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Abstract

Markovian models of ion channels have proven useful in the reconstruction of experimental data and prediction of cellular

electrophysiology. We present the stochastic Galerkin method as an alternative to Monte Carlo and other stochastic methods for

assessing the impact of uncertain rate coefficients on the predictions of Markovian ion channel models. We extend and study two

different ion channel models: a simple model with only a single open and a closed state and a detailed model of the cardiac rapidly

activating delayed rectifier potassium current. We demonstrate the efficacy of stochastic Galerkin methods for computing solutions to

systems with random model parameters. Our studies illustrate the characteristic changes in distributions of state transitions and electrical

currents through ion channels due to random rate coefficients. Furthermore, the studies indicate the applicability of the stochastic

Galerkin technique for uncertainty and sensitivity analysis of bio-mathematical models.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Ion channels are pore-forming proteins that permit and
control the diffusion of ions across cellular membranes
(Hille, 2001). They are the object of intensive research,
both from the experimental as well as the mathematical
perspective. As a consequence of this emphasis, various
approaches exist to mathematically model ion channel
behavior. Prior to the experimental verification of ion
channel existence, models were already utilized to predict
membrane response and the mechanisms underlying
channel behavior. Such models are now ubiquitous in the
ion channel research community.

Most mathematical electrophysiological models of ion
channels fall into one of two categories: Markovian or
Hodgkin–Huxley type. Markovian models describe ion
e front matter r 2006 Elsevier Ltd. All rights reserved.
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channel behavior by assigning probabilities to potential
channel states such as open, inactive, and closed states
(Colquhoun and Hawkes, 1995a). Transitions between the
states are governed by rate coefficients which are a function
of physical parameters, e.g. temperature, transmembrane
voltage and ion concentrations. Hodgkin–Huxley type
models of ion channels follow a mathematical formalism
introduced in the seminal work of Hodgkin and Huxley for
describing the electrophysiology of membrane of a squid
axon (Hodgkin and Huxley, 1952). Kinetics of channel
properties are described by coefficients, which are depen-
dent on time and physical parameters. The coefficients
affect the current flow through channels in a multiplicative
manner.
The traditional experimental approach for investigating

and quantifying ion channel behavior involves the simul-
taneous application of voltage clamping protocols and
measurement of the resulting electrical currents through
either single or multiple membrane embedded ion channels.
Ion channel modeling has proven to be a valuable addition
to the experimental methodology and is capable of
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1The term ‘‘polynomial chaos’’ was designated by Wiener in his 1938

seminal paper, long before the field of dynamical chaos theory became

popular.
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reconstructing experimental data and providing mecha-
nistic insights into physiological and pathophysiological
phenomena (Hodgkin and Huxley, 1952; McAllister
et al., 1975; Luo and Rudy, 1991; Rudy, 2004; Sachse,
2004).

Noise in the current response of electrically active
membranes can be categorized as either thermal or so-
called excess noise (Verveen and DeFelice, 1974). Excess
noise has been proposed to result from the granular ion
current transport through channel pores, ion–ion interac-
tion, and stochastic conformational changes of the
channels such as their opening and closing. Further sources
of fluctuations, particularly in macroscopic currents
through ensembles of ion channels, may originate from
the heterogeneity of kinetic properties and local variations
in physical conditions in the channel vicinity.

Analysis of macroscopic current noise and single channel
stochasticity provides significant biophysical insights and is
an important tool for modeling (Colquhoun and Hawkes,
1995a, b; Colquhoun and Sigworth, 1995). However, ion
channel models typically neglect noise and describe only
the average behavior. Rather than computing a spread of
outcomes resulting from randomly distributed input data
and/or model parameters, these models produce a single
result for deterministic input data and model parameters.
While such simplifications are appropriate for certain
systems, they render the model incapable of reconstructing
heterogeneous behavior of channels. These restrictions can
significantly reduce the insights to be gained from
computational simulations.

In this paper, we assume Markovian models of ion
channel electrophysiology and investigate the stochastic
state dynamics and current response to randomly distrib-
uted rate coefficients. The approach aims at assessing
current noise resulting from heterogeneity of kinetic
channel properties and physical conditions in the channel
vicinity.

