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Abstract—We introduce two wavefront-based methods for the
inverse problem of electrocardiography, which we term wave-
front-based curve reconstruction (WBCR) and wavefront-based
potential reconstruction (WBPR). In the WBCR approach, the
epicardial activation wavefront is modeled as a curve evolving on
the heart surface, with the evolution governed by factors derived
phenomenologically from prior measured data. The body surface
potential/wavefront relationship is modeled via an intermediate
mapping of wavefront to epicardial potentials, again derived phe-
nomenologically. In the WBPR approach, we iteratively construct
an estimate of epicardial potentials from an estimated wavefront
curve according to a simplified model and use it as an initial
solution in a Tikhonov regularization scheme. Initial simulation
results using measured canine epicardial data show considerable
improvement in reconstructing activation wavefronts and epicar-
dial potentials with respect to standard Tikhonov solutions. In
particular the WBCR method accurately finds the anisotropic
propagation early after epicardial pacing, and the WBPR method
finds the wavefront (regions of sharp gradient of the potential)
both accurately and with minimal smoothing.

Index Terms—Electrocardiography, inverse electrocardio-
graphy, inverse problem, Kalman filter, regularization, state
evolution model.

1. INTRODUCTION

NVERSE electrocardiography is a noninvasive imaging

method to reconstruct the heart’s electrical activity from
remote surface measurements. Recent reports indicate great po-
tential for this imaging modality to be used in clinical practice
for cardiac electrophysiology and arrhythmias [1], [2]. Ap-
proaches to inverse electrocardiography have generally relied
on either an activation-based model or a surface potential-based
model (using epicardial, endocardial, or trans-membrane
potentials) [3]-[12]. Activation-based models reduce the un-
knowns to the arrival time of the wavefront at each point
on the epicardial and endocardial surfaces. Potential-based
models, in contrast, treat the value of the potential at each
point on the relevant surface, or in the myocardium at each
time instant, as a free variable. Thus, activation-based models
are low-order parameterizations which capture the single most
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important physiological feature of cardiac propagation, while
potential-based models are high-order parameterizations which
can accommodate a broad range of possible phenomena.

In particular, activation-based models typically make
isotropy/homogeneity assumptions and use a fixed shape of
the temporal waveforms [3], [4], [6], for several reasons. For
one, details of the specifics of anisotropic organization of the
myocardium of a given individual may be difficult to acquire.
Secondly, it is to date not completely clear how important
these factors are in inverse solution accuracy[13]. Perhaps most
significantly, at least historically, these assumptions allow a
more tractable source model and forward model. Thus, activa-
tion-based methods may not take advantage of all information
about cardiac sources which is available in the measurements,
nor of known prior information about anisotropic conduction
and the true three-dimensional (3-D) nature of wavefront
propagation. For instance, in [14] and [15], features such as
diminished height of the wavefront and decreased slope of the
intrinsic deflection in areas of infarction, and even electrogram
waveforms showing mixed characteristics in the infarct border
zone, were all approximately reconstructed using a poten-
tial-based approach. Moreover, as pointed out in [11] and [16],
potential-based reconstructions may be better able to address
settings such as postinfarction when the spatially constant
waveform assumption of activation-based methods may not
apply.

Despite their simplifying assumptions, activation-based
methods are ill-posed—solutions are overly sensitive to normal
levels of noise and model error and need regularization, and/or
a well-posed initial estimate [5], to obtain a meaningful inverse
solution. However, they are considerably better posed, and re-
quire less explicit regularization, than potential-based models,
due to the implicit regularizing effect of the fixed waveform
shape, and have been reported to be notably more robust with
respect to errors in the geometry or to measurement noise [17].
The less restrictive nature of potential-based models, with their
high-order parameterization, gives rise to a much more ill-posed
inverse problem which requires considerable smoothing (regu-
larization). Moreover these minimally restricted formulations
do not easily lend themselves to the inclusion of the physical
and geometric constraints implied by the central physiological
feature of cardiac propagation, namely wavefront behavior,
except via indirect and somewhat coarse models [7], [11].

It would, therefore, seem useful to pursue models that seek to
leverage the advantages and address the shortcomings of both
approaches. Such models should try to maintain the low dimen-
sionality implied by a focus on wavefront behavior, but should
relax the isotropy and homogeneity assumptions of activation
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models, and should also seek to permit inclusion of relevant
physiology and electrophysiology. We propose here two such
approaches as initial progress in this direction. We call these two
approaches wavefront-based curve reconstruction (WBCR) and
wavefront-based potential reconstruction (WBPR). We present
the results of simulations using these methods only for epicar-
dial potentials, but we discuss the possibility of using other
source models as well.

In the WBCR approach we formulate the inverse problem
in terms of the temporal evolution of the activation wavefront,
using a data-based predetermined function to predict the epi-
cardial potentials from the wavefront location. In particular, the
quantity that we reconstruct is a low-order parameterization of
the wavefront location. The wavefront evolves in the normal
direction over time according to a second function which in-
corporates a data-based predetermined velocity model. A state
evolution approach is used to drive the wavefront propagation
from the measurements. Initial results of this approach were
reported in [18]. In the WBPR approach, our focus shifts to
reconstruction of the potentials, but the solution of the asso-
ciated inverse problem exploits an explicit approximation of
wavefront behavior, based on a simplified potential model,
to determine a prior estimate used as a regularizing term.
The body surface measurements are used to update the prior
estimates via the solution of a structured inverse problem; the
update of the prior aims to minimize the regularized squared
error of the measurement residual. The time step is completed
with an a posteriori estimate of the wavefront, as determined
from the updated potential estimates. The WBPR approach
applies its predetermined potential model in a less strict way
than the WBCR approach applies its potential model, striking
a compromise between its prediction, or initial estimate, and
minimization of a residual.

