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also been demonstrated [19]. An alternative hypothesis is that there is
an accumulation of saliva in the mouth during the contraction, which
may increase the conductivity between the electrodes, causing a de-
crease in SEMG amplitude.

V. CONCLUSION

A new GG SEMG electrode array has been designed, and its perfor-
mance evaluated in ten healthy subjects. The compact acrylic appliance
clips in place over the mandibular teeth and incorporates two linear ar-
rays of embedded pin electrodes which make contact with the mucosa
above the two genioglossus muscles. Using this electrode it is possible
to estimate GG CV as well as GG SEMG amplitude and frequency
parameters in a range of conditions despite the difficulty posed by sev-
eral anatomical and environmental factors particular to the study of this
important muscle. The best GG SEMG signals for GG CV estimation
were recorded from the middle of the array, using electrodes 6, 9, and
12 mm posterior to the lingual gingival wall. The estimated CV was
independent of force level during short contractions at forces between
40%–100% MVC, but a significant decrease in estimated CV was ob-
served during fatiguing contraction at 50% MVC, accompanied by a
decrease in the median frequency of the power spectrum. Interestingly
there was also a decrease in the RMS amplitude of the GG SEMG,
which may suggest inhomogeneous behavior. These results highlight
the need for further investigation into the function of the GG using
SEMG, in both normal subjects and patients with OSAS, which may
exhibit altered GG function. The new appliance design now provides a
sensor for measuring GG muscle fiber CV, which offers the possibility
of assessing GG function with increased insight.
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Methods of Solving Reduced Lead Systems for Inverse
Electrocardiography

Alireza Ghodrati*, Dana H. Brooks, and Robert S. MacLeod

Abstract—In the context of inverse electrocardiography, we examine
the problem of using measurements from sets of electrocardiographic
leads that are smaller than the number of nodes in the associated geo-
metric models of the torso. We compared several methods to estimate
the solution from such reduced-lead measurements sets both with and
without knowledge of prior statistics of the measurements. We present here
simulation results that indicate that deleting rows of the forward matrix
corresponding to the unmeasured leads performs best in the absence of
prior statistics, and that Bayesian (or least-squares) estimation performs
best in the presence of prior statistics.

Index Terms—Inverse electrocardiography, lead selection, reduced lead-
sets.

I. INTRODUCTION

Choosing the number and placement of body-surface electrodes,
along with how best to apply data from a smaller number of electrodes
to a forward model built from a much larger number of computation
nodes, remain important questions for wider clinical application of
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inverse electrocardiography. Here, we report on an examination of
several approaches for using data collected at fewer than the full set of
computational nodes. In particular, we study three methods to address
the question of solving a reduced lead system.

A. Problem Formulation

We use the epicardial potential distribution as our source model, and
solve the forward problem using a typical Boundary Element Method
[1]. We formalize this relationship as

y = Ax+ n (1)

where y is an M� 1 vector of torso surface potentials at a particular
time instant,A is theM�N forward matrix, x is anN� 1 vector that
holds the heart surface potentials at a particular time instant, and n rep-
resents measurement noise. For simplicity, we find the inverse solution
separately at each time instant and take the torso to be homogenous.
Because of the attenuation and smoothing effects of the body, the for-
ward matrixA is ill-conditioned [2] and requires regularization. Here,
we use a standard Tikhonov approach [3]

xxx��� = (AT
A+���2RT

R)�1AT
y = A

yyy

���y (2)

where � is the regularization parameter, R is a regularization matrix,
and Ayyy

���
represents the N �M regularized “inverse operator” matrix

based onA at a particular value of �. In the sequel, we assume that the
identity matrix I is used for the regularizer R.

The problem we address is: assume we have only K measurements,
K < M . What is the best way to use those K measurements to esti-
mate x� in the context of (2)? We describe and evaluate three different
solutions to this problem.

