Simple Shear Testing of
Parallel-Fibered Planar Soft
Tissues

The simple shear test may provide unique information regarding the material response of
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e-mail: jeff.weiss@utah.edu rial response from the overall stresses. However, inhomogeneities in the strain field due
to clamping and free edge effects have not been documented. The finite element method
Department of Bioengineering, was used to study finite simple shear of simulated ligament material parallel to the fiber
The University of Utan, direction. The effects of aspect ratio, clamping prestrain, and bulk modulus were assessed
50 South Central Campus Drive #2480, using a transversely isotropic, hyperelastic material model. For certain geometries, there
Salt Lake City, UT 84112 was a central area of uniform strain. An aspect ratio of 1:2 for the fiber to cross-fiber

directions provided the largest region of uniform strain. The deformation was nearly
isochoric for all bulk moduli indicating this test may be useful for isolating solid vis-
coelasticity from interstitial flow effects. Results suggest this test can be used to charac-
terize the matrix properties for the type of materials examined in this study, and that
planar measurements will suffice to characterize the strain. The test configuration may be
useful for the study of matrix, fiber-matrix, and fiber-fiber material response in other types
of parallel-fibered transversely isotropic soft tissud®Ol: 10.1115/1.1351891

1 Introduction generated longitudinal shear planes. Results demonstrated that
Collagenous soft tissues are subjected to complex threli(%;_aments have a finite resistance to shear. Shear properties have
dimensional deformations in vivo that may include tension, co giso been investigated via tensis] or biaxial [6] tests with an
. ) ’ blique fiber direction. These techniques apply both shear and
pression, and shear. The shear behavior affects load transfer Sion
tween microstructural parts of the tissue. Accurate measuremen :

f material fficients that the shear behavior of Soft i The finite simple shear test could provide unique information
of material coetticients that govern the shear behavior of So .'?égarding the material response of planar, transversely isotropic
sue can improve the descriptive and predictive value of consti

i del ificati f the eff £ di oft tissues such as ligaments. However, strain field inhomogene-
tive models. Quantification of the effects of disease or treatméfis i the experimental setting have never been quantified. Fur-

on shear properties can provide insight into the relationship By it is unclear if out-of-plane strains will be significant in these
tween different tissue components and continuum level shear bgss. Nonuniform strain fields could extend into the central por-
havior. ) ] _tion of the test specimen, polluting the measured strains and mak-
Finite simple shear is a homogeneous deformation consistifig the assumption of a homogeneous deformation unreliable.
primarily of deviatoric strain. It is used as a canonical problem tg|so, bulk properties could interact with clamping effects and
highlight differences between infinitesimal and large strain theoryample dimensions. The objectives of this study were to examine
and to compare the response of different constitutive models. Tiygite simple shear of simulated ligament material using the finite
deformation is applied in-plane to a relatively thin materiaglement(FE) method. The effects of aspect ratio, clamping pre-
sample(Fig. 1A). If the material is transversely isotropic and thestrain, and bulk modulus were assessed. It was hypothesized that
local fiber direction is aligned with the shear direction, there wikomplete characterization of the deformation within a central re-
not be elongation along the fiber direction. This eliminates thfion of the tissue could be obtained using only planar measure-
normally dominant fiber material behavior from the tissue rements of strain, providing a protocol for future experimental stud-
sponse to simple shear, providing an ideal method to investigaég of soft tissue shear properties.
matrix properties, fiber-matrix, and fiber-fiber interactions. These
data can augment tensile test data and help to identify an appro-
priate form for the matrix stress-strain behavior. Unlike the infini; .
tesimal strain theory, finite simple shear cannot be maintained gy Materials and Methods
shear stress alor(e.g.,[1]). Normal stresses are needed to main- The FE method was used to simulate a finite simple shear test
tain the normal strains at zero. In the absence of normal stress#sa planar sample of transversely isotropic material. The coordi-
the tissue will experience some contraction through the thicknesate system in Fig. 1 is used throughout the following sections.
and along the in-plane directions as shear strain is applied. Thigtial fiber direction was oriented along thyeaxis. This orienta-
will result in an inhomogeneous strain field that cannot be préien eliminates the fiber contribution—orientation of the fibers
dicted without additional analysis. along thex-axis would result in the shear response being domi-
Infinitesimal cyclic shear loading has allowed the effects ofated by the fiber stress. Specimen dimensions and material prop-
strain rate and orientation to be quantified in biological soft tissuesties were chosen to represent the human medial collateral liga-
[2,3]. These studies applied infinitesimal strains as either simpient(MCL).
or torsional shears. In contrast, Wilson et[dl] subjected rabbit . . .
medial collateral ligament to inhomogeneous, large deformati% 2.1 Comparison to Theoretical Solution. The Green-

