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State of the art radiation treatment methods such as hypo-fractionated stereotactic body radiation ther-
apy (SBRT) can successfully destroy tumor cells and avoid damaging healthy tissue by delivering high-
level radiation dose that precisely conforms to the tumor shape. Though these methods work well for sta-
tionary tumors, SBRT dose delivery is particularly susceptible to organ motion, and few techniques capa-
ble of resolving and compensating for respiratory-induced organ motion have reached clinical practice.
The current treatment pipeline cannot accurately predict nor account for respiratory-induced motion
in the abdomen that may result in significant displacement of target lesions during the breathing cycle.
Sensitivity of dose deposition to respiratory-induced organ motion represents a significant challenge and
may account for observed discrepancies between predictive treatment plan indicators and clinical patient
outcomes.

Improved treatment-planning and delivery of SBRT requires an accurate prediction of dose deposition
uncertainties resulting from respiratory motion. To accomplish this goal, we developed a framework that
models both organ displacement in response to respiration and the underlying random variations in
patient-specific breathing patterns. Our organ deformation model is a four-dimensional maximum a pos-
teriori (MAP) estimation of tissue deformation as a function of chest wall amplitudes computed from clin-
ically obtained respiratory-correlated computed tomography (RCCT) images. We characterize patient-
specific respiration as the probability density function (PDF) of chest wall amplitudes and model patient
breathing patterns as a random process. We then combine the patient-specific organ motion and stochas-
tic breathing models to calculate the resulting variability in radiation dose accumulation. This process
allows us to predict uncertainties in dose delivery in the presence of organ motion and identify tissues
at risk of receiving insufficient or harmful levels of radiation.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

External beam radiotherapy destroys cancer cells by delivering
ionizing radiation to a tumor. Because conventional radiation
treatment delivers only a few unmodulated straight-line beams
per treatment, the volume receiving radiation cannot be easily
matched to the irregular shape of most tumors. Modern techniques
like dynamic conformal arc and intensity modulated radiation
therapy (IMRT) modulate the intensity or shape of external beams
applied over many different angles to enable radiation dose deliv-
ery that precisely conforms to a physician-defined tumor geometry
(Purdy, 2001). Combined with improved image guidance tech-
niques that allow clinicians to identify tumor shapes and locations
with greater accuracy (Xing et al., 2006), IMRT enables precise dose
conformity to the targeted tumor volume (as demonstrated in
Fig. 1). This process allows safe delivery of extremely large ablative
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radiation doses that dramatically increases the likelihood of tumor
control (Timmerman et al., 2005) and reduces the collateral dam-
age to surrounding healthy tissue, particularly in cases where the
tumor is stationary during treatment. Hypo-fractionated stereotac-
tic body radiation therapy (SBRT) combines conformal therapy and
image guidance techniques to apply high levels of radiation over a
few treatments (each treatment delivers a fraction of the total pre-
scribed dose) and has proven safe and highly effective for control-
ling tumors of the lung, liver, and spine (McGarry et al., 2005).

State-of-the-art commercial treatment-planning systems gen-
erally calculate dose delivery distributions for static tissues within
3% accuracy (Siantar et al., 2001; Heath et al., 2004; Herk, 2004;
Rassiah-Szegedi et al., 2006), but cannot yet calculate accurate
dose in the presence of organ motion. Though respiratory-induced
organ motion can result in significant movement during the
breathing cycle (Lujan et al., 1999; Brandner et al., 2006) (as evi-
denced in Fig. 2), clinical radiation dose SBRT plans deliver dose
to a static volume over all treatments and do not dynamically ad-
just to changing tumor position. Due to high dose gradients inher-
ent in conformal radiation delivery, IMRT is particularly
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Fig. 1. The planned (static) dose distribution and Real-time Position Management™ (RPM) traces for the analyzed SBRT liver cancer patient illustrates the high spatial gradients of
target-conforming dose and daily variations in breathing. The static deposited dose (in units of Gray) is color-mapped and superimposed on anatomical images for (from top
to bottom) axial, sagittal, and coronal views. The RPM breathing traces are recorded for the same patient and time interval on different treatment days.

Fig. 2. Respiratory-induced organ motion can cause significant tumor displacement. These coronal slices depict recorded anatomy corresponding to three phases (from left to
right: full-inhale, mid-cycle, and full-exhale) within the breathing cycle for a typical lung SBRT patient. The red outline denotes the physician defined internal target volume
(ITV). Note the displacement of the tumor within the (stationary) clinical ITV. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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susceptible to targeted tumor motion and respiration can lead to
significant dose delivery errors (Bortfeld et al., 2002; Lujan et al.,
2003; Chui et al., 2003; Jiang et al., 2003; Bortfeld et al., 2004;
Vedam et al., 2005). The low number of treatment fractions renders
SBRT even more sensitive to intra-fraction motion and studies
investigating the dosimetric consequences of respiratory-induced
tissue motion on SBRT have found variations between planned
and delivered dose distributions as significant as 20% (Wu et al.,
2008). The uncertainties resulting from respiratory-induced tissue
motion complicate SBRT treatment of extracranial lesions and may
well account for the observed discrepancies between predictive
indicators and clinical patient outcome statistics. No process has
been developed to accurately predict uncertainties in dose delivery
resulting from random patient breathing patterns.