A common method of investigating the effects of
random parameters involves simulating the model multiple
times, each with different values for the rate coefficients
(varied individually or in combination). The current
responses to each set of rate coefficients can then be
compared to obtain an understanding of the effect of the
rate coefficients. This is similar to taking specific realiza-
tions from a randomly distributed rate constant and using
those values to run the deterministic model. From these
discrete results, one can calculate an estimate of the
response statistics, e.g. the mean and variance. As one
increases the number of samples, the solution statistics
converge. Such an approach falls under the category of
sampling-based stochastic methods.

Requiring only a straightforward extension of the
deterministic solver, Monte Carlo methods are the best
known of these techniques due to their ease of implemen-
tation. However, such solutions are often computa-
tionally prohibitive even for systems of relatively low
complexity, as they converge as 1=

ffiffiffiffiffi
N
p

where N is the
number of realizations. Thus a large number of trials are
necessary to obtain accurate statistics. Latin hypercube
sampling (Loh, 1996), the quasi-Monte Carlo method
(Niederreiter et al., 1998), and the Markov chain Monte
Carlo method (Gamerman, 1997) all have accelerated
convergence properties compared to the Monte Carlo
method while maintaining ease of implementation. How-
ever, each method imposes certain restrictions on the
process of interest which in turn limits their general
applicability.
An alternative method to determine the effect of rate

coefficient values upon a particular ion channel model is to
assume a probability density function and directly calculate
the current as a result of the (now) stochastic ion channel
model. Such non-sampling methods avoid taking large
samples of repetitive deterministic solvers and include
perturbation methods (Kleiber and Hein, 1992) and
second-moment analysis (Liu et al., 1986). Though more
efficient than Monte Carlo under certain conditions, these
methods have limited utility and robustness as they are
only capable of resolving relatively small perturbations in
both the random inputs and outputs. This is difficult to
guarantee, especially for nonlinear systems where small
perturbations in inputs can result in relatively large
perturbations in the response.
In this paper, we adopt the generalized polynomial

chaos–stochastic Galerkin (gPC–SG) method as an effi-
cient computational means of obtaining solutions to
complex stochastic differential systems. Generalized poly-
nomial chaos (gPC) represents random processes via
orthogonal polynomials (Xiu and Karniadakis, 2002a, b).
It is a generalization of the Wiener-Hermite polynomial
chaos expansion (Wiener, 1938)1 which employs Hermite
polynomials. The generalizations utilize sets of orthogonal
polynomials to allow efficient representation of random
processes with arbitrary probability distribution functions.
Such expansions exhibit fast convergence rates when the
stochastic response of the system is sufficiently smooth in
the random space.
The traditional approach involves a Galerkin projection

of the governing equations to the random polynomial basis
functions defined by gPC, such that the mean square error
of the residue is minimized. This is referred to as the
stochastic Galerkin method, which efficiently reduces the
stochastic governing equations to a system of deterministic
equations that can be solved by conventional numerical
techniques. Such a gPC–SG approach is capable of
resolving systems with relatively large perturbations in
both the inputs and responses and has been successfully
applied to model uncertainty in complex stochastic solid
and fluid dynamic problems (Ghanem and Spanos, 1991;
Xiu and Karniadakis, 2002a, b; Xiu and Karniadakis,
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Fig. 1. State diagram for (a) simple and (b) IKr model.

Table 1

Physical quantities and constants

Name Symbol Value

Temperature T 293.00K

Faraday’s constant F 96:485 �Cmmol�1

Gas constant R 8:3144 Jmol�1 K�1

Potassium reversal potential EK 87.027mV
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2003). However, the resulting deterministic equations can
become very complicated and potentially intractable if the
system of differential equations has nontrivial and/or
nonlinear forms. Such difficulties are not typical of
Markovian ion channel models which we study in this
paper.

In this work we employ the gPC–SG method to assess
the impact of rate coefficients on computational simula-
tions of cardiac ion channel phenomena. We seek a
quantitative understanding of the relationship between
the distributions of rate coefficients and ion channel
currents as a result of deterministic voltage clamping
protocol. We first consider a simple Markovian model of
ion channel behavior, and then apply our technique to a
cardiac ion channel model of the slowly activating delayed
rectifier potassium current, IKr (Iyer et al., 2004). While we
only consider random rate coefficients in ion channel
models, this methodology can be applied to other para-
meters, and, furthermore, a vast number of bio-mathema-
tical models.