In this initial report, we concentrate on paced beats initiated
by a stimulus on the epicardium. Due to the relative geometric
and physiological simplicity of the ensuing propagation, this is
the simplest case for this model. However we report also on a
test of the WBPR approach for a supraventricularly paced heart-
beat, and discuss the challenges and potential solutions for wider
applicability of each method.

II. METHOD I: WAVEFRONT-BASED CURVE RECONSTRUCTION
(WBCR)

This section explains our first approach, in which the problem
is formulated in terms of reconstruction of the activation wave-
front curve. Highlights of the WBCR approach include the
following.

1) The model is focused on the evolution of the wavefront on

the epicardial surface.

2) The predicted temporal evolution of each wavefront node,
at each time instant, is in the direction normal to the curve,
according to a predetermined velocity function.

3) As with activation models, the potentials on the heart sur-
face are fixed based on the wavefront location. The body
surface potentials are modeled by a standard potential-to-
potential forward solution.
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4) The parameters that determine the velocity function and
the fixed wavefront-to-potential function are chosen phe-
nomenologically by fitting to measured data.

5) The combination of a simple, predetermined potential
model with the potential-based forward model inevitably
leads to errors in the resulting wavefront-based forward
model. We use a dynamic observer (an extended Kalman
filter (EKF) [19]) in the inverse solution to address this
error. The EKF invokes the combined forward model
and the postulated dynamic model of the wavefront; the
wavefront defines the (unknown) state of the system, and
the instantaneous body surface measurements provide
spatio-temporal data.

A. State-Space Model

The basis of our proposed model is the idea that the wave-
front, conceived of as a curve on the epicardial surface, is suf-
ficient to determine the concurrent distributed potentials on the
body surface, at least to within a reasonable level of uncertainty.
In particular, we treat the wavefront as the state of the system.
Our goal is to derive a state space model for the time evolution
of the curve, and then to exploit a state-space method to dynam-
ically estimate the curve. The state is a continuous curve in an
infinite-dimensional function space, treated computationally via
a low-order parameterization of the curve.

The WBCR model equations are

Yn+1 = Ag(cni1) + Wntr

{ Cn41 = f(cn) + Un41 (l)

where subscript n represents the time instant, ¢ is the curve rep-
resenting the wavefront, y is an M x 1 vector holding torso po-
tentials, A is an M x N matrix representing the forward model,
f is the state evolution function, ¢ is a function that returns the
epicardial potentials from the activation wavefront curve, and
u and w are Gaussian white noise variables that represent the
temporal model error and forward problem error, respectively:
wy, ~ N(0,C,,) and u,, ~ N(0,Q,). The most crucial part of
building the model is finding appropriate functions f and g, as
we describe in the next section.

B. Model Elements

1) State Evolution Function: The function f in (1) models
the propagation of the activation wavefront in time as a function
of the parameterized wavefront curve. It returns a parametriza-
tion of an estimate of the wavefront curve at the next time in-
stant, and should reflect to the extent reasonable the behavior of
the 3-D myocardium.

To determine the function f, i.e., evolving the curve on the
heart surface, requires a model of the apparent velocity as vis-
ible on the epicardium in the normal direction, at each point
of the curve, at each time instant. Based on studies reported
below of a number of canine heartbeats provided by our col-
laborators at the Cardiovascular Research and Training Institute
(CVRTD), and in accordance with the observations reported in
[20], [21], we postulated the following rules for the wavefront
speed model: 1) The local fiber direction dominates other factors
early after activation in a manner proportional to the projection
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of that direction onto the normal direction to the curve. 2) The
normal propagation velocity increases with time, and eventually
becomes essentially isotropic. 3) The propagation velocity de-
pends on the location on the epicardium, e.g., with faster prop-
agation over the apex and the right ventricle, and lower speed
over the septum.

Based on these properties we modeled the speed as follows:

v(s,t) = y(s) (a(t) cos®(n) + b(t)) 2)

where v(s,t) is the wavefront speed at location s on the ac-
tivation wavefront at time ¢ after initiation, v(s) models spa-
tial factors, 7 is the angle between the normal direction to the
wavefront and the local fiber direction at s (which we assume
is known—Ilater we discuss how we obtain it in the experiments
reported here), and a and b are coefficients of the fiber direction
effect. Hence, the speeds at time ¢ along (and across) the fibers
are proportional to a(t)+b(t) (and b(t)), respectively. The func-
tion f, then, in (1), evolves the wavefront curve c at each time
instant on the heart surface by moving all points on curve in the
normal direction according to the speed function v(s, t) evalu-
ated for s € c.