B. Method I: Row Deletion

The most common approach in the literature has been to delete the
rows of the forward matrix corresponding to the unmeasured leads; it
minimizes the regularized residual only over the nodes for which mea-
surements are available, ignoring the rest. Thus the reduced forward
matrix has K rows. We can formalize the row removal process as pre-
multiplication of A by a K � M matrix T, where T is a selection
matrix with one “1” in each row in the column corresponding to the se-
lected row of A and all other elements zero, As = TA, and the mea-
sured data is then ys = Ty. The Tikhonov regularization mechanism
of (2) leads to

xxxs;��� = (AT
T
T
TA+���2I)�1AT

T
T
Ty = A

yyy

s;���ys (3)

where the definition of xs;� follows from that of As, �, and ys.

C. Method II: Column Deletion

In this approach, we first compute the N �M inverse matrix Ayyy

���,
then delete columns corresponding to the (M�K) unmeasured nodes,
leading to

xxxc;��� = (AT
A+���2I)�1AT

T
T
Ty = A

yyy

���T
T
ys: (4)

D. Method III: Estimation

Column deletion implicitly assumes that the potentials at the un-
measured nodes are all zero; a better estimate of those potentials than
zero might lead to a better solution. Hence, a third method is to es-
timate the data at the unmeasured nodes from those at the measured

nodes and then solve the full inverse problem. We investigated this ap-
proach using two estimation methods, Laplacian interpolation [4] and
Bayesian (least-squares) estimation [5].

1) Estimation by Laplacian Interpolation: Following Oostendorp
et al. [4], we find the potentials of the unmeasured nodes to minimize
the 2-norm of the surface Laplacian of the torso potentials over all M
nodes. This method has been verified by different groups for body sur-
face interpolation [6], [7]. It leaves the measured values unchanged,
adjusting only the values at the unmeasured nodes to make the result
“maximally smooth” in the 2-norm of the approximate Laplacian sense.
This resulting inverse solution is

xL = A
y

�yL (5)

where yL has both measured leads and Laplacian interpolated
potentials.

2) Bayesian Estimation: The Bayesian method1 uses the mean and
covariance of the full set of torso potentials y to estimate the unknown
potentials such that the mean square error between the estimated and
(unknown) true potentials at all nodes is minimized. This is a stan-
dard estimation technique [8] which has been used to estimate body
surface potentials from sparse measurements [5] and recently to esti-
mate activation times from a sparse set of venous catheter electrodes
[9]. The mean and full covariance matrix of the torso potentials are not
directly available; the usual approach is to derive them from a training
set of high resolution measurement [5], [6]. The inverse solution then
becomes

xB = A
y

�yB (6)

where yB contains the measured leads plus the Bayesian estimated
potentials.

3) Implementation: For the Bayesian method, we estimated
the mean vector and covariance matrix of the torso measure-
ments from a training set. The covariance matrix was estimated as
Cy = (1=P ) P

i=1
(yi � y)(yi � y)

T, where P is the total number
of time instants across all beats in the training set, yi represents
the ith torso potential sample in the set, and y = (1=P ) P

i=1
yi.

Since it would be difficult to obtain a training set of data for all M
geometric nodes, we assumed the training set was known only for
the 192-lead configuration (Fig. 1) typically employed at the Cardio-
vascular Research and Training Institute (CVRTI) and estimated Cy

based on those nodes. Using the Bayesian method, we estimated the
torso potentials at the unmeasured leads of this 192-lead set from the
measured leads. Then we used the row deletion method to obtain a
forward matrix corresponding to this 192-lead configuration for use
in the inverse solution. We used a similar procedure for the Laplacian
interpolation method, interpolating just to the same 192 lead locations.
This allowed us to compare Laplacian and Bayesian approaches under
the same conditions.

E. Experimental Methods

We used epicardial potentials measured at the CVRTI from a ca-
nine heart that had been placed in a tank built to simulate an adolescent
human torso. Measurements were taken at 490 sites on the heart surface
using a sock electrode [10]. Our full forward solution had M = 771,
so that A was 771� 490. We simulated torso measurements from
the measured heart data using the forward matrix and added white
Gaussian noise at an SNR of 30 dB before computing inverse solutions.
For the Bayesian method estimation of the mean vector and covariance

1We note that this is always the minimum mean square error linear estimate,
but only the Bayes estimate with appropriate Gaussianity assumptions.
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Fig. 1. Regularly distributed lead configurations used in the simulations.