Controlling patient breathing during treatment and restricting
beam-on times to windows of low variation in patient anatomy
can reduce the variability in dose deposition due to respiratory-in-
duced motion. Specific methods to reduce dose variation include
respiratory-gating (Keall et al., 2005b), breath-hold (Hanley et al.,
1996), and coached breathing (Neicu et al., 2006). However, each
has limitations and none are appropriate for all patients (Keall
et al., 2006). For example, breath-hold techniques can induce an
unacceptable level of patient discomfort (particularly for lung can-
cer patients with severely compromised respiratory function),
respiratory-gating significantly increases the treatment time be-
cause it restricts beam delivery to a small fraction of the treatment
period, and coached breathing may be impractical because some
patients are not trainable. While some radiation oncologists em-
ploy these methods, most instead design a treatment based on
more fundamental mechanisms, e.g., the inclusion of a border or
margin around the defined internal target volume (ITV). This
widely employed technique is intended to accommodate tumor
motion during treatment and ensure sufficient dose delivery by
treating a ‘‘motion envelope” that encompasses the tumor posi-
tions observed during breathing. However, tumor volumes and
margins for treatment-planning are generated from images ob-
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tained on a single day that cannot be used to predict the subse-
quent variations in breathing. Moreover, this approach ensures a
complete treatment of the target at the expense of irradiating adja-
cent healthy tissues. Alternative treatment methods have been
developed that adjust to or move with the tumor in order to
accommodate respiratory-motion. Such methods are successful
in some cases but cannot yet be widely applied. For example, auto-
mated tumor tracking and delivery (Keall et al., 2004; Naqvi et al.,
2005; Sawant et al., 2008) works well for lung tumors that are
clearly discernible in CT and X-ray images, but typically not for li-
ver, which can be difficult to distinguish from surrounding tissue.
As a result, it is challenging to implement robust and accurate
automatic tracking methods for liver tumors. For thorax and
abdominal tumors, breathing motion remains one of the major
obstacles to reducing the irradiation volume while maintaining a
high probability of treatment success (Jiang et al., 2008).

Patient breathing is not time-periodic (or perfectly repeatable),
and respiration patterns can vary significantly between treatment
fractions. The fundamentally random fluctuations in respiratory-
induced organ motion can result in delivered doses that signifi-
cantly vary from treatment to treatment. Failure to accommodate
patient breathing motion randomness can result in under-dosing
of the target and/or deposition of potentially dangerous dose levels
to surrounding healthy tissue. When limiting patient organ motion
during treatment is impossible or unreasonable, it is essential to
incorporate an accurate prediction of the effects of the stochastic
respiratory process on dose deposition for improved safety and
efficacy of SBRT treatment-planning and delivery. Though several
groups have worked to develop accurate models that incorporate
the effect of respiratory-induced organ motion on dose deposition
(Boldea et al., 2008), no commercially available computational
tools successfully address this problem. We propose an approach
capable of predicting the variance in dose accumulation for SBRT
treated abdominal lesions resulting from stochastic organ motion
induced by variations in patient breathing patterns.

We apply our framework (described previously in Geneser et al.
(2009)) to quantify the impact of variations in patient-specific
breathing patterns on dose deposition for a typical SBRT liver pa-
tient. The anatomical CT images, clinical dose plans, and forward
dose calculations used in this work were obtained during the
Huntsman Cancer Institute’s clinical planning and treatment pro-
cess. The patient’s static dose treatment plan and breathing traces
from three treatment days are depicted in Fig. 1. We provide a flow
chart (depicted in Fig. 3) to outline the major components of our
Radiotherapy Planning Procedure
collect CT imagesrecord breathing traces

Organ Motion Model (2.1)Stochastic Breathing Model
 model tissue motion
 generate organ conformations for 
each breathing amplitude
 calculate static dose for each 
breathing amplitude

 generate parametric model of 
breathing densities for each 
treatment (2.3)
 characterize distribution from which 
model parameters are sampled (2.4)

Calculate Dose Statistics
 sample random model of breathing 
densities (2.5-2.7)
 compute dynamic dose for each 
sample breathing density (2.2)
 compute dose statistics (2.6)

compute static dose

Fig. 3. Overview of the procedure for calculating variations in radiation dose
resulting from fluctuations in respiratory-induced organ motion. Where appropri-
ate, the sections describing the components are denoted.
procedure and indicate how the clinical data is incorporated into
our framework. While the results presented here are a retrospec-
tive analysis, the same approach can be applied to predict dose
uncertainties on a patient-specific basis prior to treatment with
minimal alteration of the clinical planning routine. Because the
anatomical CT images are collected and dose distributions are cal-
culated as part of a typical SBRT dose planning process, our frame-
work requires only that breathing traces be obtained on a few days
prior to treatment. This can be accomplished without extending
the planning time because the dose optimization process currently
requires several days of computation time during which the
breathing traces can be recorded and analyzed.

To predict the variability in radiation dose delivery resulting
from random patient breathing patterns, we build a model of pa-
tient-specific respiratory-induced organ motion to compute the
dynamic dose deposition in response to recorded breathing behav-
ior during a given treatment using the method described in Hinkle
et al. (2009). We then model patient-specific breathing patterns as
a stochastic process by parametrizing the recorded breathing
traces and modelling the resulting breathing parameters as ran-
dom variables. Once we estimate the underlying distributions of
the random variables, we incorporate our stochastic breathing
model into the dynamic dose computation that accounts for varia-
tions in organ motion during treatment.