2) Potential Model: The potential function g determines the
potential value at each point on the heart using the wavefront
curve information. This function is based on dividing the epi-
cardial surface into three regions: activated, inactive and a tran-
sition region near the wavefront curve. The potential model also
depends on the increasing trend in the time-varying reference
(using the Wilson Central Terminal or an equivalent), as docu-
mented in [22]. The potential of the activated and inactive re-
gions are assumed to be a (known) negative constant and zero,
plus the time-varying reference potential, respectively. To de-
termine the relation between potentials and wavefront curve
(and, thus, the function g), we assume that the potential at each
point s on the heart surface is a one-dimensional function I'
of the distance d(s) of the point from the wavefront curve c,
d(s) = min.||s — c||2

1% 1
Is)=a— |1 - ———e gin(w/1 — €2d +
1%
- 5 + erof;\,

s is in the activated region
s is in the inactive region

a(s) = { | 3)
This parametrization of the potential I' is based on the form
of the step response of a second-order linear system, with d(s)
substituting for the time variable: Here, w > 0 and £ € (0,1)
control the slope and overshoot (undershoot) of the potential
function, ¢ = arctan(y/1 — &2/¢), V is the wavefront height,
and V¢, represents the reference potential at time instant .
Fig. 1 contains plots of I'as a function of the distance d for
points outside the wavefront (i.e., « = 1), with V' = 20 mV
and for different values of w and £, when V¢, is zero. Ahead
of the wavefront curve, the potential saturates to zero, while for
points inside the curve there is a symmetric trend to saturation
at —V. The selection of the values of w and ¢ are significant
in the transition region, and the postulated parametrization of "
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Fig. 1. Function I" versus distance d for different values of ¢ and w.

provides flexibility to determine the slopes and overshoot or un-
dershoot at different locations of the wavefront curve. We note
that the over/under shoot capability is included to allow us to
model important, if secondary, anisotropic phenomena such as
the positive maxima which precede the arrival of the wavefront
and the negative minima which follow it, as described in [21].

As we describe in detail below, our studies of canine epicar-
dial data showed a weak correlation between the parameters of
I" and both fiber directions and time. By fitting the parameters
w and ¢ to these data, we predefined I' as a function of dis-
tance, fiber directions and time. We note that we could achieve
increased flexibility if we were to include selected parameters
of I' in the state variables and estimated them using the body
surface measurements.

At each time instant, the function ¢ in (1) returns a vector
holding the potentials at all the points s in the geometrical model
of the heart surface. The values returned by g are found by first
finding d(s) for each point s, as described later, and then setting
the potential at s by evaluating T'(d(s)).

C. Filtering the Residual

The estimate of the state-space model at each time instant in
the EKF algorithm is a combination of a prediction term based
on the estimate at the previous time instant, and a correction
term that depends on the current measurements via minimiza-
tion of the residual norm ||y,, — Ag(cy,)||. Because our model
makes the simplifying assumptions of constant potential in the
activated and inactive regions and a simple profile in the transi-
tion region, a systematic error is expected in the predicted body
surface measurements Ag(c,), even if the wavefront curve ¢
were to be located at the frue location [23]. Thus, minimizing the
residual may fit this error in the potential model rather than the
error in the wavefront location. Examination of empirical data
revealed that the error on the body surface potentials caused by
this epicardial potential surface model error generally had low
spatial frequency content; indeed, we found that this model error
was well matched to the low-order left singular vectors of the
forward matrix A [23]. To attenuate the effect of this error, then,
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we simply removed the projection of the residual onto the first k&
left singular vectors of A before using the residual in the EKF.
Formally, if the singular value decomposition of A is written
A =UXVT, then we formed the matrix U, from columns &+ 1
to N of U, and the filtered residual was

U (yn — Ag(cn)) - )
The order of the filter, k, is an important factor which was de-
termined empirically from the simulations described later.

D. Implementation

To find the parameters of our model we used 12 canine heart-
beats, 6 paced on the left ventricle and 6 on the right ventricle,
provided from previously acquired experimental data at CVRTI
(details in Section IV). Pacing locations were in different re-
gions (middle, apical, basal) of the epicardium. Since we did
not have fiber information for these animals, and to ensure that
our model was not overly dependent on accurate determination
of fiber directions, the Auckland heart epicardial surface fiber
directions [24] were used, after suitable geometry matching, to
approximate fiber directions on the surface of our experimental
heart. This geometry matching consisted of a rigid body fit to a
single generic representation of all the hearts used in the CVRTI
experiments. After matching we verified that it was reasonably
accurate by visually comparing the matched directions to the
spread of activation induced by epicardial pacing on a large
number of experimental beats from many animals, and found
good agreement.

The reference drift was removed from the experimental data
by using the electrogram of the first and last activated nodes,
based on the assumption that the true (constant-reference) po-
tential of the first-activated node should be negative and con-
stant after activation, and that of the last-activated node should
be zero (and constant) until activation [25]. Thus, the time vari-
ation of the potential of the last-activated lead was used to deter-
mine the reference drift during the first half of the QRS, and the
difference between the measured value at the first-activated lead
and the negative activation value of the reference-corrected po-
tentials in the activated area was used in the second half of QRS.
We note that this same approach was used in [26] for propaga-
tion simulations. A different but essentially equivalent approach
was used in [25] with experimental data.