Fig. 2. Relative error norm during QRS for regularly distributed lead sets using
row deletion for a left ventricle paced beat.

matrix of the 192-lead torso measurements was carried out using data
from 470 heartbeats from different animals with different pacing sites
[9]. Inverse solution results were obtained using the proposed methods
on data from five heartbeats not in the training set, paced on both the
right and left ventricles.

1) Comparison Metrics: We used both visual examination of
isopotential maps and a relative error norm defined as RE =
kx � x�k2=kxk2, where x is the true solution and x� is the regular-
ized inverse solution, to compare our results to the measured epicardial
data.

2) Lead Set Selection: Since the problem of selecting the best leads
is itself a large subject [11]), we used regularly distributed 24-, 48-, and
96-lead subsets of the 192 electrodes typically employed at the CVRTI.
We emphasize these lead sets are used to compare the performance
of the proposed methods and the leads are not placed at the optimum
locations in terms of the inverse solutions. We also used the theoretical
“full” lead set of 771 nodes from the forward-computed torso data.
Fig. 1 illustrates these different lead configurations.

3) Parameter Selection: The regularization parameter for the zero
order Tikhonov regularization was chosen to minimize the norm of the
error between the regularized solution and the true solution to avoid
complicating the results with additional errors due to regularization pa-
rameter selection.

II. UNIFIED STATISTICAL FRAMEWORK

We found it useful to compare the solutions presented above within
a unified statistical framework. We start by observing that the inverse

solution using a Bayesian method for a zero-mean Gaussian random
variable x is [8]

x = (AT
C
�1

n A+C�1x )�1AT
C
�1

n y (7)

where Cn and Cx are the measurement noise and solution covariance
matrices, respectively. In this framework, the Tikhonov solution is a
special case in which both measurement noise and solution are assumed
to be zero-mean and white with covariances �2nI and �2xI, respectively.
The regularization parameter then would be �2n=�

2

x. Starting from (7),
we can find equivalent statistical assumptions that lead to the inverse
solutions introduced by each of the three-lead reduction methods.

A. Row Deletion Method

Comparing (7) with (3), it is apparent that they are equivalent as
long as the solution has a zero-mean white Gaussian distribution with
covariance �2xI, while the measurement noise is zero-mean Gaussian
with inverse covariance matrix ��2n TTT. Matrix TTT is diagonal
with diagonal elements corresponding to the measured leads equal to
one and the rest equal to zero. We observe that in effect the noise vari-
ances at the unmeasured nodes are assumed to be infinite, i.e., they are
not trusted and contribute nothing to the solution.

B. Column Deletion Method

Comparing (7) with (4) in the statistical framework, reveals that mea-
surements noise and the solution are both assumed to have zero-mean
and white Gaussian distributions with inverse covariances ��2n I and
��2x I, as in the full Tikhonov solution, but the measurement vector
becomes TTTy, equivalent to assuming a zero value for all unmea-
sured nodes. In this case, the measurement noise covariance assumes
the same noise power for the measured and unmeasured nodes regard-
less of the possible large error in the unmeasured values which are set
to zero.

C. Estimation

Comparing (7) with either (6) or (5) reveals that the assumptions are
similar to that of the column deletion approach but likely with better
estimates for unmeasured nodes. Implicit in this result is an assumption
that the noise power for the measured nodes and unmeasured nodes are
the same, which seems rather inaccurate. In any case, the accuracy of
the solution would depend on the accuracy of the estimation or inter-
polation schemes. If knowledge of the additional variance due to the
estimation is available, this result suggests that it could indeed be in-
corporated into the estimation procedure.

III. RESULTS

We show results for one beat, paced on the left ventricle; results were
similar for the other beats tested. Fig. 2 shows inverse solution relative



342 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 2, FEBRUARY 2007

Fig. 3. Relative error norm during QRS for regularly distributed lead sets using
Laplacian and Bayesian interpolation for a left ventricle paced beat.