, . e . e grange shearHyy, Eyz, andEyz) and normal strainsExy,
shear loading during uniaxial tests by making lateral incisions th %Yl andE,,) predicted by the FE simulations were compared to
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Fig. 1 A—Schematic of simulated simple shear test configu-
ration. Sample is gripped with two clamps and the right clamp

is displaced vertically to induce a shear r=tan (@), where @ is
the angle between the x-axis and the top edge of the tissue. The
coordinate axes illustrate the directions used to reference
strain components, with the  z-axis oriented out of the plane.
B—Finite element mesh used for the 12 X12 mm geometry.
Four elements were used along the  z-axis (out-of-plane ) direc-
tion. Shaded regions indicate the areas of the tissue in the
clamps.
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wherel  is the first deviatoric invariand, is the deviatoric part of

the stretch ratio along the local fiber direction, aneddetF). The
three terms represent the contribution from the matrix, the col-
lagen fibers, and the tissue bulk response. The only nonzero strain
energy derivative for the matrix strain energy was chosen so

that oF,/9l,=C,, yielding the relatively simple neo-Hookean
constitutive model. In the limit of infinitesimal straing; has the
interpretation of shear modulus. More complex representations of
matrix behavior, such as the Mooney-Rivlin model, can be repre-
sented by introducing an additional strain energy dependency on

the second deviatoric invariant, [9]. The functionF, represents

the strain energy from the fibers. It was assumed there was no
dispersion in fiber orientation. Because the last term on the right-
hand side of equatiof8) represents the entire volumetric response
of the material, the bulk behavior was controlled by the parameter
K, referred to herein as the bulk modulus. The strain energy de-
rivatives for the fibers were defined as a function of the fiber
stretch:

Xan =0, r\<1
&A - il 1
~3F, - 5
o Z—ClexpCyh-1)-1], 1<k<a*, ()

~dF, _ ~ i
)\K:CS)\-FCGi A=\T.

Here, C; scales the exponential stre€®, determines the rate of
collagen uncrimpingCs is the modulus of the straightened col-
lagen fibers, and* is the fiber stretch at which the collagen is

straightened. The theoretical solution predictsF,,=1 and thus

the collagen should not contribute to the stress. With the excep-
tion of bulk modulus, material properties were taken from a pre-
vious experimental study of MCL material behavio€,(=4.6
MPa,C;=2.4 MPa,C,=30.5,C5=323.7 MPa)\* = 1.055)[10].

The effective bulk modulus was introduced as a study parameter.

2.3 Finite Element Analysis. A hexahedral FE mesh was
constructed consisting of 7072 elements and 9275 nodes, with
four elements through the thickne@sig. 1B). Boundary condi-
tions were applied through the nodes that were in contact with the
clamps(Fig. 1B). The tissue extended 3 mm into each clamp and
was assumed to be perfectly bonded to the clamp. Experimental
loading was simulated in two phases. First, displacements were
prescribed for nodes beneath the clamps to simulate tissue com-
pression due to clampin@ompression along-axis in Fig. 14).
Second, a translation along tlyeaxis was prescribed to nodes
contacting the right clamped surfaces to induce a shear of
#=tan %(1/3). To simulate experimental conditions, the clamped
surfaces were left unconstrained along ¥kaxis during applica-
tion of clamping strain, but were constrained during application of

Here, k=tan(f). Because de() =1, the deformation is isochoric shear strain.