2. Stochastic Galerkin application

2.1. Generalized polynomial chaos expansion

We first briefly demonstrate the application of gPC to a
general stochastic process with N independent parameters.
To assess the impact of each of these parameters, we model
them as random variables and assume that they are
functions of N separate, independent and uncorrelated
random variables, denoted ðnÞ ¼ ðx1; x2; . . . ; xNÞ. The
output of the system, f ðnÞ, is dependent on the para-
meters and is therefore also a random process. Utilizing
gPC expansions, such a process is approximated by a
linear combination of orthogonal polynomials, fðnÞ as
follows:

f ðnÞ �
X1
i¼0

f̂ ifiðnÞ, (1)

f̂ i ¼

Z 1
�1

f ðnÞfiðnÞdm ¼
Z 1
�1

wðnÞf ðnÞfiðnÞdn, (2)

where f̂ i is a projection of the process against the ith
polynomial, m and wðnÞ denote the probability measure and
probability density function associated with the probability
of the chosen polynomial basis functions. It has been
shown that optimal convergence can be achieved by
choosing the gPC type of orthogonal polynomials based
on the probability distribution of the input parameters, e.g.
Hermite polynomials are more appropriate for the
Gaussian distribution, Legendre for uniform, etc. (Xiu
and Karniadakis, 2002a, b). The general expression for the
Legendre polynomials is given by

Lnðx1; . . . ; xN Þ ¼ ð2
nn!Þ�1

@n

@x1 . . . @xN

½ðnTn� 1Þn�. (3)
The Legendre polynomials as a function of a single random
variable, x are

f0ðxÞ ¼ 1; f1ðxÞ ¼ x; f2ðxÞ ¼
1
2
ð3x2 � 1Þ,

f3ðxÞ ¼
1
2
ð5x3 � 3xÞ; . . . ð4Þ

and are applied in the gPC–SG solutions of the systems
described in Sections 2.2 and 2.3.

2.2. Simple Markovian model

We first illustrate the application of the stochastic
Galerkin representation to compute the response of a
simple Markovian model of ion channels to stochastically
distributed rate coefficients. The model mimics the
behavior of unspecified ion channels as a two-state process
with a single open and closed state with state the transition
dynamics depicted in Fig. 1a. The deterministic current
response of this system is described by the following system
of differential equations:

IðtÞ ¼ ḠOðtÞðV ðtÞ � EK Þ, (5)

dCðtÞ

dt
¼ �aðV ÞCðtÞ þ bðV ÞOðtÞ, (6)

dOðtÞ

dt
¼ �bðV ÞOðtÞ þ aðV ÞCðtÞ, (7)

where O and C denote the probability an ion channel is in
the open or closed state, respectively. V ðtÞ is the voltage
across the cell membrane, and aðV Þ ¼ ameaeV and bðV Þ ¼
bmebeV are the rate coefficients for state transitions. IðtÞ

denotes the electrical current through the channels. Further
constants and parameters are given in Tables 1 and 2.
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Table 2

Parameters and initial conditions for the simple model

Name Symbol Mean value

Summary channel conductance Ḡ 0:2mS=mF
Initial close probability Cðt ¼ 0Þ 7:07� 10�1

Initial open probability Oðt ¼ 0Þ 2:93� 10�1

Rate constant (function of voltage V) a 4:0� 10�2e1:0�10
�2 V m s�1

Rate constant (function of voltage V) b 1:0� 10�2e�1:0�10
�2 V m s�1

Concentration of extracellular potassium ½Kþ�o 4.0mM

Concentration of intracellular potassium ½Kþ�i 1:256� 102 mM

S.E. Geneser et al. / Journal of Theoretical Biology 245 (2007) 627–637630
Markovian ion channel models assume that the law of
large numbers applies to the ion channel system in question
and model its mean behavior responses. In discussing
randomness or stochasticity in the following text, we are
not referring to this aspect of the models. Instead, we
investigate the effect of introducing random parameters to
Markovian models.

The above system is deterministic and can be solved
using the typical numerical methods for ordinary differ-
ential systems, such as the Euler and Runge-Kutta methods
(Hairer et al., 1993). We now consider the response of the
system when the rate coefficient multiplicative term am is
random, and has a given probability density function.
Because am is a random process, a is also random, and the
probability density function is also known.