We defined the activation wavefront as those points on the
heart surface whose potentials were at 0.5 of the (constant, ref-
erence-removed) negative value of the activated region (i.e., the
midpoints of the wavefront wall), based on a linear interpola-
tion over the surface. (Note that here we used a spatial rather
than temporal definition of activation, as suggested in [27].)
The resulting curve is an estimate of the activation isochrone
at each time instant. Evolving wavefronts were computed for
all 12 beats. The local normal direction and velocity were then
estimated at each node. The results of this study are discussed
in Section IV.

To implement the state space model, the wavefront must be
represented as a continuous curve evolving on the heart surface.
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To force the wavefront curve to stay on the irregular triangu-
lated geometry used to represent the heart, points on the curve
were expressed in a spherical coordinate system with parame-
ters § and ¢. For any given 6 and ¢, the radius » was obtained by
linear interpolation of the heart surface, i.e., linear interpolation
of the value 7(6, ¢), using the known value of r at the heart sur-
face nodes. We shifted and rotated the coordinate system so that
the major heart axis coincided with the positive x axis to prevent
discontinuity in the azimuth angle (). The wavefront curve was
parameterized via cubic B-spline interpolation of a number of
points, starting at 5 points at the beginning of QRS and adding
an additional point each 4 ms. Each time a point was added to
the spline representation the points were then redistributed uni-
formly around the curve. By using this discrete representation
of the underlying continuous curve, we were able to increase the
number of points used to represent the curve without violating
the state-space paradigm which requires that the dimension of
the state space (here, infinite) stay fixed. The dimensions of the
matrix used to represent the error covariance of the state vari-
ables, as parameterized through the discretization, did change,
which was implemented by a simple interpolation scheme.

We used (2) to implement the function f. This function
moved each point of the wavefront curve along the curve’s
normal direction in the tangential plane to the heart surface at
the point. The radius, 7, of the resultant curve points were then
adjusted to remain on the heart surface. For simplicity, in this
initial report we set a(t) = .6, b(¢t) = .3,and vy = 1in (2).
We implemented function g based on (3). For this purpose we
needed to find the distance from each point on the heart surface
to the wavefront curve. Calculation of an accurate distance
from all the points on the heart surface to the wavefront could
be time consuming; however, great accuracy was not required,
especially for the points far from the curve since their potential
was close to constant. Therefore, we approximated the path
between any two points as being on a sphere whose center was
at the center of the heart and whose radius was the average of
the distances of the two points from that center. We approx-
imated the center as the mean location of the surface nodes.
This spherical arc approximation of the distance is obviously
more accurate for the points close to the curve and less accurate
for those far from the curve, just as required by our model. We
used 60 points on the underlying wavefront curve to find d(s),
approximated as the minimum distance from each surface point
s to the curve points.

We also needed to determine if a point on the heart surface
was inside or outside of the wavefront curve, to set the value of
a in (3). For this purpose we simply mapped the curve to a 2-D
plane with the # and ¢ axes as the Cartesian coordinates (thus
preserving the topology) and then calculated the total rotation of
a line between each node and the wavefront curve while the end
on the wavefront circumnavigated the curve. If the point was
inside the curve, this rotation was 27, otherwise it was zero.

We used the 12 measured canine beats described earlier to
determine the parameters w and ¢ of the potential model, which
we setas w = .7 and ¢ = .7/ cos?(n) + .5. The EKF algorithm
was implemented to solve the state-space model, linearizing the
functions f and g at each time step using a finite difference
method.
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III. METHOD II: WAVEFRONT-BASED POTENTIAL

RECONSTRUCTION (WBPR)

The second method, in which the quantities to be recon-
structed were the epicardial potentials, again employed a
wavefront-based model of the epicardial potentials as a two
level “image,” with relatively sharp boundaries and an inter-
polated transition region. However, here this two-level model
was used as an initial estimate, or prior mean, and then up-
dated using the body surface measurements. As before, after
subtraction of the time-varying reference in the model, the
activated region was set at a negative potential, the inactivate
region at zero potential, and the transition region was defined to
follow a simple, relatively sharp profile. The reference potential
drift, which shifts this two level image, increasing over time
proportionally to the area of the activated region [25], was
again modeled explicitly. From the boundary location and the
two levels of the image, the model constructed a crude initial
estimate of the potentials.

Specifically, to obtain this estimate we used a wavefront-
based model of the transition profile which was similar but less
complicated than the one used in the WBCR method

6_0.5(lk’i)

Vv 14
Thi = api—(1— -3 + Viet,, (5)

2
where 7, ; is the potential estimate of the ith node at time in-
stant k, oy, ; is —1 or 1 depending on whether the ith node is
inside or outside the wavefront, respectively, V' is the wavefront
height (V' = 20 mV), di; is the distance of the ith node to
the wavefront curve at time instant &, and Vi¢, is the potential
reference at time instant k. The wavefront at time k is defined
as the contour at a potential of the average of the two levels,
(=V 4 Veer,) /2.

The idea behind the WBPR method is to use this initial wave-
front-based potential estimate as a constraint on the inverse so-
lution. We did so by using this initial estimate as an initial so-
lution in a deterministic Tikhonov regularization. (We discuss
a statistical interpretation of the method below.) The Tikhonov
(sometimes called Twomey) [28] solution in the presence of an
initial estimate at time instant k, was obtained by minimizing

T = A%, = yills + Allxi — el ©)

where y}. are the potential measurements on the torso at time
instant k, A is the forward matrix, x; holds the heart surface
potentials at time instant k&, A is the regularization parameter,
and X, is the initial wavefront-based estimate.