(no volume change The Green-Lagrange strain tengofollows:

k> k O
1 T 1
[E]=5FF-1]=5 « 0 0 @
0O 0 O

The only nonzero components & should beEyy and Exy.
When k= 1/3, these components should Bgy=0.167 andEyx
=0.055.

Nonlinear FE analyses were performed using NIKERLL].
Three-field brick elements were used to avoid element locking for
near-incompressible behavif®]. Quasi-static analysis was used
with the clamping strain applied from “quasi-timef'=0.0 tot
=1.0, followed by application of shear strain frotw1.0 tot
=2.0. An incremental-iterative solution strategy was used with a
quasi-Newton procedure controlling the iterative prodds§. To
determine the optimal configuration for shear testing, a series of
parameter studies were performed.

2.2 Constitutive Model. The test sample was represented 2.4 Effect of Sample Geometry. Three geometriesxty
by a transversely isotropic hyperelastic material that has besample dimensions of ¥12, 612, and 126 mm ) were ana-
used to describe and predict the behavior of ligaments and tendéy#ed with a bulk modulus of 1é% MPa and clamping prestrains

[7-9]. The strain energy was

~ ~ K
W=F (1) +F(M)+ g[ln(J)]2 ®)
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of 0 percent and 10 percent. These geometries represented the
largest samples of relatively homogeneous tissue that could be
harvested from human MCL and they allowed the effect of differ-
ent aspect ratios on the strain fields to be assessed.
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Fig. 2 Contours of Green-Lagrange strain and relative volume (VIV,) for sample dimensions of 12 X12 mm (top row ), 6X12 mm
(middle row ), and 12X6 mm (bottom row ). Note that the entire sample undergoes nearly isochoric deformation regardless of
sample dimensions. Clamping prestrain =10 percent, K=1.0e04 MPa, tan(6)=1/3.

2.5 Effect of Bulk Modulus. The bulk modulus was varied 3.1 Effect of Sample Geometry. In the absence of clamp-
over four orders of magnitude using theX{®2 mm geometry and ing prestrain, the 1212 and 6<12 mm geometries predicted the
10 percent clamping prestrain. In the analysis of rubber and othheoretical strains at the mesh center with good accu(féicy 4).
high polymers, if the effective bulk modulus is two or more orderglowever, theEy, strain for the 1X6 mm geometry became pro-
of magnitude larger than the effective shear modulus, the matefigéssively lower than the predicted value with increasing shear
may be considered incompressible for all practical purpps85  strain. This was the case for i strain as well but to a lesser
Values of bulk modulus were chosen to be on the same order&fient.
magnitude as,, and then one, two, and three orders of magni- when 10 percent clamping prestrain was applied before the
tude larger tharC; (K=1.0el, 1.(e2, 1.(e3, and 1.e4 MPa. shear strain, the-distance between the clamps increased and the
2.6 Effect of Clamping Prestrain. The effect of clamping Strains near the clamp edges were altered. The strains at a distance

was studied at levels of 0, 5, 10, and 15 percent compress@@ater than 1 or 2 mm from the clamps were essentially unaf-
prestrain for the 12 12 mm geometry withK =1.0e4 MPa. These fected by clamping, with the exception of a small positig,
levels of clamping represented a range between no clamping &tihin located throughout the central region of the sample due to
the most clamping that cold be applied without element inversidhe bulging effect. A 10 percent clamping prestrain resulted in
during solution with the FE code. tensileE,, strains in the specimen center of 0.01, 0.05, and 0.16
For each analysis, the predicted Green-Lagrange str&igg,( percent for the 126, 12x12, and 6<12 mm geometries, respec-