We first choose the appropriate basis polynomials for the
given probability density function of the rate constant,
aðnÞ. For example, if aðnÞ is assumed to be a uniform
random process with given mean, Z, and half interval
length, s: utilizing Legendre polynomials for the basis,
fðnÞ, the representation simplifies to aðnÞ ¼ â0f0ðnÞþ

â0f1ðnÞ þ � � � þ âPfPðnÞ ¼ Zþ sn. This simplification oc-
curs because in the case of a uniform process, the first
mode, â0 is Z, the second mode, â1, is s, and only linear
Legendre polynomials are required to fully represent a
uniform process. This framework is valid for random
processes with any underlying probability distribution
function.

We then decompose the remaining stochastic functions
into weighted sums of the Pþ 1 polynomial basis functions
as follows:

aðnÞ ¼ Zþ sn, (8)

Iðt; nÞ ¼
XP

j¼0

Î jðtÞfjðnÞ, (9)

Oðt; nÞ ¼
XP

k¼0

ÔkðtÞfkðnÞ, (10)

Cðt; nÞ ¼
XP

l¼0

ĈlðtÞflðnÞ, (11)
where Z and s are known, and Î j, Ôk, and Ĉl ðj; k; l ¼
0 . . .PÞ must be computed. The numerical accuracy
improves with increased expansion order, p, and the
number of polynomials necessary for the expansion is P ¼

ðN þ pÞ!=N!p!� 1 where N is the number of random
variables. This number can become computationally
intractable for large N, and as such, we restrict the
experiments presented here to two uncorrelated, indepen-
dent random variables. Note that basis polynomials higher
than linear are required for the representation of channel
states and current, as they are not guaranteed to have
uniform distributions due to the non-linear interactions of
the model equations. The states and current are assumed to
have non-random distributions at t ¼ 0, and their PDFs
evolve from their initial probability density as a conse-
quence of the stochastic differential operator.
For the stochastic Galerkin method, we chose the test

functions to be identical to the polynomial basis, or trial
functions. Substituting the representations of the current
and states in Eqs. (8)–(11) and the representation of aðnÞ
into the system and projecting against the test functions
(which we take to be the basis polynomials), we obtain for
each m ¼ 0; . . . ;P:

XP

j¼0

MmjÎ jðtÞ ¼ Ḡ
XP

k¼0

MmkÔkðtÞðV ðtÞ � EK Þ, (12)

d

dt

XP

l¼0

MmlĈlðtÞ ¼ �
XP

l¼0

½ZCml0 þ sCml1�ĈlðtÞ

þ b
XP

k¼0

MmkÔkðtÞ, ð13Þ

d

dt

XP

k¼0

MmkÔkðtÞ ¼ � b
XP

k¼0

MmkÔkðtÞ

þ
XP

l¼0

½ZCml0 þ sCml1�ĈlðtÞ, ð14Þ

where Cijk ¼
R
S
fiðnÞfjðnÞfkðnÞdm and Mij ¼

R
S
fiðnÞfj

ðnÞdm. One can compute these values by quadrature to
populate the matrices C0 and C1 described in the following
section. In this expression, S denotes the domain of
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integration which is determined by the support of random
variables n. For example, for uniform random variables,
S ¼ ½�1; 1�N .

This set of stochastic differential equations can be
represented by the following matrix system:

C0IðtÞ ¼ ḠðV ðtÞ � EK ÞC0OðtÞ, (15)

C0
d

dt
CðtÞ ¼ �½ZC0 þ sC1�CðtÞ þ bC0OðtÞ, (16)

C0
d

dt
OðtÞ ¼ �bC0OðtÞ þ ½ZC0 þ sC1�CðtÞ, (17)

where C0 and C1 are (Pþ 1) by (Pþ 1) matrices such that
ðC0Þij ¼ C0ij and ðC1Þij ¼ C1ij, and I , O, and C are vectors
of size Pþ 1 with ðIðtÞÞi ¼ Î iðtÞ, ðOðtÞÞi ¼ ÔiðtÞ, and
ðCðtÞÞi ¼ ĈiðtÞ.

Due to the properties of the inner product and the basis,
both C0 and C1 are symmetric positive definite, and thus
invertible.