The inverse solution obtained from the minimization of .J},
follows:

R =%p+ (ATA + AQI)_lAT(yk — A%y). 7

Viewed as a spatial-temporal process, a wavefront contour
estimated from the previous time instant’s potential was used
to calculate the initial wavefront-shaped model of the poten-
tials at the current time instant. This zeroeth-order predictor was
used because the high temporal sampling rate of the epicardial
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potentials (typically 1 kHz) meant that the wavefront position
changed relatively slowly from one time sample to the next.
(Typically, apparent velocities as visible on the epicardial sur-
face are in the order of 5 mm/ms [20]). Thus, the inverse solu-
tion X could be obtained in a temporally recursive fashion as
follows:

Step1) ¢, =h(Xk-1)
Step 2) X = g(ck)
Step 3) Calculate Xy, using(7). (8)

where k is the time instant, ¢y is an interpolated continuous
curve representing the wavefront, h() finds this wavefront curve
by thresholding the potential and then using cubic B-splines to
smooth the threshold contour, and g() is the potential function
of (5).

We note that we can run this recursion backwards in time
in a second pass, or alternatively forward and backward in any
desired progression. We can use a similar procedure to iterate at
a single time instant, starting from some initial estimate of the
potentials, with & now representing the iteration number.

A. Implementation

As noted above, to start the method we need:

¢ the value of the reference at each time instant;

» the negative value of the activated region of some time

instant and the height of the wavefront;

* an initial guess of the wavefront.

We obtained these values as follows:

In the results presented, we simply used the true negative po-
tential of the activated region. However, based on results of other
groups (e.g., [14] and [15]) as well as our own work, it should be
possible to estimate this value with reasonable accuracy using a
Tikhonov solution at a node far from the wavefront. The refer-
ence potential at the beginning was assumed to be zero (a correct
assumption for early in QRS), and it was then extracted sequen-
tially from the inverse solution at each time instant to be used
for the next time instant. As in the WBCR method, we used the
potential of the last lead to be activated as the reference drift
in the first half of the QRS interval and the shift of the earliest
activating node potential from its starting point as the reference
drift in the second half. The initial estimate at the first time in-
stant was taken as a circular wavefront centered at the pacing
node, with a radius of about 2 cm. We assumed this pacing node
was known in the simulations presented here, but again there
is evidence to suggest that it could be obtained reliably enough
for this purpose (with around 2 cm uncertainty) by a standard
Tikhonov solution or perhaps a GMRES approach [10].

We implemented the algorithm as described in (8). A
threshold function h() was designed to create the wavefront
curve from the current estimate of the epicardial potentials. For
this purpose we checked all the triangles of the heart surface
triangular mesh! to see if they contained the wavefront. We
then linearly interpolated the potentials on the sides of the tri-
angles containing the wavefront to approximate the wavefront
crossings on the sides of those triangles. This way we obtained

IThe heart surface was discretized by 490 nodes and a triangular mesh was
used to represent the surface [29].
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a pair of points on the wavefront on two sides of each triangle
through which the wavefront passed. Neighboring triangles
which contained the wavefront each shared one of these points.
Thus, we started from an arbitrary pair of points and sought its
neighboring pair. We continued this procedure until we reached
the starting point. We also checked for multiple wavefront
curves, using the above procedure to locate all of them. Finally,
we downsampled the curve points and used a cubic B-spline
basis to interpolate the wavefront curve or curves. Function
g() was implemented based on (5) and the distance from node
¢ to the wavefront, dj;, was approximated as explained in
Section II-D.

In summary, at each time instant we found the wavefront cor-
responding to the threshold potential solution of the previous
time instant, smoothed by a cubic B-spline fit, then used this
smoothed wavefront to create an initial estimate for the current
time instant, as explained above. This initial estimate was then
used as the constraint in a Tikhonov solution as per (7). We also
implemented this iterative method in the backward temporal di-
rection. In the backward iteration we used the estimated solu-
tion at the final time instant obtained in the forward iteration as
the initial solution and sequentially estimated the solutions at all
preceding time instants.

IV. RESULTS

To both estimate the required model parameters and then to
test both inverse solution methods, we used epicardial potentials
measured from canine hearts that had been placed in a tank built
to simulate an adolescent human torso at the CVRTI. Measure-
ments were taken at 490 sites on the heart surface using a sock
electrode as described elsewhere [29]. We used the boundary-el-
ement method to calculate a forward matrix based on the geom-
etry of the heart and torso. The number of nodes on the torso
mesh was 771 and, thus, the full forward matrix A was 771 x
490. Testing of the methods was always performed on data from
different animals than those used to estimate the model parame-
ters. In addition, as noted above, the fiber geometry, where used,
came from yet another animal, and from experiments at a dif-
ferent laboratory. For testing the inverse solutions we simulated
torso measurements from the measured heart data using the for-
ward matrix and then added white Gaussian noise at an SNR of
30 dB.