Evv, Exy, Exz, Evyz, andEzz) and volume ratifJ=detF) tively. Subsequent application of shear strain produced the oppo-
=V/V,] were examined at the sample center and compared to #ige effect on theE,, strain, with resulting values of-2.40,
theoretical solution[equation (2)]. The spatial distribution of —0.56, and 0.01 percent for the B, 12x12, and 612 geom-
strains and volume ratio were examined to determine arease®fies, respectivelyFig. 2, column 1. Following application of

homogeneous strain and isochoric deformation. both clamping prestrain and shear strain, all geometries experi-
enced alteration in the central region strains due to clamping and
3 Results free edge effectéFig. 2). The size of the central region of homo-

As clamping strain was applied, the tissue bulged toward tiggneous strain was greatly affected by sample geontEtgy 3).
For the 1212 mm geometry, thé&yy, Exx, Eyy, and Ez,

sample center and outside of the clamps. Because the clamps wéte, ?
free in the x-direction during the application of clamping pre_stralns varied over the sample, but there was a core area of ap-

strain, the bulging caused the clamps to move slightly apart. REoximately 5<2 mm in which the strains were homogeneous.
shear was applied, effects from the free and clamped edges inflit€ region of homogeneous strains increased to approximately
enced the predicted strain and stress fields in the sample. Thed mm for the 6<12 mm geometry(Fig. 3. Within these ho-
main area of positivé&, strains was near the clamp edgégy. mogeneous regions, tiey andExy strains for the 1212 and

2). Since positiveE,y strains were necessary to obtain positivé><12 mm corresponded well with the theoretical strains of Fig. 4.
fiber stretch\, these are the areas where transverse isotropy cdre 12<6 mm geometry predicteBlyy andExy strains below the
tributed to the response. For all cases, the through-thickness sHbaeretical levelFig. 2), however there was still a small central
strains Ey, andE,y) were essentially zere<0.1 percentexcept region over which this level was homogeneous. The homogeneous
within approximately 1 mm of the clamped edges. Detailed resubtggion for the 146 mm geometry was limited by tHeyy and the

are described for each parameter study, while representative g strain to an area of only approximatel2 mm (Fig. 3). For
sults are presented in graphical foffigs. 2 and R all geometries, the out of plane shear strafiiys and E,yx were
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Fig. 3 Regions of homogeneous Green-Lagrange strain distribution for sample dimensions of 12

X12 mm

(top row ), 6X12 mm

(middle row ), and 12X6 mm (bottom row ). Black areas indicate regions of strains that correspond to +0.005 of the indicated

center value. Clamping prestrain =10 percent, K=1.0e04 MPa, tan(6)=1/3.

essentially zero over the entire specimen. Regardless of samgle Discussion
geometry, the deformation was isochoric over the vast majority of

the sampleFig. 2, column 5. This study analyzed finite simple shear testing of planar, trans-

versely isotropic biological soft tissues using the finite element
3.2 Effect of Bulk Modulus. The main effect of bulk method. Parameter studies assessed the sensitivity of the strain

modulus was observed during application of clamping prestraifield to changes in geometry, bulk modulus, and clamping pre-

As the bulk modulus was increased for thex<ii2 mm sample, an strain. Although the geometry and material properties used in the

increased amount of bulging of the tissue towards the samglignulations represented the human MCL, the modeling technique

center occurred resulting in a small increase in the amouBtef may be used to examine the simple shear response of other con-

strain at the sample centef;, strains of 0.01, 0.007, 0.05, andstitutive models with homogenous fiber orientation.