This system can further be simplified to

IðtÞ ¼ ḠðV ðtÞ � EK ÞOðtÞ, (18)

d

dt
CðtÞ ¼ �½Zþ sC�10 C1�CðtÞ þ bOðtÞ, (19)

d

dt
OðtÞ ¼ �bOðtÞ þ ½Zþ sSC�10 C1�CðtÞ (20)

which can also be solved via the typical numerical ODE
solvers.

2.3. Markovian model of rapidly activating delayed rectifier

Kþ current

We chose a model of the rapidly activating delayed
rectifier Kþ current (IKr) in human ventricular subepicar-
dial myocytes developed by Iyer et al. (2004) to investigate
the reaction of a more complex ion channel model to
random parameters.

The system of ordinary differential equations describing
the behavior of the IKr channels is given by

IKr ¼ ḠO

ffiffiffiffiffiffiffiffiffiffiffiffi
½Kþ�o
4

r
ðV � EK Þ, (21)

dC1

dt
¼ �a0C1 þ b0C2, (22)

dC2

dt
¼ �ðb0 þ kf ÞC2 þ a0C1 þ kbC3, (23)

dC3

dt
¼ �ða1 þ ai3 þ kbÞC3 þ kf C2 þ b1OþCI , (24)

dI

dt
¼ �ðCþ biÞI þ ai3C3 þ aiO, (25)

dO

dt
¼ �ðb1 þ aiÞOþ a1C3 þ biI . (26)
The parameters and initial conditions are specified in
Table 3. The state transitions are depicted in Fig. 1b.
For this system, the rate coefficients kf and kb are

constant values, and all other rate coefficients are of the
form ameaeV , consisting of a multiplicative factor, am, and
an exponential factor, ae.
We can allow any of the parameters to be stochastic in

the model and apply gPC as described for the simple
model. Even random parameters expressed as rational,
trigonometric or exponential functions can be handled
as one would normally accomplish Galerkin projec-
tions. To do this, one must project the non-linear func-
tion of random parameters onto the SG basis chosen
for the system. In this case, the exact integrals in
Galerkin projections are usually replaced by discrete
(multivariate) integration rules, e.g. quadratures, with
sufficient accuracy. We refer the reader to a standard
reference on higher-order methods (Canuto et al., 1987) for
further information concerning implementation of projec-
tions and quadrature.

3. Results

3.1. Simple Markovian model

We first present the simulated currents of the simple
channel model for a given voltage clamping protocol
(Table 4) with random rate coefficients of uniform
distributions. The various computational results presented
for this model assume the voltage clamping protocol shown
in the insert of Fig. 2a. The mean current responses for all
stochastic experiments presented for the simple model are
nearly visually indistinguishable from the response to the
deterministic model and are superimposed in Fig. 2a. The
stochastic rate coefficients have little effect on the mean of
the solution because the random spread of coefficient
multiplier values affect the current nearly symmetrically
about the deterministic solution.
The standard deviation of the current for the stochastic

rate coefficient multiplier, amðnÞ, with all other model
parameters deterministic exhibits similar behavior to the
standard deviation when only bmðnÞ is stochastic (Fig. 2b).
In both cases, the maximum of the standard deviation are
nearly the same. The standard deviation in both cases
increases for t 2 ½0; 2� s because the distribution of rate
coefficients result in a distribution of equilibrium current
for �60mV. Additionally, the equilibrium values both
reach for the various clamping voltages are very similar.
However, the random bm case reaches its maximum very
quickly after the voltage jump at t ¼ 2 s, while am is delayed
in reaching its maximum standard deviation. Additionally,
the elevation in standard deviation after t ¼ 2 s is
prolonged for amðnÞ as compared with bmðnÞ. The decrease
in voltage at t ¼ 4 s results in a marked decrease in
standard deviation for both cases.
When both rate coefficients are assumed to be stochastic

functions of the same random variable (Fig. 2), the
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Table 4

Voltage clamping protocols

Time interval Voltage (mV)