Fig. 4. Potential maps of original data and inverse solutions for reduced lead
sets for four time instants. Inverse solution were obtained by row deletion. Con-
tours show iso-potential lines. The left column shows an electrogram close to
the pacing site. The right column shows the color map of each row. The time
instant of each row is marked on the time signal and its timing given in millisec-
onds with respect to the pacing time.

error versus time during the QRS interval, using row deletion, for dif-
ferent numbers of leads. We note that the increase in error with a de-
creasing number of leads was not very large, especially for lead sets
with 96 or more leads. Fig. 3 shows similar results for Laplacian and
Bayesian estimations for 96 and 48 leads only, along with the results
using data from all 771 nodes. The Laplacian interpolation method was
more sensitive to decreased number of leads than either row deletion or
Bayesian estimation. Errors using Bayesian and row deletion methods
were comparable for the 96- and 48-lead sets. We omit results from
the column-deletion approach because they showed much larger errors
than the other methods, (e.g., the RE with 96 leads was never less than
0.85). Potential maps from 4 time instants for different lead configu-
rations are shown using row deletion in Fig. 4 and both Bayesian esti-
mation and Laplacian interpolation in Fig. 5. The same value-to-color
mapping were used on all maps and contours show iso-potential lines.
The left column shows an electrogram close to the pacing site; the time
instant of each row is marked on the corresponding electrogram. Times
shown are in milliseconds with respect to pacing. The plots were drawn
with the map3d software [12].

Fig. 5. Potential maps of inverse solutions for reduced lead sets for 4 time in-
stants. Inverse solution were obtained by the Laplacian interpolation and the
Bayesian estimation methods. Same format as previous figure.

Fig. 4 is typical for the row deletion method in its ability to preserve
most of the features from the full lead-set solution, such as the ellip-
tical shape of the wavefront and the location of activated areas of the
epicardium. Although early after activation (t = 20) the shape of the
reconstructed wavefront was more circular than elliptical with 96 and
fewer leads, at (t = 40) and later the elliptical shape was evident even
in the small lead sets. Fig. 5 shows that with Laplacian interpolation
the wavefront was circular even at (t = 40) with 96 leads, and the
potential map was highly smoothed (less dense contours); thus, local-
ization of the activated area was poor. In contrast, Bayesian estimation
preserved these features quite well even with the smallest lead set. This
supports other reports that the Bayesian method performed better than
the Laplacian method for interpolating torso potentials for small lead
sets [6].

IV. DISCUSSION

The relatively poor performance of column deletion, compared to
row deletion, is perhaps not surprising considering our statistical anal-
ysis, which shows that this method places equal confidence on assumed
zero values for the unmeasured nodes as on the measurements them-
selves, since the inverse problem is ill-posed and, thus, highly sensi-
tive to measurement errors. Laplacian interpolation to “restore” unmea-
sured values did not generally perform as well as simple row deletion;
important features of the solution were lost, especially for small lead
sets, despite the fact that the torso potential map is generally smooth.
This likely is due to a large interpolation error for small lead sets, com-
bined again with ill-posedness. Our statistical analysis suggests that
if the estimation variance of the interpolation error were taken into
consideration one might achieve a more reliable result. The Bayesian
method used a covariance matrix estimated from a training set which
did not include the test beats. The fact that results with this method
were the best of those tested, at least in terms of relative error, in partic-
ular for small lead sets, suggests that if reasonably accurate covariance
matrices can be obtained by study of an appropriate set of prior sub-
jects, this may be the method of choice. However, the isopotential maps
were quite similar between row deletion and the Bayesian method, so
it is not completely clear that the effort of obtaining the covariance
would be justified. We also note that in practice, torso shapes will vary
among subjects, a complexity not represented in our tank simulations.
Thus, the improvement predicted using the covariance matrix in our
simulations may be overly optimistic. In the absence of highly reliable
and specific prior assumptions, our simulations suggest that it may be
generally better to apply the row deletion approach, i.e., to remove the
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rows of the forward matrix corresponding to the unmeasured nodes and
solve the system with the new forward matrix.

Our results also indicate the presence of considerable redundant
information in torso surface measurements with regards to obtaining
good quality inverse solution. However, such an inference should be
considered in the context of the specifics of this experiment, i.e., using
zero order Tikhonov solutions and simulated torso measurements. The
redundant information found in our experiment may indeed turn out
to be valuable for reconstructions in a different context, when real
torso measurements are used and, thus, forward model error would
play a role. In our study, we effectively removed any influence from
the forward model error. We speculate that the Bayesian estimation
method might be more robust in the presence of such error than the
row deletion method because of its use of prior information.
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