0.06 percent were observed following clamping prestrain for bulk

moduli of 1.@1, 1.2, 1.3, and 1.@4 MPa, respectively. In-

creasing bulk modulus resulted in an increasedisplacement

during clamping(0.081, 0.176, 0.246, and 0.259 mm for bulk 0.06 0.13 —th
moduli of 1.Ge1, 1.0e2, 1.3, and 1.4 MPa, respectively 0.05 - — theory 0.15 theory
which induced little change in strains at the specimen center, W = 12x12 : = 12x12 4
subsequent application of shear strain, the bulk modulus had \  ¢,04 - . 12%6 o 0129 . 12x6
tually no effect on the predicteflyyx andEyy strains at the center, X & N
with results remaining nearly identical to those depicted in Fig. &y 0037 x x12 0.094 * 6x12 R
The volume ratio at the center was 1.0220, 1.0041, 1.0004, & i 4
1.0000 for bulk moduli of 1.61, 1.2, 1.6¢3, and 1.84 MPa, ~ 0-027 0.06 R
respectively, indicating that the deformation was nearly isochor g g1 - 0.03] A
regardless of bulk modulus.

3.3 Effect of Clamping Prestrain. There was virtually no 00 0.'1 0"2 0.'3 00 0:1 0.'2 0:3
change in strain at the specimen center with variations in clamay, tan (8) B. tan (6)

ing prestrain. Increases in clamping prestrain caused an increase
in Ezz, however, the effects were isolated to near the clamps. TR 4 Effect of specimen geometry on predicted Green-
main effect of increased prestrain was increased clamBgrange components of shear (Eyy) and normal (Eyy) strain,
x-displacement and strain alterations that were isolated to thea function of shear angle applied to the clamps. Clamping
clamped region. prestrain =0 percent, K=1.0e04 MPa.
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Sample geometry had the largest influence on strain field, alicgpatial variations in tissue thickness are large, they could affect
the effect was directly related to the relative proximity of thehe predicted results. Thickness variations could easily be incor-
clamps and free edges to the specimen center. Th&26and porated into specimen-specific finite element models for param-
12x12 mm geometries reproduced the theoretlEgl andEyy eter estimation.
strains with the most fidelity. The>612 mm geometry had a A secure bond between the tissue and the clamps can be chal-
slightly larger area of homogeneous strain than th&12 mm lenging to achieve experimentally. Tissue slippage or failure at the
geometry. This was mainly due to thg and theE,, strains, clamps has been reported during tensile failure tests performed
which were sensitive to the proximity of the clamps and frealong the fiber direction. For the sub-failure shear loading of this
edges to the sample center. The’2 mm geometry may provide study, the loads in both the- and y-directions are quite small
the best compromise between these errors and still provide a dafiways less than 10 N in the simulatiognsuggesting that reac-
ficiently large homogeneous central region for attachment of fidtiens at the clamps will not be sufficiently large to cause slippage
cial markers for strain measurement. or failure. Gripping techniques such as serrated gripping surfaces,

Variations in bulk modulus of four orders of magnitude inducethe use of sandpaper or cyanoacrylate, or freeze-clamping could
virtually no change in relative volume near the specimen centdre incorporated if slippage presented a problem. These techniques
Regardless of geometry, bulk modulus, and clamping prestragan also minimize the amount of clamping prestrain that is nec-
the deformation was nearly isochoric over a large area. This indissary to adequately secure the tissue. Although a clamping pre-
cated that simple shear provides an ideal method for studyiegain of 10 percent had little effect on the resulting strain distri-
solid matrix viscoelasticity. The isochoric nature of the deformaution at the center of the sample, larger values of prestrain could
tion allows intrinsic matrix viscoelasticity to be separated frorhave a greater influence.
interstitial fluid flow. The predicted tissue response is only valid for the specific ma-