Monte Carlo techniques cannot be employed to solve such sys-
tems because the large number of solutions necessary to converge
to accurate statistics and long computational times required to
generate a single dynamic dose solution renders such methods
infeasible. Using polynomial chaos (Wiener, 1938; Xiu and Karni-
adakis, 2002) and Smolyak collocation (Mathelin and Hussaini,
2003; Babuška et al., 2005; Xiu and Hesthaven, 2005; Xiu, 2007;
Ganapathysubramanian and Zabaras, 2007; Nobile et al., 2008)
techniques significantly reduces the number of dynamic dose cal-
culations and thus the cost of computing accurate dose statistics.
Indeed, the speedup is significant enough to render incorporating
the framework into the clinical optimization and planning process
feasible. Using this method, we compute pertinent dose statistics
to predict and assess variations in radiation dose due to random
variations in patient breathing patterns subsequent to the clinical
planning process. Our goal is to enable clinicians to identify SBRT
dose plans that are robust to fluctuations in patient respiratory
patterns and improve tumor control and normal tissue sparing.
2. Methods

To account for stochastic respiratory-induced tumor motion, we
first quantify the impact of organ motion on dose delivery over the
course of a treatment. Calculating the dynamic dose requires both
an accurate patient-specific anatomical motion model and the abil-
ity to calculate static dose deposition at anatomical configurations
observed during unrestricted patient breathing. Commercially
available four-dimensional respiratory-correlated computed
tomography (4D RCCT) (Ford et al., 2003; Vedam et al., 2003) tools
provide a means of visualizing four-dimensional organ motion, and
clinicians currently rely on the detailed images produced from
such scans to generate the volume contours to be irradiated. Using
deformable image registration techniques, the anatomical CT con-
figurations observed during the breathing cycle can be mapped
onto a common geometry. This mapping can be used to compute
the dynamic dose accumulation resulting from observed or simu-
lated respiratory-induced tissue deformations (Foskey et al.,
2005; Keall et al., 2005a).

We build an explicit model of tissue deformation from anatom-
ical CT patient images obtained during the breathing cycle. Our
motion model and subsequent dose calculations rely on the well-
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justified and widely accepted assumption that the anatomical con-
figuration is a function of breathing pattern as measured by a sur-
rogate signal, e.g., the real-time position management (RPM™)
system (Kubo et al., 2000) (Varian RPM, Varian Medical Systems
Inc., Palo Alto, CA). Several groups have investigated the relation-
ship between external and internal motion markers (Beddar
et al., 2007; Ionascu et al., 2007) and reported high correlation be-
tween the two. This correspondence is the basis for the respira-
tory-correlated spiral CT (RCCT) method that generates CT
images at multiple respiratory phases from a single spiral CT scan
(Ford et al., 2003; Vedam et al., 2003).

From the patient images, we construct a deformation field,
hð~x; aðtÞÞ, that maps each spatial point,~x, in a base image to its cor-
responding anatomical position as a function of breathing ampli-
tude. Generating deformation fields that model organ motion is a
well-studied problem and several groups have developed tech-
niques that produce accurate deformations from artifact-free CT
images (Pevsner et al., 2006; Wijesooriya et al., 2008). We model
the three-dimensional tissue motion as a function of breathing
amplitude rather than phase. Several groups have shown that or-
gan position correlates highly with breathing amplitude (Nehmeh
et al., 2004; Chi et al., 2006; Abdelnour et al., 2007). In the follow-
ing sections, we describe our methods to construct a set of ampli-
tude-indexed deformations which represent the fully deformable
diffeomorphic transformation of a base image in response to
breathing motion.

2.1. Four-dimensional geometric model of organ deformation

To construct a physiologically realistic model of organ motion,
we follow the 4D maximum a posteriori (MAP) image reconstruc-
tion approach proposed by Hinkle et al. (2009) that estimates
amplitude-varying velocity fields acting on the tissue during
breathing from 4D RCCT images. Rather than calculating corre-
spondences between pairs of binned images, this method simulta-
neously estimates deformations and the base organ configuration
over the entire set of collected CT data. In contrast, binning meth-
ods discard a significant amount of the CT data and can result in
image artifacts due to mismatched slices. In this framework, one
estimates a 4D time-indexed image, Itð~xÞ, by maximizing a poster-
ior likelihood that combines prior motion information with a data
log-likelihood term derived from a noise model.

The raw data are modeled as a set of projections, di 2 L2(Xd),
obtained via linear operators Pi:L2(X) ? L2(Xd), where X � R3 is
the image domain, and Xd is the data domain. In this notation,
L2(X) denotes the Hilbert space of square-integrable functions over
the domain, X, equipped with the usual inner product. For cone-
beam CT, the projection operator is the conebeam projection and
Xd � R2 is two-dimensional because the detector consists of a
two-dimensional array of elements. In the case of fan beam images,
the data domain, Xd � R1, is one-dimensional and the operator is
given by the Radon transform. Because organ motion is consider-
ably slower than RCCT gantry rotation, we reconstruct each slice
assuming no anatomical motion and Pi becomes a simple slice
selection operator.