Simple model protocol

[0,2] �60

(2,4] �20

(4,5] �60

IKr activation protocol

[0,0.06] �80

(0.06,2] 40

(2,3.9] �70

(3.9,4] �80

IKr inactivation protocol

[0,0.06] �80

(0.06,2.01] 40

(2.01,4.06] �140

(4.06,4.12] �80

Table 3

Parameters and initial conditions for the IKr model

Parameter Symbol Mean value

Summary channel conductance Ḡ 0:0186mS=mF
Concentration of extracellular potassium ½Kþ�o 4.0mM

Concentration of intracellular potassium ½Kþ�i 1:256� 102 mM

Initial probability C1ðt ¼ 0Þ 9:967� 10�1

Initial probability C2ðt ¼ 0Þ 4:341� 10�4

Initial probability C3ðt ¼ 0Þ 7:634� 10�5

Initial probability Iðt ¼ 0Þ 1:533� 10�6

Initial probability Oðt ¼ 0Þ 9:512� 10�6

Rate constant (function of voltage V) a0 0:0171e0:033 V m s�1

Rate constant (function of voltage V) b0 0:0397e�0:0431 V m s�1

Rate constant (function of voltage V) a1 0:0206e0:0262 V m s�1

Rate constant (function of voltage V) b1 0:0013e�0:0269 V m s�1

Rate constant (function of voltage V) ai 0:1067e0:0057 V m s�1

Rate constant (function of voltage V) bi 0:0065e�0:0454 V m s�1

Rate constant (function of voltage V) ai3 8:45� 10�5e6:98�10
�7 V m s�1

Rate constant (function of voltage V) C b1biai3
a1ai

Rate constant kf 0:0261m s�1

Rate constant kb 0:1483m s�1
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behavior of the standard deviation is markedly different
from that of the coefficients varying individually. The
standard deviation is reduced overall and is zero from 0 to
2 s. This occurs because the rate coefficients are functions
of the same random variable, x1. In each realization of the
stochastic distribution, the rate coefficient multipliers are
perturbed from their mean value by the same percentage if
the standard deviations of their distributions are the same
percentage. We expect the equilibrium values of the current
to be the same for all of the realizations of such a stochastic
system, and thus the zero values in the standard deviation
for t 2 ½0; 2� s and t ¼ 4 s. We also observed a reduced
overall standard deviation as compared to the two rate
coefficients varying independently. In all experiments, the
greatest standard deviation is observed just after t ¼ 2 s,
when the mean current is rising fastest. This suggests that
the rate coefficient values exhibit the greatest affect upon
the speed of current increase.
When both are assumed to be stochastic functions of

independent random variables, the realizations of rate
coefficients amðx1Þ and bmðx2Þ are no longer tied to each
other as for the previous example. The standard deviation
shown in Fig. 2 appears to be more of a combination of the
standard deviations resulting from the two coefficients
varying individually. Also, the overall standard deviation
in this case is higher than any of the other stochastic
experiments with this model.

3.2. Markovian model of IKr

The standard deviations resulting from random uniform
distributions for each IKr individual rate coefficient for
both activation and inactivation voltage clamping proto-
cols (Table 4) are grouped into several categories according
to their qualitative behavior. The mean current responses
for all the random parameters for the activation and
inactivation protocol are superimposed in Figs. 3 and 8,
respectively. As in the simplified model, the mean currents
for most of the random experiments are not visually
distinguishable with two exceptions. The random para-
meter am

i ðnÞ results in an elevation in mean current for the
activation protocol from t ¼ 0 s while random bm

1 ðnÞ results
in an elevation in the mean current for the same protocol
from 2 s. The mean current responses for all random
inactivation experiments are nearly indistinguishable from
each other.
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a b

Fig. 2. Stochastic results for simple model with random a and b: (a) The mean currents are shown along with the insert of the applied voltage protocol. (b)

The standard deviations are shown for random rate constant multiplier am (solid) and bm (dashed), in case of both are functions of the same random

variable, i.e. amðx1Þ and bmðx1Þ (dotted), and in case of am and bm are functions of two separate, uncorrelated and independent random variables, i.e. amðx1Þ
and bmðx2Þ (dash-dotted). For all of the experiments, the mean values of the rate coefficient multipliers are am ¼ 4:00� 10�2 m s�1 and

bm ¼ 5:00� 10�3 m s�1. When given a stochastic distribution, amðxÞ is centered around 4:00� 10�2 m s�1 and ranges uniformly from �50% of the

mean value, while bm has a uniform distribution centered around 5:00� 10�3 m s�1 and ranges from �50%.