A. Results of the WBCR Approach

We approximated the speed of the wavefront at different time
instants and different nodes on the heart surface for 12 heart-
beats as explained in Section II-D. We then studied the speed
versus time and speed versus the cosine of the angle n between
the normal direction at a point of the wavefront and the fiber di-
rection at that point. Fig. 2(a) shows the speed versus cosine 7
for left ventricular paced beats, where each panel shows a dif-
ferent time interval of the QRS. As the results show, the speed
of the wavefront is higher along the fiber direction in the first
30ms of the QRS. After that the speed shows no correlation
with fiber directions, which means that the fiber directions of
the epicardium have a dominant effect in the propagation of
the wavefront only early after initial activation as reported in
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Fig. 2. (a) Speed normal to the wavefront versus cosine of angle between
normal and local fibers (left ventricular pacing, time shown post pacing).
(b) Speed normal to the wavefront versus time (left ventricular pacing, different
sites).

[20] and [21]. Right ventricle paced beats showed similar re-
sults, but with reduced correlation between the speed and fiber
directions, even early after initial activation, compared to left
ventricle pacing.
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Fig. 3. Wavefront from experimental data (dark grey), Tikhonov solution

(white) and WBCR approach (black, dashed line), ¢ indicates the time with
respect to the pacing in milliseconds.

Each panel of Fig. 2(b) shows the speed of the wavefront
versus time during the QRS for a different left ventricle paced
beat. We observed that the apparent speed of the wavefront gen-
erally increased over time. However, a high-speed wavefront
was often observed in the middle of the QRS when the wave-
front passed through one of three regions which showed con-
sistently faster propagation: 1) the apex; 2) the mid and base
regions of left ventricle; 3) the mid and base regions of right
ventricle. In the region close to the intersection of the two ven-
tricles (the septum), by contrast, speed was generally decreased.
We observed similar results for the right ventricular paced beats.

These results provided the information needed to implement
the WBCR approach, as explained in Section II-D. Fig. 3
shows the wavefront obtained from the experimental data (dark
gray) along with the reconstructed wavefront using the WBCR
method (black, dash line) and the wavefront obtained from a
standard zero-order Tikhonov solution (white). The regulariza-
tion parameters for the Tikhonov method were obtained from
L-curves [30]. In all cases the wavefront was defined as the set
of points whose potential equaled the average of the activated
and inactive potential values. As can be seen in the figure,
the proposed method was more accurate, especially for early
activation times when the activated region was stretched along
the local fiber directions.

B. Results of the WBPR Approach

Fig. 4 shows a potential map of an experimentally acquired
left ventricular paced heartbeat, along with inverse solutions ob-
tained by the WBPR approach (forward and backward), and
the standard zero-order Tikhonov solution, at selected time in-
stants. All the images in each row have the same mapping from
value to gray shade and the contours show the iso-potential lines.
The left column shows an electrogram from a point close to the
pacing site on the heart. The time instant of each row is marked
on the corresponding electrogram. The times shown beside the
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Fig. 4. Potential map of the experimental data along with the solutions of
WBPR approach (forward and backward iteration) and Tikhonov for a left ven-
tricular paced heartbeat. The parameter ¢ shows the time in milliseconds with
respect to the pacing. The left column shows the time signal of a point close
to the pacing site. RE of each inverse solution is shown under corresponding
potential map.
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time signals represent the interval in milliseconds after pacing.
The plots were drawn with map3d software [31]. We also cal-
culated the relative error norm (RE) as RE = ||x — x||/||x]|,
where x and X represent the experimental data and inverse so-
lution, respectively. Fig. 6 shows the RE value versus time for
the Tikhonov, WBPR forward and WBPR backward inverse so-
lutions. The value of RE for each inverse solution at the selected
time instants is also shown under corresponding potential map.

The results showed that reconstructed solutions using the pro-
posed method were considerably improved over the Tikhonov
solutions. As Fig. 4 shows, the backward iteration resolved the
effect of errors in the initialization early after stimulus. At ¢ =
20, the elliptical shape of the reconstructed wavefront was very
similar to that of the experimental epicardial potentials. At all
other time instants, the potential maps showed a sharp wave-
front which was close to the position of the wavefront of the
experimental epicardial potentials. At ¢ = 70, the wavefront
moved to the posterior side of the heart and the Tikhonov so-
lution was quite smooth, while the solution from our forward
iteration showed a wavefront location and potential map quite
similar to the experimental data. Similarly, RE values as shown
in Fig. 6 showed less error in the WBPR solutions than Tikhonov
solutions, especially the backward WBPR in the first half of the
QRS interval (¢t < 35) and forward WBPR in the second half
(t > 35). However the RE values for ¢ > 63 were larger for
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Fig. 5. Potential map of the experimental data along with the solutions of
WBPR approach (forward and backward ) and Tikhonov for an atrial drive
paced heartbeat. The parameter ¢ shows the time in milliseconds with respect
to first breakthrough on the epicardial surface. The left column shows the time
signal of a point close to the pacing site. RE of each inverse solution is shown
under corresponding potential map.

WBPR approaches than Tikhonov despite the fact that the for-
ward WBPR potential map reconstructed the wavefront location
considerably more accurately than the Tikhonov solution.