Deriving an expression for the data log-likelihood requires a
model of the noise characteristics of the scanner. For CT data with
sufficiently high signal-to-noise ratio, the noise is approximately
Gaussian, and the data log-likelihood is a sum of squared differences
between the projected image estimate and the data as follows:

LðfdigjItÞ ¼
1

2r2

XN

i¼1

Z
s2Xd

jPifIti
gðsÞ � diðsÞj2ds: ð1Þ

It is worth noting that interpreting Eq. (1) as a log-likelihood func-
tion is non-trivial. Extending the notion of a normal distribution to
the infinite-dimensional Hilbert space, L2(X), in a rigorous way is
possible but requires careful treatment of stochastic processes
and Gaussian random fields. For a more in-depth discussion of these
issues see Christensen et al. (1996) and Dupuis et al. (1998).

We model the 4D image, Itð~xÞ ¼ I0 � gð~x; tÞ, as a 3D base image,
I0, undergoing a time-indexed deformation, gð~x; tÞ. Assuming organ
motion is correlated with breathing amplitude, the deformations
are amplitude-indexed as hð~x; aðtÞÞ. The velocity of a point, ~x, in
the patient’s anatomy is described by the ordinary differential
equation,

d
dt

hð~x; aðtÞÞ ¼ vðhð~x; aðtÞÞ; aðtÞÞ da
dt
; ð2Þ

where vðhða;~xÞ; aÞ ¼ @
@a hð~x; aÞ is a velocity field indexed by breath-

ing amplitude rather than time. The deformation from the base
amplitude is given by the associated integral equation,

hð~x; aÞ ¼~xþ
Z a

0
vðhð~x; a0Þ; a0Þda0: ð3Þ

This formulation guarantees that the resulting estimates of patient
anatomy are diffeomorphic to one another and ensures that organs
do not tear or disappear during breathing (Joshi et al., 2000). Diffe-
omorphic deformations also provide a one-to-one correspondence
between image points, which enables tissue trajectory tracking.
We enforce smoothness by introducing a prior on the velocities
via a Sobolev norm, kvk2

V , defined by:

kvk2
V ¼ hv ;viV ¼

Z 1

0

Z
~x2X
kLvð~x; aÞk2

R3 d~xda; ð4Þ

where L is a differential operator chosen to reflect physical tissue
properties. Following Kuo, 1975 we place a Gaussian prior on the
Sobolev space, which is embedded in a Banach space of continuous
vector fields. The continuity properties of elements in the Banach
space are determined by the choice of Sobolev space, which in turn
is determined by the choice of differential operator L. In our imple-
mentation, Lv = � ar2v + cv for scalar parameters a and c, follow-
ing Christensen et al. (1996, 2005).

We enforce further physical tissue properties by constraining
the velocity fields. In particular, if the divergence of the velocity
field is zero, the resulting deformation has unit Jacobian determi-
nant and is locally volume preserving. This is a necessary con-
straint when modeling the breathing induced motion of
incompressible fluid-filled organs such as liver.

Combining the data log-likelihood with the motion prior, the
log-posterior likelihood of observing the data takes the form:

LðI0; vjdiÞ ¼ �kvk2
V �

1
2r2

X
i

Z
s2Xd

jPifI0 � hð~x; aiÞgðsÞ � diðsÞj2 ds:

ð5Þ

A MAP estimate that maximizes Eq. (5) with respect to both the
base image and deformation is obtained via an alternating iterative
algorithm that updates the deformation and image estimates at
each iteration using a gradient ascent step and the associated Eu-
ler–Lagrange equation, respectively. Following the approach of
Beg et al. (2005), efficient computations of the Euler–Lagrange
equations are implemented in the Fourier domain, requiring only
a matrix multiplication and Fourier transforms of vk at each itera-
tion of the algorithm. We enforce the zero-divergence velocity field
constraint at each step in the Fourier domain, and additional imple-
mentation details can be found in Hinkle et al. (2009).

As with the data log-likelihood term, one must be careful when
interpreting Eq. (5) as a posterior likelihood. A formal prior distri-
bution may be placed on the space of velocity fields by defining a
Gaussian random field on the Sobolev space characterized by the
differential operator L. Because probability density functions do
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not exist on the infinite-dimensional spaces in which we define our
probability distributions, strict interpretation of the data and prior
expressions as density functions is imprecise. However, an exten-
sion of MAP estimation to infinite-dimensional posterior distribu-
tions can be made precise. In this approach densities are replaced
by the limits of probabilities of balls around a given point. In the
case of a Gaussian random field, the result is an expression known
as the Onsager–Machlup functional, which takes the form of an
exponentiated squared norm, as is the case for both the data log-
likelihood and prior terms in Eq. (5). As discussed by Dupuis
et al. (1998), such a treatment is quite involved, and it is often
more convenient to simply view the proposed approach as a min-
imum-energy estimation problem.