Fig. 3. Response of IKr model to activation: the mean current from the

deterministic problem is similar to the currents of the various random

experiments. The voltage clamping protocol is depicted in the insert. Fig. 4. Random bm
1 and am

i3 response to activation: the normalized

standard deviation of the current is shown for random rate coefficients bm
1

(solid) and am
i3 (dashed). In both cases, the random rate coefficients have

uniform distributions centered around their text values and ranging from

�50% of their mean value. The maximum values for the standard

deviations are given in Table 5.
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Random bm
1 ðnÞ and am

i3ðnÞ (Figs. 4 and 9, Table 5)
result in qualitatively similar standard deviations in
current for both activation and inactivation protocols.
The greatest effect is seen after t ¼ 2 s, but the standard
deviation shows a brief increase for the inactiva-
tion protocol as opposed to a more prolonged effect
for the activation protocol. Maximum standard devia-
tion values reached for both these random variables
indicate that their impact is more pronounced for the
inactivation protocol. This is not so surprising in
the case of am

i3ðnÞ as it controls the rate of change from
the third closed state C3 to the inactive state I and its
effect upon channel inactivation is orders of magnitude
greater than upon activation. Rate coefficient bm

1 ðnÞ
controls the transfer from the open state O to the third
closed state C3.
Random am

0 ðnÞ, b
m
0 ðnÞ, a

m
i ðnÞ, kf ðnÞ and kbðnÞ give similar

standard deviations in the current response (Figs. 5 and 10)
to both protocols. For activation, the effect is most
pronounced between t ¼ 0 and 1 s. Here, we observe that
the effect of these rate coefficient multipliers are stronger
for the activation protocol than for inactivation, excepting
the case of am

1 ðnÞ, which regulates the transition from the
third closed state C3 to the open state O.
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Table 5

Maximum standard deviations of the current in response to random rate

coefficients for activation protocol

Random rate coefficient Maximum standard deviation

am
0 4:14� 10�2

bm
0 6:41� 10�3

am
1 6:62� 10�2

bm
1 9:65� 10�2

am
i 1:18� 10�1

bm
i 1:21� 10�1

am
i3 2:32� 10�3

kf 7:83� 10�2

kb 5:80� 10�2
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Fig. 5. Random am
0 , bm

0 , am
1 , kf and kb response to activation: the

normalized standard deviation of the current is shown for random rate

coefficients am
0 (grey), bm

0 (solid), am
1 (dotted), kf (dashed), and kb (dash-

dotted), respectively. In each case, the rate coefficients have uniform

distributions centered around their text values and ranging from �50% of

their mean value.

Fig. 6. Random am
i and bm

i response to activation: the normalized

standard deviation of the current is shown for random rate coefficients am
i

(solid) and bm
i (dashed). Maximum values are given in Table 5. In both

cases, the rate coefficients have uniform distributions centered around

their text values and ranging from �50% of their mean value.
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The standard deviation resulting from random rate
coefficient multipliers, am

i ðnÞ and bm
i ðnÞ, is depicted in

Figs. 6 and 11. The standard deviations are unlike each
other and different to standard deviations for the other
stochastic rate coefficients. These parameter control the
transitions between the open and inactivation states, and in
the case of activation, have the highest maximum standard
deviations of all the parameters studied. In the case of
inactivation, bm

i ðnÞ, which controls the transition from the
inactive to the open state, has the highest standard
deviation. This effect is very brief and occurs at t ¼ 2.
The parameter am

i ðnÞ, which controls the rate of change
from the open O to the inactive state I, has a less marked
effect on the inactivation current response than both am

i3ðnÞ

and am
1 ðnÞ.
There are numerous possible permutations of rate
coefficients, and SG can efficiently compute the standard
deviations resulting from any of these combinations of
random parameters. Due to space considerations, we only
provide one instance here. Fig. 7 illustrates the different
behavior as a result of perturbing both bm

1 ðnÞ and kf ðnÞ as a
function of the same random variable or two independent
random variables. Though there is not a marked difference
in the qualitative behavior in the IKr model, the latter case
results in a slightly larger maximum standard deviation in
the current between 2 and 3 s for the activation protocol
(see also Figs. 8–11, Table 6).