We also implemented our method for a supraventricularly
stimulated beat to test its performance when multiple, sepa-
rate activated regions were present on the heart surface. Fig. 5
shows potential maps at selected time instants of the experi-
mental data along with the inverse solutions obtained by the
WBPR approach (forward and backward) and by Tikhonov reg-
ularization. The times shown beside the time signals represent
the interval in milliseconds with respect to the time that the first
breakthrough appeared on the epicardium. At early time instants
(t = 2), the potential map and wavefront location which were
reconstructed by WBPR approach using a backward iteration
compared quite accurately to the experimental data. Later on
(t = 9), a second breakthrough appeared on the apex which the
WBPR method was able to capture and represent more accu-
rately than the Tikhonov solution. Three ms later (¢ = 12), the
Tikhonov solution was very broad and smooth while the WBPR
solutions much more clearly reflected the presence of a narrow
wavefront, as found in the experimental data, and similarly at
(t = 15). Interestingly, the RE figures for this latter time instant
do not seem to predict this difference. The lower panel of Fig. 6
shows RE values as a function of time for this beat; again we
note that the forward prediction method did better in the second
half of QRS while the backwards method generally did better
early in the beat only.

V. DISCUSSION

We have proposed two wavefront-based models in this paper.
In the WBCR approach, we used a state-space formulation to
solve the inverse problem of electrocardiography in terms of
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Fig. 6. RE versus time (with respect to the pacing time) in milliseconds for
(a) left ventricle paced and (b) supraventricular paced heartbeats.

the spread of activation on the epicardium. The basic motivation
was to enable addition of physiological information about car-
diac propagation to a low-dimensional, wavefront-based model.
This information appeared in the state evolution function and
wavefront-to-potential map of our state-space model. The use
of the wavefront curve as the state variable (in contrast with
earlier Kalman filtering approaches for inverse electrocardiog-
raphy, which used the potentials as the state variable [32], [33])
both enforced the sharp transition across the wavefront and pro-
vided a low-dimensional and, therefore, potentially more ro-
bust, model. Moreover, the structure of the model facilitated our
ability to include physiological properties of the heart such as
fiber orientation. Results showed improvement with respect to
the Tikhonov solution, especially at early times after the initial
activation.

In the WBPR approach, the quantity of interest was the
epicardial potential distribution. We exploited the relationship
between the wavefront and epicardial potentials in the exper-
imental data to construct a relatively simple potential model,
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using an approximate wavefront curve to calculate an initial
model of the potential. This initial estimate was then used
to constrain the inverse solution in a deterministic Tikhonov
method. One can equivalently consider this initial estimate as
a mean value in a statistical Bayesian framework. In standard
zero-order Tikhonov, this initial estimate (or the mean in the
standard Bayesian approach) is assumed to be zero. We note
that the WBPR approach applied the potential model constraint
in a less strict way than the WBCR approach; the potential
model used in the WBPR method is even simpler than that used
in WBCR. We believe this approach is reasonable given that
the WBPR method depends on this potential model in a much
looser way than does the WBCR method.

The results of the WBCR approach illustrate a first step in
building an appropriate model. We only used the fiber direc-
tions of the epicardial surface for our propagation model, while
a more complete model should consider the 3-D effect of the
fibers in the heart volume. We anticipate improvement by modi-
fying a(t), b(t), and (s) to reflect known behaviors like decline
of the fiber direction effect in the speed function or increase of
the wavefront speed at the apex. For instance, (s) could be
modeled as an appropriate piecewise constant function to re-
flect regions of higher and lower apparent speed, or b(¢) could
be a non-decreasing function to reflect the general increase in
apparent speed over time during a beat, as consistent with the ex-
perimental data. Moreover, one could build a potentially more
accurate approach to model the potential surface by including
at least some of the parameters of the potential model into the
state variable. We note again that the fiber directions were ap-
proximated from a different canine heart than those used either
for parameter determination or inverse solution testing, and that
the geometry used for all the hearts at CVRTI was matched to a
single generic model as well. Thus, our results suggest the rel-
evance of using this prior information, even if not specific to a
particular individual, to impose a spatio-temporal constraint on
the wavefront behavior.

The filtering of the residual we employ in the WBCR
method, to attenuate the effects of the error induced by our
simplified, two-level, potential model, might well remove
information which would be important in the solution of the
inverse problem associated with a standard (high-dimensional)
epicardial potential formulation. However our results suggest
that this information is largely redundant in our low-dimen-
sional, spatially and temporally constrained state-space model.

Results of the WBPR approach showed the importance of
using the initial value in a deterministic Tikhonov framework
(or in a Bayesian setting, the importance of using a non-zero
estimate of the mean value). Considerable previous research in
inverse electrocardiography has focused on using an appropriate
covariance matrix (regularization matrix) to improve the inverse
solution while the mean was assumed to be zero [34]. Some
previous work which used an initial estimate of the solution to
add temporal information used the smoothed Tikhonov solu-
tion [28]. It seems that such an approach did not effectively re-
flect the prior information that a wavefront exists. We tested the
WBPR method with inclusion of a structured covariance matrix
estimate (results not reported here), along with our structured
estimate of the mean value; we estimated this covariance matrix
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as a diagonal matrix whose diagonal elements were a function
of the distance of corresponding nodes on the heart surface to
the wavefront. The idea was that the initial estimate at the nodes
farther from the wavefront should have less error than at the
nodes closer to the wavefront and, thus, the diagonal elements
of the error covariance matrix should be smaller for the nodes
farther from the wavefront and larger for the nodes closer to
the wavefront. However, somewhat surprisingly, our simulation
results showed little improvement in the inverse solution when
we used this covariance matrix to replace the simple model re-
ported above of a scalar times the identity matrix. This suggest
that previous neglect of the value of the mean in Bayesian ap-
proach may have been a source of considerable error.