2.2. Incorporating organ motion into dynamic dose calculation

The dynamic dose deposition, D, accounts for the effects of
known organ motion during a single treatment interval and is inte-
grated over the time interval [0,T] as follows:

D ¼
Z T

0
dtðgð~x; tÞ; tÞdt: ð6Þ

The term, dtðgð~x; tÞ; tÞ, is the time-dependent static dose over the
patient’s anatomy at time t, gð~x; tÞ. A change of variables yields
the total deposited dose over a treatment period as an integral over
the amplitudes,

D ¼
Z maxðaÞ

minðaÞ
daðhð~x; aÞ; aÞf ðaÞda; ð7Þ

where daðhð~x; aÞ; aÞ is the amplitude-dependent dose corresponding
to a(t), the amplitude of the breathing signal during treatment,
mapped to the base image according to the deformation field,
hð~x; aðtÞÞ, and f(a) is the relative time density of the breathing
amplitudes over the treatment interval. Given a set of amplitude-
binned CT images and a model of the organ deformation as de-
scribed above, we estimate the delivered dose by discretizing Eq.
(7) to obtain a weighted sum of amplitude-indexed dose images
as follows:

D ¼
XN

i¼0

widðhðaiÞ; aiÞ;wi ¼
Z aiþda

ai�da
f ðaÞda; ð8Þ

where da ¼ 1
2 ðaiþ1 � aiÞ is the size of the amplitude discretization.

The term d(h(ai),ai) is the dose deposited to the tissues at the ana-
tomical conformation corresponding to the breathing amplitude,
ai. The weights, wi, account for the relative amount of time the
breathing amplitude falls within the interval, [ai � da,ai + da], dur-
ing a treatment period.

It is important to stress that the dynamic model of dose deposi-
tion presented above accounts only for the respiratory-induced or-
gan motion observed during a single treatment. As such, it includes
none of the expected variability due to patient breathing motion.
For D to provide insight to the effects of motion variability, one
must incorporate a model of patient breathing variability into
the dynamic dose deposition calculation. In the following sections,
we provide the framework to characterize the stochastic nature of
daily breathing patterns and apply our model to determine the
resulting uncertainties in SBRT dose accumulation.

2.3. Parametrization of breathing amplitude density

The extent of breathing variability differs over individuals,
necessitating patient-specific respiratory models to generate accu-
rate predictions of radiation dosing resulting from random fluctu-
ations in breathing patterns. Because the time density of breathing
amplitudes is sufficient to accurately calculate a dose distribution
over a treatment interval, we need only determine the variations
in amplitude density as a function of time. To characterize the dis-
tributions from which a patient’s breathing amplitude density is
sampled on any given day, we first parametrize breathing density
by fitting each patient breathing trace to a reasonable probability
distribution. Parametrization is necessary to estimate the underly-
ing distributions from which patient-specific amplitude densities
are sampled and, ultimately, to develop a model that accurately
captures the random fluctuations in patient breathing patterns.
Once we fit the breathing densities, we then characterize the distri-
butions of the parameters by performing principle component
analysis. In this manner, we construct a patient-specific stochastic
model of breathing that can be incorporated into the dose calcula-
tion to compute variances in dose deposition.

Gaussian Mixture Models (GMMs) provide a means of parame-
trizing the probability density of a random process (McLachlan and
Peel, 2000) and are used here to model the amplitude density of
individual RPM breathing traces. Such models are convex combina-
tions of M Gaussian distributions as follows:

mðx; pi;li;riÞ ¼
XM

i¼1

pi
1

ri

ffiffiffiffiffiffiffi
2p
p e

�ðx�liÞ
2

2r2
i ð9Þ

where li and ri are the mean and standard deviation of the ith
Gaussian distribution and pi are positive weighting factors that
sum to one. We fit these parameters to patient RPM breathing traces
using the Expectation Maximization (EM) algorithm (Dempster
et al., 1977; McLachlan and Peel, 2000) that optimizes the log-like-
lihood estimates of the GMM fits to the RPM breathing amplitude
data. Because patients pause at inhale and exhale and the ampli-
tudes for both are typically consistent over time, one often observes
peaks in the amplitude density function at both locations. As a con-
sequence, a two-Gaussian mixture model appears sufficient for esti-
mating and parametrizing the amplitude density of RPM breathing
traces of many patients. However, breathing patterns can differ
widely among patients. For certain cases (particularly for moderate
to advanced lung cancer patients with compromised and erratic
respiratory status), breathing patterns may be more variable in fre-
quency, rhythm, and depth of respiration, necessitating the use of
GMMs with three or more Gaussians. The appropriate model should
be chosen on a case-by-case basis. Given the parameters of the RPM
amplitudes, we can analyze the characteristics of variability in the
parameters for each patient and build a model to capture the pa-
tient-specific variations in daily breathing amplitude densities.

2.4. Model of breathing variability

After fitting breathing amplitude densities to Eq. (9), we esti-
mate the variation of the parameters over observation days to
characterize the patient’s breathing fluctuations. Because it is only
clinically feasible to obtain a small number of breathing traces
(typically less than seven are collected per patient), it is difficult
to generate accurate estimates of the underlying patient-specific
distribution from which the GMM breathing parameters are sam-
pled on any given day. It is important to note that the GMM param-
eters; pi, li, and ri, exhibit strong correlation. For example, one
often observes a consistent distance between inhale and exhale
amplitudes. This results in a high correlation between li over the
observation days. Using principal component analysis (PCA) (Pear-
son, 1901) we perform a linear transformation of the GMM param-
eters to identify the modes of greatest variation. We then
formulate the patient-specific random GMM model parameters
as a function of independent and uncorrelated Gaussian random
variables,~n ¼ ðn1; . . . ; ndÞ, where d is the number of principal com-
ponents (and thus random dimensions) necessary to accurately
capture the breathing variability. The Gaussian random variables
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are centered at zero and have variance corresponding to the eigen-
values, ki, of each PCA component. The random GMM parameters
are then the multiplicative sum of the Gaussian random variables,
~n, and the PCA principle components (or eigenvectors) of the GMM
model parameters.
2.5. Variations in dose