4. Summary and conclusions

In this work a stochastic numerical technique based on
Galerkin projections is introduced to extend and study
Markovian models of ion channel electrophysiology.
The generalized polynomial chaos stochastic Galerkin
(gPC–SG) method allows one to take stochastic model
parameters into account. We have demonstrated that
gPC–SG is an efficient method of determining the effects
of stochastic model parameters on the output of models.
This information is beneficial in sensitivity analysis which
has a number of potential applications, including model
development and parameter tuning. Although slightly
more complicated mathematically (from an implementa-
tion perspective) than standard Monte Carlo methods, this
technique provides a computationally efficient means of
modeling uncertainty.
The results of our exemplary studies with ion channel

models indicate that rate coefficients modulate the stan-
dard deviation of electrical currents particularly after
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a b

Fig. 7. Random bm
1 and kf response to activation: these figures depict the standard deviation of the current response for IKr to the activation voltage

clamping where both bm
1 and kf have uniform distributions centered around the text value and range to �50% of the mean values. (a) Both are functions

of a single random variable. (b) Each is a function of two independent random variables.

Fig. 8. IKr model response to inactivation: the current responses for all

random experiments are shown together with the activation voltage

clamping protocol (insert). The mean current for all random computa-

tional experiments were not significantly different from the deterministic

response.

Fig. 9. Random bm
1 and am

i3 response to inactivation: the normalized

standard deviation of the current response is shown for random rate

coefficients bm
1 (solid) and am

i3 (dashed). In both cases, the coefficients have

uniform distributions ranging from �50% of their mean value. Maximum

values for the standard deviations are given in Table 6.
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voltage changes. This effect can also be observed in the
study of uncertain rate coefficients aðnÞ and bðnÞ in the
simple model. Here, an increase of the standard deviation is
obvious after the voltage step from �80mV to �20mV
at t ¼ 2 s (Fig. 2b). Asymptotic behavior of standard
deviations to a constant value is observed in regions of
constant clamping voltages. Further characterization of
this behavior might show that the associated curve can be
more accurately described as mono- or biexponential.
Furthermore, in our study of the complex model we can
identify groups of rate coefficients according to their
impact on the standard deviation. Further analysis of this
identification might help to characterize state transitions in
complex stochastic Markovian models and ultimately to
identify a reduced subset of states that achieve the
necessary dynamics for the ion channels of interest.
In future work we will apply the technique to study

stochastic fluctuations of ion channels and their impact on
electrophysiology of cardiac cells. We will study current
noise resulting from heterogeneity of kinetic channel
properties and physical conditions in the channel vicinity.
We expect that studies of channels mutations will profit
from an application of the stochastic technique. The
technique has potential to simplify prediction of electro-
physiological consequences for heterozygous conditions of
channels (Splawski et al., 2005), i.e. those are composed of
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Fig. 10. Random am
0 , bm

0 , am
1 , kf and kb response to inactivation: the

normalized standard deviation of the current response is shown for

random rate coefficients am
0 (solid), bm

0 (grey), am
1 (dotted), kf (dash-

dotted), and kb (dashed) respectively. In each case, the rate coefficients

have uniform distributions ranging from �50% of their mean value.

Table 6

Maximum standard deviations of the current in response to random rate

coefficients for inactivation protocol

Random rate coefficient Maximum standard deviation

am
0 1:96� 10�2

bm
0 4:00� 10�3

am
1 1:04� 10�1

bm
1 1:98� 10�1

am
i 6:19� 10�2

bm
i 1:78� 10�1

am
i3 6:75� 10�2

kf 4:37� 10�2

kb 2:88� 10�2
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Fig. 11. Random am
i and bm

i response to inactivation: these normalized

standard deviation of the current is shown for random rate coefficients am
i

(dashed), bm
i (solid). Maximum values are given in Table 6. In both cases,

the rate coefficients have uniform distributions ranging from �50% of

their mean value.
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wild-type and mutated subunits and show heterogeneity of
kinetic properties. Major steps to generate stochastic
models will be the fitting of experimental data to the
stochastic parameters and their validation. We propose
that stochastic Galerkin methods could be used with an
inverse solver to determine the model parameter prob-
ability distribution functions that generate the distributions
of the system outputs observed experimentally.
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