The shear straingy; and Ezx were negligible in the same terial model used for these simulations. The model did not include
areas over which the deformation was isochoric. However, clamiier-matrix or fiber-fiber interaction terms. The appropriate form
ing prestrain and subsequent application of shear strain causeahd significance of these terms are currently unknown for most
small nonzerd,, strain for the 1X12 and 126 geometries and soft tissues. The model did not explicitly incorporate dispersion in
a value near zero for thex6l2 geometry. These results imply thatthe fiber angle of the material. The effects of such dispersion are
two-dimensional strain measurements may be used to charactetimknown, although they could be assessed if an appropriate con-
the deformation in a central region of the sample during finitstitutive model and material coefficients were available to de-
simple shear. With marker-based measurement techniques, isdsibe the dispersion. The effects of transverse isotropy on the
straightforward to determine the in-plane components of the deredicted strains were isolated to areas near the clamps where the
formation gradient,F,x, F.y, Fyx, and Fyy (e.g., [14]). If fiber stretch was greater than 1.0. Other models of transverse isot-
detfF)=1, ropy may have different effects on the observed strain fields. Spe-

cifically, the constitutive model used in this study was isotropic in
Fuxx Fyy O compression, so a model with transverse isotropy in compression
1 could produce different results. The simple shear test procedure
defF]=det Fyx Fyv 0 |=1=F;= FoxFyvy— FoyFox providgs a means to formulate a more so%histicated ma?rix model
0 0 F,7 Y oy for description of the nonlinear material behavior observed for
(5) large deformation shedb,6,15. Although fiber angle dispersion
was not studied in the present work, the same finite element mod-
Thus, the entire deformation gradient can be determined frasling techniques can be used to assess the effects of fiber angle
two-dimensional measurements, assuming tiBt through- dispersion on predicted response.
thickness shear strails, ; andE;x are negligible, and?2) defor- In summary, finite deformation simple shear of a parallel-
mation in the central region is homogeneous over the measufigered, transversely isotropic hyperelastic material was analyzed
ment area. The first assumption was valid for all cases examinegding the finite element method. When fibers were oriented along
while the validity of the second assumption depended on spettie shear direction, this configuration allowed characterization of
men geometry. The solution in the central region does not haveritatrix shear properties without the influence of the fibers. Sample
correspond to the theoretical solution predicted by equdfihras  geometry had the largest effect on the strain field, while clamping
long as equatioi5) applies over a large enough region. prestrain and bulk modulus caused only small changesx#mn

One of the goals of material testing is to determine coefficienigpect ratio of 1:2 provides the largest area of homogeneous
for a specified constitutive model. If a material undergoes hometrains, followed by an aspect ratio of 1:1. For these geometries,
geneous deformation and the constitutive law is known a priori, tilvo-dimensional measurements of strain are sufficient to com-
is straightforward to estimate material coefficien®)(based on pletely characterize the applied deformation in a central region of
measurements of stress and strain using a nonlinear least-squgiestest specimen. The present approach allows for the direct
method. Although a homogeneous deformation may be generagggplication of shear strain using a uniaxial test machine, without
over a central region during finite simple shear, edge effects pte assumptions of incompressibility or in-plane deformations.
clude homogeneous deformation over an entire cross-s¢@ign This provides the ability to characterize certain transversely iso-
3). This prevents accurate measurement of local tissue stress legpic compressible materials under shear without biaxial testing
els from clamp measurements of force and thereby prevents thguipment.
simple estimation of material coefficients. Use of the inverse FE
method can circumvent this problem. By estimating an initial set
of C;, the FE method is used to predict the resultant clamp forcégknowledgments
and strain field at the sample center for a given level of shearSUpport by Whitaker Foundation Biomedical Research and
strain. TheC; are then iteratively updated until the FE predictedransition Grants is gratefully acknowledged.
clamp forces and strain data match experimental measurements.
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tissue[10,15. Although the specific dimensions represented test _ Elasticity, Dover, New York. _
samples of human MCL, other planar, parallel-fibered soft tissues?) [iee il & & T B bel (e 1 PUER O 5 oo,
can be prepared with similar aspect ratios. Tissues such as fascia ges.9, No. 4, pp. 550-558.
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