Given a model of patient-specific variability in respiratory-in-
duced organ motion and dose calculation, we compute statistics
of the deposited dose from a single fraction. With the variation
in the GMM parameters expressed in terms of the d-dimensional
random variable,~n, we incorporate the stochastic model of breath-
ing amplitudes into a statistical characterization of the dose distri-
bution, D, resulting from variations in respiratory-induced organ
motion. Because the dose distribution is a direct consequence of
anatomical configuration that, in turn, is a consequence of breath-
ing amplitude, the random dynamic dose is expressed as Dð~nÞ.

In our study, we are interested in computing statistics (e.g.,
mean and variance) on the stochastic dose deposition, Dð~nÞ. These
quantities can help assess the impact of respiratory-induced organ
motion variability on SBRT dose distributions.
2.6. Generalized polynomial chaos-stochastic collocation

Determining the behavior of a stochastic system requires that
the random inputs of the system be mathematically characteriz-
able stochastic processes (i.e., have a known or estimable underly-
ing distribution). Though Monte Carlo (MC) techniques provide a
straightforward means of computing statistics of random fields like
Dð~nÞ, the large number of samples necessary to compute accurate
statistics and the significant time to calculate a single dynamic
dose deposition renders random sampling Monte Carlo infeasible
for clinical use. Several approaches e.g., Latin hypercube sampling
(Stein, 1987; Loh, 1996; Helton et al., 2005), the quasi-Monte Carlo
method (Morokoff and Caflisch, 1995; Caflisch, 1998; Niederreiter
et al., 1998), and the Markov chain Monte Carlo (MCMC) method
(Gamerman, 1997; Quian et al., 2003), achieve improved conver-
gence compared to random sampling (or brute-force) Monte Carlo.
However, these approaches gain efficiency at the cost of additional
restrictions, and none achieve sufficient reduction in sampling size
to render computing stochastic dose tractable.

The generalized polynomial chaos-stochastic collocation (gPC-
SC) method (Xiu and Hesthaven, 2005; Xiu, 2007) provides a com-
putationally efficient and easily implemented alternative to MC
sampling methods, requiring far fewer samples to calculate accu-
rate statistics. Like MC methods, gPC-SC is a sampling method in
that it does not require derivation of the stochastic approximating
system nor modification of the original deterministic system. In
contrast to MC, where the deterministic system (in our case, the
forward dose calculation) must be computed at a very large set
of randomly chosen sample values of the stochastic input process
(the breathing amplitude densities) gPC-SC employs quadrature
rules to minimize the number of samples necessary to integrate
the stochastic process of interest over the appropriate domain
and compute accurate statistics. Under assumptions of smoothness
of the system with respect to inputs, which in this case equate to
the recognition that the dose distributions vary smoothly as a func-
tion of the breathing signal, we gain exponential convergence in
the statistical accuracy as a function of the number of dose distri-
bution forward simulations we compute. This process yields a se-
quence of solutions for a small and far more computationally
tractable number of specific realizations of the stochastic field.
These solutions are used to obtain highly accurate estimates of
the mean, variance, and higher statistical moments of the system.
The generalized polynomial chaos (gPC) method provides a
means of representing stochastic processes as a linear combination
of orthogonal stochastic polynomials (Xiu and Karniadakis, 2002).
In our case, the GMM parameters are Gaussian distributed and
can be represented exactly by two Hermite polynomials. Because
dose calculation is a non-linear process with respect to the GMM
parameters and patient anatomy, the resulting distribution of the
dose will be non-Gaussian. Stochastic processes with arbitrary or
non-Gaussian distributions are represented using weighted sums
of Hermite polynomials as follows: ~nðxÞ ¼

PN
i¼0aiHiðxÞ, where x

is a random variable and ai is a weight obtained by projecting
the stochastic process onto the ith Hermite polynomial.

The Hermite polynomials are given by the recurrence relation:

Hiþ1 ¼ 2xHi � 2iHi�1

H0 ¼ 1
H1 ¼ 2x

The stochastic collocation approach consists of selecting a collection
of points at which to sample the random field and corresponding
weights that account for the underlying stochastic characteristics
of the system. Each collocation point, ~ni, represents a particular
breathing amplitude density for the duration of a treatment se-
lected from the set of likely breathing patterns. We compute the
dose deposition for each collocation realization, Dð~niÞ, using the
method described in Section 2.2.

For Gaussian distributed random variables, w, of mean zero and
unit variance, the collocation points, wi,n, are the roots of the nth
Hermite polynomial and the weights, ci,n, are given by
ci;n ¼ 2n�1n!

ffiffiffi
p
p

n2ðHn�1ðwiÞÞ2
.

