients can occur. The use of course
meshes in this region could have a signi"cant e!ect on the
prediction of pollutants mixing out of the boundary layer
for these conditions and may be a source of error in
regional scale pollution dispersion models. In a realistic
boundary layer model vertical mixing pro"les will
change during the diurnal cycle making the a priori
choice of vertical mesh structure di$cult. Adaptive re-
"nement would seem to be the simplest method for
resolving such phenomena since the choice of mesh is
made naturally according to the solution structure result-
ing from di!erent stability conditions. The issue of using
unstructured meshes which do not match those of me-
teorological drivers can be solved since errors due to the
interpolation of wind "elds are small and are outweighed
by improvements in solution accuracy. Results for 3D
models seem therefore to con"rm those in 2D and the
ability to use adaptive vertical mesh structure would
seem to be important for the resolution of boundary
layer pollutants.
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