One approach which could be considered would be to com-
bine the mean estimator with a spatio-temporally derived esti-
mate of the covariance matrix, for instance using an approach
based on the isotropy assumption as proposed in [35]. The zero-
order temporal predictor of the wavefront location in the current
WBPR approach might also be improved by substitution of a
more sophisticated model, such as the one used in the state evo-
lution function of WBCR.

The backward iteration over time in the WBPR approach im-
proved the inverse solution at early time instants after initial
activation or breakthrough. At other time instants the solutions
obtained by the backward iteration were sometimes worse than
the solutions estimated in the forward iteration. However other
methods of combining forward and backward iterations may re-
sult in further improvement.

In certain conditions, such as ischemia or postinfarction, the
height of the wavefront changes on the heart. Activation-based
methods tend to have difficulty with this problem, as noted in
[11]. The WBCR approach is tied to simple propagation and
potential models. To apply it to a wider range of conditions one
would need to incorporate appropriate model parameters into
the state variable, and then reconstruct them using torso poten-
tials. Thus, a more complicated potential model than the one
introduced in this work would be needed for this purpose. On
the other hand, in the WBCR approach the effect of a predicted
wavefront, as obtained by the evolution function, on the final es-
timated wavefront, is controlled by the prediction error. There-
fore, wrong prior information increases the prediction error and
as a consequence, this prediction has less effect on the final esti-
mate. Another approach to increase applicability would be to de-
sign different speed functions for different conditions, and then
choose among them based on corresponding prediction error,
using a model invalidation method [36].

In contrast the WBPR approach does not impose a strictly
determined wavefront height, as the WBCR approach does. In
the current implementation of this method we found the wave-
front from the estimated potentials by thresholding, assumed the
wavefront curve was located at the mid-points of a fixed-height
(20mv) wavefront transition region. Therefore, in conditions
such as ischemia or postinfarction, careful attention may be re-
quired to the thresholding, and perhaps even an adaptive tech-
nique might need to be employed to detect the wavefront from
the estimated potentials.

We point out that the results we presented here for the WBCR
method were only qualitative; we did not compare the accu-
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racy of the reconstructed curve to the wavefront in the orig-
inal data in a quantitative fashion. Moreover, although we re-
port RE values as a metric for assessing the accuracy of the
WBPR method, as noted in Section IV the RE values at times
did not correspond well to visual, i.e., qualitative, assessment
of wavefront reconstruction, especially later in QRS. Examples
are shown at time instants 50, 60, and 70 in Fig. 4 and time in-
stants 12 and 15 in Fig. 5. We would have preferred to be able
to include more meaningful quantitative metrics of accuracy.
However we believe that meaningful quantitative comparison of
wavefront curve location for WBCR, and more comprehensive
accuracy of wavefront reconstruction in WBPR, requires the de-
velopment and testing of new and appropriate metrics. There
are many candidates in the literature for comparison of curves,
which could be applied to results such as achieved by WBCR,
but they have not been tested for applicability to cardiac wave-
front location. Developing approaches for assessment of poten-
tial surfaces with wavefronts, such as reconstructed by WBPR,
which take into account factors such as the extent and slope of
the wavefront as well as its location, although certainly feasible,
would require a significant degree of modification to existing
metrics (whether of potential surfaces or wavefront curves).

In this study we used a forward model that only included
the potentials on the epicardial surface. However the pro-
posed methods are not limited to this setting and could be
applied to models containing both epicardial and endocardial
surfaces or transmembrane potential models [37]. The main
change required in either method would be to build an ap-
propriate geometric model and to substitute an appropriate
wavefront-to-potential model.

VI. DIRECTIONS FOR FUTURE DEVELOPMENT

Our assumptions about the wavefront behavior and its rela-
tion with the epicardial potentials were based on epicardially
paced beats. One goal of interest is to extend the methods to
handle more complicated rhythms. Although we report here on
promising results of a test of the WBPR approach on a supraven-
tricularly paced beat, further testing and, most likely, develop-
ment, are required. Beats with more than one wavefront curve
can also be incorporated in the model used in the WBCR ap-
proach but represent a significant future challenge.

In our study, in order to concentrate on the performance of
the methods without including additional complicating factors,
we simulated the torso potentials from measured epicardial po-
tentials without forward model error. This is clearly not a real-
istic setting for any kind of clinical or even experimental use.
One might hope that our employment of a wavefront constraint
and our careful estimation of the reference might indeed retain
some of the robustness to this error shown by activation-based
methods; however, this clearly needs to be investigated. Thus, a
future study of interest will be to use more realistic data, such
as from the outer surface of the CVRTI torso tank, with these
methods. Another important area for future work is to study the
robustness of the proposed methods against error in estimates of
the reference drift and the initial activation node. Finally we plan
to compare the accuracy of the inverse solutions obtained by
these methods to that obtained by activation-based approaches.
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