Though polynomial roots can be approximated using a root-
finding method like Newton’s method, it is faster to use the Go-
lub–Welsch algorithm (Golub and Welsh, 1969) in the case of Her-
mite polynomials (Press et al., 1992). We obtain the roots of the
nth-order Hermite polynomial by calculating the eigenvalues of
the Jacobi matrix, J, composed of the recurrence relation coeffi-
cients of the Hermite polynomials, and defined as follows:

Jn ¼

a0

ffiffiffiffiffi
b1

p
ffiffiffiffiffi
b1

p
a1

ffiffiffiffiffi
b2

p
..
. ..

.

ffiffiffiffiffiffiffiffiffi
bn�2

p
an�2

ffiffiffiffiffiffiffiffiffi
bn�1

p
ffiffiffiffiffiffiffiffiffi
bn�1

p
an�1

2
666666664

3
777777775
: ð10Þ

The collocation weights, cn, are equivalent to the first component of
the normalized eigenvectors of the Jacobi matrix Jn (Press et al.,
1992). To accommodate Gaussian random variables, ~n, of arbitrary
mean, l, and variance, r2, we map the collocation points as
~ni ¼ rwi þ l. The collocation weights and points can also be ex-
tended to multiple stochastic dimensions using tensor products
for lower dimensions or the Smolyak construction (Xiu and Hestha-
ven, 2005; Xiu, 2007) for higher dimensions. We describe the
technique in the following section and clearly illustrate the compu-
tational savings in Fig. 4.

For each collocation point, ~ni, representing a particular breath-
ing amplitude density over the course of a treatment, we calculate
the corresponding dose deposition, Dð~niÞ. The mean and variance of
the deposited dose are calculated using the forward dose computa-
tions and the collocation weights as follows:

E½Dð~nÞ� �
XN

i¼0

ciDðniÞ; ð11Þ

E½ðDð~nÞ � E½Dð~nÞ�Þ2� �
XN

i¼0

ciðDðniÞ � lðDð~nÞÞÞ2: ð12Þ
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Fig. 4. The two-dimensional sparse grid interpolation nodes based on the level 5 Smolyak algorithm and Gauss–Hermite one-dimensional collocation scheme (left) requires
only 837 points for the similar integration accuracy of the random process with two independent and uncorrelated Gaussian random variables as the full-tensor product
algorithm (right) of the same one-dimensional nodes resulting in 4225 points.
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2.7. Smolyak collocation points

For increasing random dimensions, the number of stochastic
collocation points necessary to accurately compute integrals grows
exponentially. Smolyak’s construction (Smolyak, 1963) is a linear
combination of one-dimensional tensor product formulas that
spans a subspace of the tensor product space and requires far fewer
total collocation nodes than the straightforward d-dimensional
tensor product of one-dimensional collocation rules.

Given a one-dimensional quadrature rule,

Q iðf Þ ¼
X2iþ1

j¼1

cjf ðxjÞ; ð13Þ

where xj and cj are the collocation nodes and weights, respectively,
the d-dimensional numerical approximation to the integralR

X f ðxÞdx using Smolyak’s algorithm is defined recursively as

Q d
l ¼

Xl

i¼0

ðQ i � Q i�1Þ � Q d�1
l�i ð14Þ

where Q�1 = 0 and � denotes the tensor product of one-dimensional
quadrature rules. Alternatively, we can write

Q d
l ¼

X
l�dþ16j~ij6l

ð�1Þl�j
~ij �

d� 1
l� j~ij

� �
� ðQ i1 � � � � � Q id Þ; ð15Þ

where i is the set of one-dimensional quadrature indices over d
dimensions, l is the level of the Smolyak approximation,
j~ij ¼

Pd
k¼1ik, and l P d.

The resulting number of sparse-grid collocation points is signif-
icantly fewer than for the full-tensor construction providing an
accurate cubature formula that does not suffer as significantly
from the ‘‘curse of dimensionality” (Novak and Ritter, 1997) as
the full-tensor construction. This computational savings is clearly
illustrated in Fig. 4 which depicts both the full-tensor collocation
points (4225 nodes) and the corresponding Smolyak points (837
nodes) for numerical quadrature of a process consisting of two
independent and uncorrelated Gaussian random variable inputs.
Because we employ three random dimensions in our model, we ob-
serve a reasonable savings in computation time with Smolyak ver-
sus tensor points. Moreover, we expect significant additional
savings when increased model complexity requires the incorpora-
tion of a greater number of random dimensions.
3. Results

In this section, we present results for a SBRT liver cancer patient
treated with four fractions in the Department of Radiation Oncol-
ogy at the Huntsman Cancer Institute (HCI). Axial, sagittal, and
coronal views of the patient’s static dose plan and three of their
representative RPM traces recorded on different days are depicted
in Fig. 1. The 4DCT images used in this retrospective study were
collected at HCI on a 16-slice large bore LightSpeed RT CT scanner
(GE Health Care, Waukesha, WI) during the SBRT treatment pro-
cess using the 4D RCCT (Ford et al., 2003; Vedam et al., 2003) scan
protocol described below. Scans at each couch position were con-
tinuously acquired in the axial cine mode for a period of time equal
to the maximum breathing cycle plus 1 s with a 0.5 s per revolu-
tion gantry rotation speed and slice-thickness of 1.25 mm at
120 kVp and GE software slice-thickness optimized mA. A total of
roughly 2900 CT slices were acquired at 187 couch positions and
the patient’s breathing amplitude was continuously recorded dur-
ing CT acquisition using Varian’s RPM system. An additional four
RPM respiratory traces were recorded during CT imaging on treat-
ment days and all five traces were subsequently analyzed to deter-
mine the variability in patient breathing behavior. The clinical
static dose calculations were performed using the BrainSCAN
v5.31 (BrainLAB AG, Heimstetten, Germany) radiation treatment-
planning (RTP) system’s pencil beam algorithm.

Fig. 5 illustrates the two-Gaussian mixture model approxima-
tions to the amplitude densities of five recorded RPM breathing
traces. Breathing amplitude histograms are depicted to provide a
basis for comparing the EM fits to the breathing amplitude data.
Panel (f) depicts the GMM fits and clearly illustrates the variations
in the breathing amplitude density over the course of several days.
Note that both the shape of the amplitude and the absolute values
can change significantly. The amplitudes recorded in the first trace
(Panel (a)) range from about 3.5 to 4.8 cm, while the amplitudes for
the fourth RPM signal (Panel (d)) range from about 4 to 5 cm. Addi-
tionally, the qualitative shape of the second, fourth, and fifth (Pan-
els (b), (d), and (e), respectively) GMMs differ greatly slightly from
the first and significantly from the third GMMs (Panels (a) and (c),
respectively). This variability differs from patient to patient and
necessitates patient-specific models of breathing variability and
dose delivery uncertainty.

Examination of the eigenvalues corresponding to variation in
the parameters depicted in Panel (d) of Fig. 6 suggests that only
three PCA components are necessary to accurately capture the var-
iability in breathing. For visual comparison, the reconstruction of
the GMM models for the five RPM breathing traces is depicted in
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Fig. 5. The Gaussian mixture model provides an estimation of amplitude densities of the RPM breathing traces. The GMM fit for each of the five RPM traces overlays the
corresponding histogram of breathing amplitudes. The daily variations in amplitude density of the different RPM traces are evident on the bottom right panel.
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panels (a), (b), and (c) of Fig. 6. Though the average RMS difference
between the GMMs fitted to the breathing and the reconstructed
GMMs decreases from 3.8 	 10�4 to 1.7 	 10�16 from three to four
components, the eigenvalue of the fourth principal component of
the Gaussian Mixture Model parameters is quite small. The addi-
tional accuracy gained by including four rather than three compo-
nents in the reconstruction is on the order of slight variations in
the RPM measurement setup and, moreover, does not significantly
impact the stochastic dose calculation. As such, it is not sufficient
to justify the increased system complexity. The reasonably close
correspondence between the original fitted and reconstructed
GMMs using only three PCA components enables significant reduc-
tion in the complexity of the stochastic system owing to the corre-
spondingly reduced dimensionality of the stochastic space. Thus,
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(c) four component reconstruction

Fig. 6. The reconstruction of the Gaussian mixture model fits to the breathing traces are
respectively. The reconstructions are depicted by the dashed color lines and the GMM fits
reconstruction gives very close reproductions of the original mixture model fits with only
root mean squared difference between the original fits and the reconstructions for diffe
corresponding to each component.
we use three components to capture the variation observed in
the breathing traces.

Fig. 7 depicts the average and standard deviations of deposited
dose over a single treatment for a sagittal view. A comparison of
the average dose depositions to the static dose deposition calcula-
tion in Fig. 1 shows little difference. However, examination of the
standard deviation in dose shows non-trivial high values (greater
than 0.2 Gray) occurring near the boundaries of the lesion. From
our experiments, we have observed that large standard deviations
in dose often correspond to regions of high dose gradient that un-
dergo large respiratory-induced organ deformation. Such areas are
significant because they indicate planned dose regions that may
differ significantly from actual dose deposition during treatment
and are likely candidates for over- or under-dosing.
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to the patient breathing traces are shown in black. The principal component analysis
three independent and uncorrelated eigenvectors (b). Panel (d) depicts the average
rent numbers of principal components in the reconstructions and the eigenvalues
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To validate our approach, we present in Fig. 8 the convergence
in gPC-SC and traditional MC dose statistics for the patient case de-
picted in Fig. 7. The convergence data depicted is the RMS differ-
ence between the current and final number of forward solutions
for the average and standard deviation of dose calculations. It is
clear that with only 2744 realizations the gPC-SC method has
reached greater convergence than the MC method with 155,000
forward dose solutions. Thus, for this particular model, gPC-SC
exhibits significantly faster convergence than MC.
4. Discussion

The goal of this study was to demonstrate the utility and feasi-
bility of a framework for quantifying the variability in respiratory-
induced organ motion and incorporate that stochastic model into
the calculation of dose deposition for SBRT treatment-planning.
In contrast to Monte Carlo methods which are clinically infeasible
because they require weeks or even months to compute accurate
dose deposition statistics, the efficiency of the proposed approach
enables physicians to perform statistical studies of dose response
to breathing induced organ motion on a clinically realistic time
scale. Statistical dose computations are particularly useful in plan-
ning because they allow physicians to identify and avoid dose
plans in which high standard deviations in dose coincide with radi-
ation sensitive tissues e.g., the spinal cord and cardiac tissue. We
propose that accurate statistical models of predicted dose deposi-
tion resulting from organ motion will enable physicians to better
assess the impact of SBRT dose plans on normal tissue and tumor
lesions and reduce the tumor margins currently incorporated into
the clinical SBRT treatment process.
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